用户名: 密码: 验证码:
黑豆萌芽水提物抗氧化活性研究及其机理初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑豆(Glycine max var)为豆科植物大豆(Glycine max(L.)merr)的黑色种子,又名橹豆、乌豆、黑大豆、马料豆。黑豆味甘性平,具有高蛋白、低热量的特性,是一种药食同源的豆类,在安徽、东北、河南、河北、山东、陕西等省均有种植。黑豆萌芽,俗称“大豆卷”,具有补肾、利尿消肿、滋阴壮阳、助消化、降血脂和软化血管等功效。本论文以黑豆萌芽为研究对象,对其萌发过程和抗氧化活性进行了系统研究,分析了与其抗氧化活性相关基因的表达,初步探讨了黑豆萌芽水提物(Black Soybean Sprouts Extract,BSSE)抗氧化活性的产生机理。
     (1)BSSE抗氧化活性研究:通过清除自由基,抑制酶活性和抗细胞氧化损伤三个方面系统研究了BSSE的抗氧化活性。结果表明:0-10cm芽长的BSSE(40mg/mL)对DPPH自由基和羟基自由基均有优异的清除作用,清除率均在90%以上,与同浓度的Vc相当,其中萌动期(0.5cm芽长)的BSSE的清除率高于其它芽长;0-10cm芽长BSSE(40mg/mL)对酪氨酸酶的抑制率可达90%左右,与同浓度的熊果苷接近,表明BSSE对酪氨酸酶有强抑制作用,其中萌动期(芽长0.5cm)BSSE活性最强;人皮肤成纤维细胞与BSSE孵育24h后,再与H2O2反应,能够显著抵抗H2O2引起的细胞损伤(p<0.05),芽长为0.5cm,1cm,2cm时,细胞的存活率较高。三个方面的研究结果都表明BSSE具有抗氧化活性,且萌动期活性优于干种子和其它芽长,说明适当的萌芽过程可以提高黑豆的抗氧化活性。
     (2)基因角度的机理研究:采用基因芯片技术,研究不同芽长黑豆萌芽的基因表达差异,结果表明:0.5cm芽长与5cm芽长黑豆萌芽的基因表达存在显著差异;GO term分析结果表明:在0.5cm的黑豆萌芽中总共有918个基因上调表达,其中属于GO:0006979(氧化压力响应)的10个基因显著高表达,这些基因主要调控热激蛋白和抗氧化酶类的合成,这些酶类与保持细胞氧化还原代谢平衡有密切关系;RT-PCR验证结果证明:基因芯片数据和RT-PCR验证结果一致,GO:0006979(氧化压力响应)的10个基因在0.5cm的黑豆萌芽中确实显著高表达。研究发现:萌发过程确实影响了黑豆基因的表达,调动了与抗氧化活性相关的基因显著高表达,产生了更多、活性更强的物质,提高了0.5cm芽长黑豆萌芽的抗氧化活性,从基因层面初步阐释了黑豆萌芽抗氧化活性增强的机理。
     (3)主要成分分类研究结果表明,BSSE的主要成分是蛋白质和多糖,基本不含黄酮类物质;主要成分的抗氧化活性实验表明,BSSE中的蛋白质是主要的抗氧化功效成分,多糖也具有优异的抗氧化活性;SDS-PAGE法测定蛋白质的分子量主要集中在三个范围:20.0ku以下;26.0-45.0ku;66.2-94.0ku,其中20.0ku以下的蛋白质清除自由基活性最强;MALLS/GPC法测定多糖的分子量主要分布在17.9-36.0ku之间,其中23.0ku多糖组分的抗氧化活性最优,说明低分子量的黑豆萌芽蛋白质和多糖具有更强的抗氧化活性。
     (4)响应面法优化提取工艺:在单因素实验的基础上,采用响应面法研究了黑豆萌芽中抗氧化活性成分提取工艺中的主要独立变量的相互作用,获得黑豆萌芽中抗氧化物质的最佳提取工艺为:超声提取时间32.13min;提取温度30℃;液料比29.19:1。根据最优提取条件,提取液对DPPH自由基的实际清除率可达67.60%,与理论预测值66.36%非常相近,优化的提取工艺提高了水提物的抗氧化活性。本实验优化得出的黑豆萌芽提取工艺,为开发利用黑豆资源提供了基础。
     (5)采用红细胞(RBC)溶血实验、鸡胚绒毛尿囊膜(CAM)实验和人体皮肤斑贴实验对BSSE的安全性进行研究,结果显示:RBC溶血率均低于10%,CAM模型未达到显著性差异(P>0.05),人体皮肤斑贴实验全部评定为0级反应,表明BSSE对眼睛和人体皮肤都是安全无刺激的;稳定性研究的结果显示:BSSE适宜的pH环境为6~10之间,可以耐热、耐寒、耐光照,在常温和冷热交替的条件下,都可以保持理化性质、主要成分和抗氧化活性的稳定;防腐挑战实验第14天即无微生物检出,证实防腐体系稳定可靠;产品适用性研究表明,BSSE可以添加在膏霜、乳液和啫喱等剂型的化妆品中,以及50%以下浓度的酒精体系中,不建议用于水剂化妆品。研究结果表明BSSE是一款安全、稳定、有效、普适的化妆品功效添加剂。
Black soybean (Glycine max var) is the black seed of the soybean Glycine max (L.) merr,also known as the black bean. Black beans are rich in protein and mainly cultivated in theprovinces of Anhui, Dongbei, Henan, Hebei, Shandong and Shanxi for both food andmedicinal purposes. The Supplement to Compendium of Materia Medica states that blackbeans can be beneficial to sperm and bone marrow production, muscle strength, hair growth,and the immune system. Modern scientific research shows that black beans havehypolipidemic and antioxidant properties and can be used to beautify the skin.
     Antioxidant Activity: Anti-oxidizing capacities of extracts were measured in vitro usingthe DPPH scavenging test, OH· scavenging test, tyrosinase inhibition test and MTTcolorimetric assay which used to study the effects of the bean sprout extracts on human skinfibroblasts damnified by H2O2. Results show that radical scavenging rates at different shootlengths were all greater than90%(40mg/mL), while the tyrosinase inhibition capacity of theextracts reached90%. Extracts from sprouts grown to0.5cm had the highest capacity.
     Analysis of Gene Expression: Microarray and GO (gene ontology) term enrichmentanalysis were used to research the expressed genes related to antioxidant activity, and theresult was confirmed by qRT-PCR. Results indicated that: sprout of0.5cm in length has thehighest antioxidant activity; Microarray analysis of expressed genes between sprouts (0.5and5cm) showed that the most up-regulated genes in0.5cm sprout belonged to GO:0006979(response to oxidative stress), in which ten genes were significant highly expressed; Theresult of qRT-PCR analyses on up-regulation genes was consistent with the microarrayanalysis, indicating that the results were biologically reproducible and believable.
     Active Ingredient: Main active ingredients in black bean sprout were studied. The massconcentrations of proteins, polysaccharides and total flavonoid in water extracts of blacksoybean sprouts were measured by the Flint-phenol method, the phenol-sulfuric acid methodand AlCl3reagent color-developing method respectively. Results showed that black beansprouts contain much proteins, polysaccharides and little flavonoids. Proteins andpolysaccharides were separated using ammonium sulfate fractionation and alcoholprecipitation fractionation. Anti-oxidizing capacities of ingredients were measured byDPPH·scavenging test. The molecular weight distribution of proteins and polysaccharideswere measured by SDS polyacrylamide gel electrophoresis and multi-angle laser lightscattering, gel permeation chromatography (MALLS/GPC) respectively. Results showed thatproteins were the main antioxidant, and polysaccharides also have antioxidant activity, andproteins and polysaccharides with lower molecular weight have the strongest antioxidantactivity.
     Optimization of Extraction Using RSM: Response surface methodology (RSM) usinga central composite design (CCD) was employed to optimize the conditions for extraction ofantioxidants from black soybean (Glycine max var) sprouts. Three influencing factors:liquid-solid ratio, period of ultrasonic assisted extraction and extraction temperature wereinvestigated in the ultrasonic aqueous extraction. Then Response Surface Methodology (RSM)was applied to optimize the extraction process focused on DPPH radical-scavenging capacityof the antioxidants with respect to the above influencing factors. The best combination ofeach significant factor was determined by RSM design and optimum pretreatment conditionsfor maximum radical-scavenging capacity were established to be liquid-solid ratio of29.19:1,extraction time of32.13min, and extraction temperature of30°C. Under these conditions,67.60%of DPPH radical-scavenging capacity was observed experimentally, similar to thetheoretical prediction of66.36%.
     Safety and Stability: The safety of the extracts was determined using the red blood cell(RBC) test, chick chorioallantoic membrane (CAM) assay and human patch test. Hemolysisrate in all extracts were lower than10%, below the20%regulatory limit for the RBC test; TheCAM results show that the effect of sample groups on CAM was similar to normal saline(negative control) without irritation; No signs of allergic reactions were observed in thehuman patch tests; indating that black soybean sprout extract was safe. Results of stabilitystudy show that black soybean sprout extract was stable at room temperature, light, heat, cold,alternating hot and cold, or with pH stay within the range of6to10; The anticorrosion wasstable; The extract was safe, stable, active and can be added into gel, cream, emulsion andalcohol formula.
引文
[1]叶茂富.植物种子[J].生物学通报,2002,37(3):26.
    [2]黄国平.萌动食品的研制[J].食品科技,2006,2:22-25.
    [3]刘兆庆,王曙文,姜媛媛.豆谷类发芽前后营养变化及评价[J].农产品加工,2004,11:35-36.
    [4]薛云皓,仵红梅,王爱月,等.玉米发芽前后的营养变化[J].河南医学研究,2001,10(1):5-7.
    [5]刘娟,史晓媛,王庆南,等.玉米发芽过程中碳水化合物代谢变化的研究[J].食品科学,2011,32(11):97-102.
    [6]徐托明,田斌强,孙智达,等.燕麦发芽过程中三大营养素的变化[J].天然产物研究与开发,2011,23:534-537,439.
    [7]徐建国.燕麦发芽过程中淀粉理化特性的变化[J].中国粮油学报,2012,27(5):27-30,34.
    [8]郑丽娜,赵莹.绿豆发芽过程中营养成分的变化[J].中国农学通报,2008,24(2):125-128.
    [9]王莘,胡可心,汪树生,等.豆类萌发期蛋白质和氨基酸含量的比较分析[J].吉林农业大学学报,2003,25(1):21-23.
    [10]郑艺梅,李群,华平,等.发芽糙米蛋白质营养价值评价[J].食品科学,2006,27(10),549-551.
    [11] Sun L K, Young K S, Jong R S, et al. Effect of germination condition and drying methods onphysicochemical properties of sprouted brown rice [J]. Korean Journal of Crop Science,2001,46(3):221-228.
    [12] Urbano G, Lopez J M, Frejnagel S, et al. Nutritional assessment of raw and germinated pea (Pisumsativum L.) protein and carbohydrate by in vitro and in vivo techniques [J]. Nutrition,2005,21(2):230-239.
    [13] Reema, Hira C K, Balwinder S. Nutritional evaluation of supplementary foods prepared fromgerminated cereals and legumes [J]. Journal of Food Science and Technology,2004,41(6):627-629.
    [14] Saharan K, Khetarpaul N, Bishnoi S. Antinutrients and protein digest-ibility of fababean andricebean as affected by soaking, dehulling and germination [J]. Journal of Food Science andTechnology,2002,39(4):418-422.
    [15]徐建国,郝艳芳,介琳霞,等.燕麦发芽过程中肽的变化及其相关特性研究[J].中国食品学报,2012,12(5):29-34.
    [16]胡崇琳,谢笔钧,孙智达.发芽前后燕麦蛋白质的组成变化及其营养评价[J].营养学报,2012,34(2):193-195.
    [17]蔡马.萌发对荞麦营养成分的影响研究[J].西北农业学报,2004,13(3):18-21.
    [18]胡亚军,姜莹,冯丽君,等.苦荞芽菜活性成分变化规律及营养成分分析评价[J].干旱地区农业研究,2008,26(2):111-114.
    [19]李振艳,张永忠,任红波.大豆发芽过程中异黄酮、-氨基丁酸等成分含量变化的研究[J].食品工业科技,2009,12:356-361.
    [20]朱新荣,胡筱波,潘思轶,等.大豆发芽期间多种营养成分变化的研究[J].中国酿造,2008,12:64-66.
    [21]李瑞国,朱秀敏,杨慧.不同萌发期绿豆芽蛋白质含量的测定及营养价值分析[J].山东农业科学,2011,1:97-99.
    [22]翟玮玮,焦宇知.黑豆发芽过程中蛋白质及-氨基丁酸的变化及发芽条件的优化[J].食品科学,2009,30(19):51-54.
    [23]张美莉,吴继红,赵镭,等.苦荞和甜荞萌发后脂肪酸营养评价[J].中国粮油学报,2005,20(3):44-47.
    [24]罗曦,曾亚文,杨树明,等.不同发芽时间下发芽稻谷和糙米不同部位-氨基丁酸含量差异[J].食品科学,2009,30(13):124-128.
    [25]申迎宾,范子剑,王显生,等.萌芽时间、温度以及不同浸泡液对萌芽豇豆-氨基丁酸含量的影响[J].食品与发酵工业,2009,35(4):10-15.
    [26]申迎宾,范子剑,麻浩.响应面法优化发芽豇豆积累-氨基丁酸工艺条件的研究[J].食品科学,2010,31(02):10-16.
    [27]付晓燕,胡崇琳,田斌强,等.燕麦发芽过程中酚类物质的变化[J].食品科学,2011,32(05):137-142.
    [28]侯建霞,汪云,程宏英,等.毛细管电泳检测苦荞芽中的黄酮类化合物[J].食品与生物技术学报,2007,26(2):12-15.
    [29]王静波,赵钢,赵江林,等.苦荞发芽过程中不同部位的黄酮合成动态研究[J].食品工业科技(网络预发表),2013-01-30.
    [30] Marta L A, Angelo F, Elisabetta P, et al. Simultaneous quantitation of free and conjugatedphytoestrogens in Leguminosae by liquid chromatography tandem mass spectrometry. Talanta,2005,66:1025-1033.
    [31]申海进,汪海峰,袁健,等.大豆发芽期异黄酮含量变化的研究及其促进剂的影响[J].中国粮油学报,2012,21(6):75-77.
    [32]孙肖青,孙筱林.黑豆萌发期游离异黄酮苷元成分的测定[J].山东农业科学,2008,08:110-111.
    [33]刘本国,陈永生,高海燕,等.苦荞麦萌发过程中活性成分的变化[J].粮食加工,2010,3:48-50.
    [34]周小理,成少宁,周一鸣,等.苦荞芽中黄酮类化合物的抑菌作用研究[J].食品工业,2010,2:12-14.
    [35]胡一冰,赵刚,彭镰心,等.苦荞芽提取物的镇痛抗炎作用[J].成都大学学报,2009,28(2):101-103.
    [36]韩文凤,邱波.绿豆开发利用研究概况[J].粮食加工,2008,33(5):53-54.
    [37]张守文.糙米的营养保健功能[J].粮食与饲料工业,2003,12:38-41.
    [38]范军,栗尤祥,郭小云,等.发芽糙米抗氧化活性在发芽及干燥过程中的变化研究[J].农产品加工学刊,2012,9:9-11.
    [39]康彬彬,陈团伟,张鑫桐,等.发芽糙米的营养价值及开发利用[J].农产品加工(创新版),2009,3:21-22.
    [40] Anuchita M, Nattawat S. Comparison of chemical compositions and bioactive compounds ofgerminated rough rice and brown rice [J]. Food Chemistry,2010,122(3):782-788.
    [41]穆清泉,梁雅芹,范永强,等.聚乙二醇浸种对绿豆萌发过程中酚类物质及抗氧化活性的影响[J].山东农业科学,2009,11:51-53.
    [42]付晓燕,李海龙,杨超,等.发芽燕麦不同溶剂提取液抗氧化活性的比较[J].食品与发酵工业,2011,37(4):68-72,77.
    [43]孙向东.发芽糙米研究最新进展[J].中国稻米,2005,3:5-8.
    [44]尤新.食品抗氧化剂与人体健康[J].食品与生物技术学报,2006,25(2):1-7.
    [45]尤新.植物多酚黄酮抗氧化剂与人体健康[J].食品与生物技术学报,2011,30(4):481-488.
    [46] Lai J X, Xin C, Zhao Y, et al. Study of Active Ingredients in Black Soybean Sprouts and TheirSafety in Cosmetic Use [J]. Molecules,2012,17:11669-11679.
    [47]徐艳阳,许鹏丽,王雪松.黑豆多糖的提取工艺及稳定性研究[J].食品研究与开发,2009,30(3):49-52.
    [48] Xu B J, Chang K C. Comparative study on antiproliferation properties and cellular antioxidantactivities of commonly consumed food legumes against nine human cancer cell lines [J]. FoodChemistry,2012,134(3):1287-1296.
    [49]黄国平.粮食种子萌发过程中营养特性的变化[J].中国食物与营养,2005,12:25-27.
    [50] Xu M, Dong J, Zhu M. Effects of germination conditions on ascorbic acid level and yield ofsoybeans sprouts [J]. Journal of the Science of Food and Agriculture,2005,85:943-947.
    [51] VidalV C, Frias J, Sierra I, et al. New functional legume foods by germination: Effect on thenutritive value of beans, lentils and peas [J]. European Food Research and Technology,2002,215:472-477.
    [52]王莘,王艳梅,苏玉春,等.黑大豆萌发期功能性营养成分测定与分析[J].食品工业科技,2004,4:132-133,88.
    [53] Lima M A, Piccolo B M, Ribeiro T A, et al. Evaluation of chemical compounds in Fabaceae sproutsfor the human consumption [J]. Ciencia Agrotecnologia,2009,33(4):1071-1078.
    [54] Hong G, Mandal P K, Lim K, et al. Fermentation increases isoflavone aglycone contents in blacksoybean pulp [J]. Asian Journal of Animal and Veterinary Advances,2012,7(6):502-511.
    [55] Guajardo-Flores D, Garcia-Patino M, Serna-Guerrero D, et al. Characterization and quantificationof saponins and flavonoids in sprouts, seed coats and cotyledons of germinated black beans [J].Food Chemistry,2012,134(3):1312-1319.
    [56]翟玮玮.黑豆发芽条件及其异黄酮提取物特性研究[J],食品科学,2008,29(09):186-189.
    [57]钟耀广.黑豆的营养特性与生物活性物质[J].北方园艺,2000,3:59.
    [58]王萌,阮美娟.黑豆提取物抗氧化性的研究[J].食品科技,2007,3,123-125.
    [59]任海伟,王常青,宋育璇.黑豆多肽分离及其抗氧化活性的研究[J].天然产物研究与开发,2009,21:136-139.
    [60]任海伟,王常青.黑豆低聚肽的抗氧化活性评价及其氨基酸组成分析[J].食品与发酵工业,2009,35(9):46-50.
    [61]张瑞芬,黄昉,徐志宏,等.黑豆皮提取物抗氧化和延缓衰老作用研究[J].营养学报,2007,29(2):160-162.
    [62]王玉丽,任海伟,李志忠,等.用清除DPPH自由基法评价药黑豆色素的抗氧化能力[J].食品工业科技,2009,30(8):102-105.
    [63] Xu B J, Chang K C. Antioxidant capacity of seed coat, dehulled bean, and whole black soybeans inrelation to their distributions of total phenolics, phenolic acids, anthocyanins, and isoflavones [J].Journal of Agricultural and Food Chemistry,2008,56(18):8365-8373.
    [64]刘恩岐,贺菊萍,陈振家,等.黑豆蛋白质酶水解物体外抗氧化活性的研究[J].中国粮油学报,2009,24(11):38-41.
    [65] Lai J X, Xin C, Zhao Y, et al. Optimization of ultrasonic assisted extraction of antioxidants fromblack soybean (Glycine max var) sprouts using response surface methodology [J]. Molecules,2013,18(1):1101-1110.
    [66] Lai J X, Xin C, Zhao Y, et al. Study of active ingredients in black soybean sprouts and their safetyin cosmetic use [J]. Molecules,2012,17(10):11669-11679.
    [67] Kim H, Xu L, Chang K, et al. Anti-inflammatory effects of anthocyanins from black soybean seedcoat on the keratinocytes and ischemia-reperfusion injury in rat skin flaps [J]. Microsurgery,2012,32(7):563-570.
    [68] Choe Y, Ha T, Ko K, et al. Anthocyanins in the black soybean (Glycine max L.) protect U2OS cellsfrom apoptosis by inducing autophagy via the activation of adenosyl monophosphate-dependentprotein kinase [J]. Oncology Reports,2012,28(6):2049-2056.
    [69] Chen Y, Chiang M, Chou C, et al. Enhancing the antitumor cell proliferation and Cu (2+)-chelatingeffects of black soybeans through fermentation with Aspergillus awamori [J]. Journal ofBioscience and Bioengineering,2013,115(4):400-404.
    [70] Chia J, Du J, Wu M, et al. Fermentation product of soybean, black bean, and green bean mixtureinduces apoptosis in a wide variety of cancer cells [J]. Integrative Cancer Therapies,2013,12(3):248-256.
    [71] Zou Y, Chang S. Effect of black soybean extract on the suppression of the proliferation of humanAGS gastric cancer cells via the induction of apoptosis [J]. Journal of Agricultural and FoodChemistry,2011,59(9):4597-4605.
    [72] Zhang T, Jiang S, He C, et al. Black soybean seed coat polyphenols prevent B(a)P-induced DNAdamage through modulating drug-metabolizing enzymes in HepG2cells and ICR mice [J].Mutation Research-Genetic Toxicology and Environmental Mutagenesis,2013,752(1-2):34-41.
    [73]王洛.黑豆的营养价值[J].农产品加工,2011,1:50.
    [74] Kim K, Lim K, Shin H, et al. Inhibitory effects of black soybean on platelet activation mediatedthrough its active component of adenosine [J]. Thrombosis Research,2013,131(3):254-261.
    [75] Kim K, Lim K, Kim C, et al. Black soybean extract can attenuate thrombosis through inhibition ofcollagen-induced platelet activation [J]. Journal of Nutritional Biochemistry,2011,22(10):964-970.
    [76]王常青,任海伟,王海凤,等.黑豆多肽对D-半乳糖衰老小鼠抗氧化能力的影响[J].食品科学,2010,31(3):262-266.
    [77] Liao H F, Chou C J, Wu S H, et al. Isolation and characterization of an active compound from blacksoybean [Glycine max (L.) Merr.] and its effect on proliferation and differentiation of humanleukemic U937cells[J]. Anti-Cancer Drugs,2001,12(10):841-846.
    [78] Choung M, Baek I, Kang S, et al. Isolation and determination of anthocyanins in seed coats ofBlack Soybean (Glycine max (L.) Merr.)[J]. Journal of Agricultural and Food Chemistry,2001,49(12):5848-5851.
    [79] Yamai M, Tsumura K, Kimura M, et al. Antiviral activity of a hot water extract of black soybeanagainst a human respiratory illness virus [J]. Bioscience, Biotechnology, and Biochemistry,2003,67(5):1071-1079.
    [80] Kim Y, Yoon H, Lee Y, et al. Anthocyanin extracts from black soybean (Glycine max L.) protecthuman Glial Cells against oxygen-glucose deprivation by promoting autophagy [J]. Biomolecules&Therapeutics,2012,20(1):68-74.
    [81] Jeon A, Lim T, Jung S, et al. Black soybean (Glycine max cv. Heugmi) seed coat extract suppressesTPA or UVB-induced COX-2expression by blocking mitogen activated protein kinases pathway inmouse skin epithelial cells [J]. Food Science and Biotechnology,2011,20(6):1735-1741.
    [82] Jang H, Kim S, Yuk S, et al. Effects of anthocyanin extracted from black soybean seed coat onspermatogenesis in a rat varicocele-induced model [J]. Reproduction Fertility and Development,2012,24(5):649-655.
    [83] Bhuiyan M, Kim J, Ha T, et al. Anthocyanins extracted from black soybean seed coat protectprimary cortical neurons against in vitro ischemia [J]. Biological&Pharmaceutical Bulletin,2012,35(7):999-1008.
    [84] Kim S, Chung M, Ha T, et al. Neuroprotective effects of black soybean anthocyanins viainactivation of ASK1-JNK/p38pathways and mobilization of cellular sialic acids [J]. Life Sciences,2012,90(21-22):874-882.
    [85] Paik S, Jeong E, Jung S, et al. Anthocyanins from the seed coat of black soybean reduce retinaldegeneration induced by N-methyl-N-nitrosourea [J]. Experimental Eye Research,2012,97(1):55-62.
    [86] Hong G, Pyun C, Kim S, et al. Effects of fermented black soybean pulp on lipid and bonemetabolism in ovariectomized rats [J]. Food Science and Biotechnology,2012,21(5):1397-1403.
    [87]王寅,张坤,赵晋.黑豆的营养价值及在食品中的开发应用[J].中国食品添加剂,2007,6:132-135.
    [88] Kwak J, Ahn C, Park S, et al. Weight reduction effects of a black soy peptide supplement inoverweight and obese subjects: Double blind, randomized, controlled study [J]. Food&Function,2012,3(10):1019-1024.
    [89] Kim H, Kim J, Han S, et al. Black soybean anthocyanins inhibit adipocyte differentiation in3T3-L1cells [J]. Nutrition Research,2012,32(10):770-777.
    [90] Kanamoto Y, Yamashita Y, Nanba F, et al. A black soybean seed coat extract prevents obesity andglucose intolerance by up-regulating uncoupling proteins and down-regulating inflammatorycytokines in high-fat diet-fed mice [J]. Journal of Agricultural and Food Chemistry,2011,59(16):8985-8993.
    [91]李大婧,宋江峰,刘春泉等.超声波辅助提取黑豆皮色素工艺优化[J].农业工程学报,2009,25(2):273-279.
    [92] Yildirim A, Mavi A, Kara A A. Determination of antioxidant and antimicrobial activities of Rumexcrispus L. extracts, J. Agric [J]. Food Chemistry,2001,49,4083-4089.
    [93]赵进,来吉祥,何聪芬等.红景天活性成分的提取工艺及其美容功效研究[J].日用化学工业,2009,12(6):402-404.
    [94]刘骏.结晶紫分光光度法测定Fenton反应产生的羟自由基[J].武汉工业学院学报.2001,24(2):53-55.
    [95]任德成,杜冠华,张均田.总丹酚酸对过氧化氢诱导内皮细胞损伤的抑制作用[J].中国药理学与毒理学杂志,2003,17(5):333-337.
    [96] Fernandez, R.; Frias, J.; Zielinski, H.; Piskula, M.; Kozlowska, H.; Concepción, V. Kinetic study ofthe antioxidant compounds and antioxidant capacity during germination of Vigna radiata cv.emmerald, Glycine max cv. Jutro and Glycine max cv. Merit [J]. Food Chemistry.2008,111,622–630.
    [97] Zielinski H. Contribution of low molecular weight antioxidants to the antioxidant screen ofgerminated soybean seeds [J]. Plan. Foods Hum. Nutr.2003,58,1–20.
    [98]肖健,李校堃,郭建红等.姜黄素对过氧化氢诱导的血管内皮细胞损伤的双重作用[J].中国临床药理学与治疗学,2005,10(12):1376-1379.
    [99] Schena M, Shalon D, Davis R W, et al. Quantitative monitoring of gene expression patterns with acomplementary DNA microarray [J]. Science,1995,270,467-470.
    [100] Sreenivasulu N, Sunkar R, Wobus U, et al. Array platforms and bioinformatics tools for the analysisof plant transcriptome in response to abiotic stress [J]. Methods Mol Biol,2010,639,71-81.
    [101] Aharoni A, Vorst O. DNA microarrays for functional plant genomics [J]. Plant Mol Biol,2002,48,99-118.
    [102] Tusher V G, Tibshirani R., Chu G. Significance analysis of microarrays applied to the ionizingradiation response [J]. Proc Natl Acad Sci U S A,2001,98,5116-5121.
    [103] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitativePCR and the2(-Delta Delta C (T)) Method [J]. Methods,2001,25,402-408.
    [104] Matsuyama A, Yoshimura K, Shimizu C, et al. Characterization of glutamate decarboxylasemediating γ-amino butyric acid increase in the early germination stage of soybean (Glycine max [L.]Merr)[J]. Journal of Bioscience and Bioengineering,2009,107,538-543.
    [105] McCue P, Shetty K. Clonal herbal extracts as elicitors of phenolic synthesis in dark-germinatedmungbeans for improving nutritional value with implications for food safety [J]. Food Biochem,2002,26,209-232.
    [106] McCue P, Shetty K. A biochemical analysis of mungbean (Vigna radiata) response to microbialpolysaccharides and potential phenolic-enhancing effects for nutraceutical applications [J]. FoodBiotechnol,2002,16,57-79.
    [107] Bonekamp N A, Volkl A, Fahimi H D, et al. Reactive oxygen species and peroxisomes: strugglingfor balance [J]. Biofactors,2009,35,346-355.
    [108] Brunell D, Weissbach H, Hodder P, et al. A high-throughput screening compatible assay foractivators and inhibitors of methionine sulfoxide reductase A [J]. Assay Drug Dev Technol,2010,8,615-620.
    [109] Weissbach H, Etienne F, Hoshi T, et al. Peptide methionine sulfoxide reductase: structure,mechanism of action, and biological function [J]. Arch Biochem Biophys,2002,397,172-178.
    [110] Weissbach H, Resnick L, Brot N. Methionine sulfoxide reductases: history and cellular role inprotecting against oxidative damage [J]. Biochim Biophys Acta,2005,1703,203-212.
    [111] Ruan H, Tang X D, Chen M.L, et al. High-quality life extension by the enzyme peptide methioninesulfoxide reductase [J]. Proc Natl Acad Sci U S A,2002,99,2748-2753.
    [112] Walter S, Buchner J. Molecular chaperones--cellular machines for protein folding [J]. Angew ChemInt Ed Engl,2002,41,1098-1113.
    [113] Borges J C, Ramos C H. Protein folding assisted by chaperones [J]. Protein Pept Lett,2005,12,257-261.
    [114] Santoro M G. Heat shock factors and the control of the stress response [J]. Biochem Pharmacol,2000,59,55-63.
    [115] Silva M.E., Franco T.T. Liquid-liquid extraction of biomolecules in downstream processing [J].Brazilian Journal of Chemical Engineering,2000,17(1):1-17.
    [116] Krishna H.S., Srinivas N.D., Raghavarao K.S., etal. Reversemicellar extraction for downstreamprocessing of proteins enzymes. Advances in Biochemical Engineering/Biotechnology,2001,75:119-183.
    [117] Wan Y, Ghosh R, Cui Z. Fractionation of proteins using ultrafiltration: developments andchallenges. Developments in Chemical Engineering and Mineral Processing,2005,13(122):121-136.
    [118] Cheng Y S, LeeM S, Lai S Y, etal. Separation of pure and immunoreactive virus like particles usinggelfiltration chromatography following immobilized metalion affinity chromatography.Biotechnology Progress,2001,17(2):318-325.
    [119] Levison P.R. Large scaleion exchange column chromatography of proteins: Comparison of different formats. Journal of Chromatography B: Analytical Technologies in the Biomedical and LifeSciences,2003,790(122):17-33.
    [120] Ueda E K, Gou t P W, Morganti L. Current and prospect ive applications of metal ionproteinbinding. Journal of ChromatographyA,2003,988(1):1-23.
    [121] Mahn A, Asenjo J A. Prediction of protein retention in hydrophobic interacion chromatography.Biotechnology Advances,2005,23(5):359-368.
    [122] ItoY. Golden rules and pitfalls in selecting optimum conditions for high speed counter currentchromatography. Journal of ChromatographyA,2005,1065(2):145-168.
    [123] Righetti P G. Electrophoresis: Themarch of pennies, themarch of dimes. Journal ofChromatography A,2005,1079(122):24-40.
    [124] Ghosh R. Protein separation using membrane chromatography: Opportunities and challenges.Journal of Chromatography A,2002,952(122):13-27.
    [125] Hilbriq F, Freitaq R. Continuous annular chromatography.Journal of Chromatography B: AnalyticalTechnologies in the Biomedical and Life Sciences,2003,790(122):1-15.
    [126] Zhou F, Johnston M. Protein characterization by online capillary isoelectric focusing, reversedphase liquid chromatography, and mass spectrometry. Analytical Chemistry,2004,76(10):2734-2740.
    [127] Ottens A K, Kobeissy F H, Wolper R A, etal. Amultidimensional differential proteomic platformusing dual phaseion exchange chromatography polyacrylam idegel electrophores is/reversed phaseliquid chromatography tand emmass spectrometry. Analytical Chemistry,2005,77(15):4836-4845.
    [128] Kaplan B, Pras M. Combined use of micro-preparative gelelectrophores is and reversed phase highperformance liquid chromatography for purification of amyloid Bpeptides depositedin brains ofAlzheimer. Sdisease patients. Journa l of Chromatography B: Analytical T echnologies in theBiomed ical and Life Sciences.2002,769(2):363-370.
    [129]张煜,王建英,王晶妍.硫酸铵盐析法分级分离大豆酸沉蛋白[J].河南师范大学学报(自然科学版),2011,39(6):99-100.
    [130]拉甫洛夫.胶体化学实验[M].陈宗琪译.济南:山东人学出版社,1987:249-252.
    [131] Beaty N B, Tew W P, Mello R J. Relative molecular weight and concerntration determination ofsodium hyaluronate solutions by geLexclusion high performance liduid chromatography [J]. AnalBiochem,1985,147:387-395.
    [132] Aiassaf S, Williarns P A, Phillips G O. Molecular characterization of hyaluronan and hylan usingGPC-MALLS and asymmetrical flow FFF-MALLS [A]. In: Kennedy J F. Hyaluronan (vol.1)[C].Cambridge: Woodheed,2002:55-65.
    [133]范慧红.激光光散射技术在生物大分子药物质控中的应用[J].食品与药品,2005,7(6A):59-60.
    [134]王彦厚,王凤山,郭学平.测定低分子量透明质酸相对分子质量的3种方法比较[J].中国生化药物杂志,2007,28(3):182-184.
    [135]张莉莉,严群芳,王恬.大豆生物活性肽的分离及其抗氧化活性研究[J].食品科学,2007,5(28):208-210.
    [136]徐艳阳,许鹏丽,王雪松.黑豆多糖的提取工艺及稳定性研究[J].食品研究与开发,2009,30(3):49-52.
    [137]卢小沉,陈志良,工春霞.女贞子化学成分及其药理作用研究概况[J].中药材,2006,29(6):625-628.
    [138]孔繁晨,罗佳波,刘莉.云南红豆杉中黄酮含量的测定[J].中国药房,2006,17(17):1342-1343.
    [139]易昌华,贺建华,戴求仲.中草药提取物中总黄酮含量的测定[J].检测技术,2004,(5):34-35.
    [140]李校堃,袁辉.药物蛋白质分离纯化技术[M].北京:化学工业出版社,2005:42-48.
    [141]郭福旺,阮美娟,王朝臣等.大豆蛋白小分子肽的制备及其分离纯化[J].食品工业,2008,(1):4-5.
    [142]殷涌光,刘静波.大豆食品工艺学[M].北京:化学工业出版社,2006.
    [143] Agric J. Aggregation of Peptides during Hydrolysis as a Cause of Reduced Enzymatic Extractabilityof soybean Meal proteins [J]. Food Chemistry.2002,50:4512-4519.
    [144] Rigkova L, Durackova Z, Sandla J, et al. Anti-oxidative and anti-mutagenic activity of yeast cellwall mannans in vitro[J]. Mutation Research Genetic Toxicology Enviomental Mutagenesis,2001,497(2):213-222.
    [145] Olafsdottir E S, Ingolfsdottir K. Polysaccharides from lichems Structural characteristics andbiological activity[J]. Planata Medica,2001,67(3):199-208.
    [146] Kim H T, Choi U K, Ryu H S, et al. Mobilization of storage proteins in soybean seed (Glycine maxL.) during germination and seedling growth. Biochim. Biophys. Acta2011,1814,1178–1187.
    [147] Lin, P.; Lai, H. Bioactive compounds in legumes and their germinated products [J]. Agric. FoodChemistry.2006,54,3807–3814.
    [148] Plaza L, De Ancos B, Cano P. Nutritional and health-related compounds in sprouts and seeds ofsoybean (Glycine max), wheat (Triticum aestivum L.) and alfalfa (Medicago sativa) treated by a newdrying method [J]. Eur. Food Res. Technol.2003,216,138-144.
    [149]王艳艳,王团结,丁琳琳.响应面分析法优化当归多糖提取工艺[J].食品科学,2012,33(10):146-149.
    [150]宋晓燕,高彦祥,袁芳.响应面法优化羊胎粉中抗氧化多肽制备工艺的研究[J].食品科技,2008,33(11):237-241.
    [151]刘长江,贾莎莎,许金光.响应面法优化软枣猕猴桃蛋白水解及多肽的抗氧化研究[J].食品科学,2012,33(10):33-38.
    [152]何瑞雪,高文宏,曾新安,朱思明.响应面法优化水溶性大豆多糖-铁(Ⅱ)配合的合成工艺[J].食品科学,2012,33(10):98-102.
    [153]豆亚静,张晓龙,常丽新等.响应面优化超声波法提取黑豆异黄酮的工艺研究[J].食品工业科技,2013,05:259-263.
    [154]高雪琴,王若兰,杨建平.黑豆皮红色素的微波提取工艺及特性研究[J].河南工业大学学报,2006,27(1):25-28.
    [155]李加兴,李敏利,陈建伏,等.微波辅助提取猕猴桃根多糖工艺优化[J].食品科学,2010,31(4):42-45.
    [156]张春红,吴双,许宁,等.超声波辅助提取野生酸枣猕猴桃茎多糖的工艺优化[J].食品工业科技,2012,33(6):297-299.
    [157]杨卫民,刘保琪,李团霞,赵青红.黑豆种皮中红色素的提取及稳定性研究[J].大豆科学,2010,04:688-691.
    [158] Wu Y, Cui SW, Tang J, et al. Optimization of extraction process of crude polysaccharides fromboat-fruited sterculia seeds by response surface method ology [J]. Food Chemistry,2007,105(4):1599-1605.
    [159] Amid Mehrnoush, Shuhaimi Mustafa, Md. Zaidul, et al. Optimization of the Conditions forExtraction of Serine Protease from Kesinai Plant (Streblus asper) Leaves Using Response SurfaceMethodology [J]. Molecules,2011,16:9245-9260.
    [160] Choon Yoong Cheok, Nyuk Ling Chin, Yus Aniza Yusof, Rosnita A. Talib, Chung Lim Law.Optimization of total phenolic content extracted from Garcinia mangostana Linn. hull usingresponse surface methodology versus artificial neural network [J]. Industrial Crops and Products,2012,(40):247-253.
    [161] Rajendran Velmurugan, Karuppan Muthukumar. Ultrasound-assisted alkaline pretreatment ofsugarcane bagasse for fermentable sugar production: Optimization through response surfacemethodology [J]. Bioresource Technology,2012,112:293-299.
    [162]程树军.揭秘化妆品安全性评价技术(一)[J].中国化妆品(行业),2011,01:66-71.
    [163] Rogers J V, Siegel G L, Pollard D L, et al. The cytotoxicity of volatile JP-8jet fuel components inkeratinocytes. Toxicology,2004,197:113-121.
    [164] Draize JH, Woodward G, Calvery HO. Methods for the study of irritation and toxicity of substancesapplied topically to the skin and mucous membrances[J]. J Pharamacol Expe Ther,1944,82:377-390.
    [165] Petersen A B,Wulf H C, Gniadecki R, et al. Dihydroxyacetone, the active browning ingredient insunless tanning lotions, induces DNA damage, cell-cycle block and apoptosis in cultured HaCaTkeratinocytes[J]. Mutat Res,2004,560:173-186.
    [166] Friedenwald JS, Hughes WF, Hermann H. Acid-base tolerance of the cornea[J]. Arch Ophthlmol,1944,31:279-283.
    [167] ADRIAENS E, DHONDTM M M, REMON J P. Refinement of the slugsmucosal irritation test asan alternative screening test for eye irritation [J]. Toxicol in Vitro,2005,19(1):79-89.
    [168] DOUCET O, LANVIN M, THILLOU C, et al. Reconstituted human corneal ep ithelium: a newalternative to the draize eye test for the assessment of the eye irritation potential of chemicals andcosmetic p roducts [J]. Toxicol in Vitro,2006,20(4):499-512.
    [169]张文改,杨杏芬.基于细胞的眼刺激性体外替代方法建立与化妆品眼刺激性逐步检测策略的初步研究[D].广州:中山大学,2007.
    [170] Benavides T, Martinez V Mitjans M, et al. Assessment of the potential irritation and photoirritationof novel amino acid based surfactant s by in vitro methods as alternative to the animal test [J].Toxicology,2004,201(1-3):87-93.
    [171] Jirova D, Kejlova K, Brabec M, et al. The benefits of the3T3URU test in the safety assessment ofcosmetics: long-term experience from pre-marketing testing in the Czech Republic[J]. ToxicolVitro,2003,17:791-796.
    [172] WARBRICK E V, EVANS P F. The regulatory acceptance of alternatives in the European Union[J]. Altern Lab Anim,2004,32(1):657-661.
    [173] VINARDELL M P, MITJANS M. The chorioallantoic membrane test as a model to predict thepotential human eye irritation induced by commonly used laboratory solvents [J]. Toxicol in Vitro,2006,20(6):1066-1070.
    [174] Lagarto A, Vega R, Vega Y, et al. Comparative study of red blood cell method in rat and calvesblood as alternatives of draize eye irritation test [J]. Toxicol in Vitro,2006,20(4):529-533.
    [175] Mehling A, Kleber M, Hensen H. Comparative studies on the ocular and dermal irritation potentialof surfactant s [J]. Food Chem Toxicol,2007,45(4):747-758.
    [176] Martinez V, Corsini E, Mitjans M, et al. Evaluation of eye and skin irritation of arginine-derivativesurfactants using different in vitro endpoints as alternatives to the in vivo assays [J]. Toxicol Lett,2006,164(3):259-267.
    [177]廖艳,王雪,张立实等.溶血试验作为眼刺激试验替代方法的研究[J].现代预防医学,2002,29(4):593-595.
    [178]薛金玉,杨杏芬,杨颖等.红细胞溶血实验替代兔眼刺激性实验检测农药眼刺激性初步研究[J].中国职业医学,2010,37(6):469-471.
    [179]王飞,宁岭.鸡胚绒毛尿囊膜试验在评估表面活性剂及洗发香波刺激中的应用[J].日用化学工业,1999,2(1):40-44.
    [180]毕葳,沈葹,李强等.云南白药抑制新生血管生成活性部位筛选[J].中国实验方剂学杂志,2011,17(22):223-225.
    [181]郑玉霞,邢国良,王捷等.沙棘化妆品皮肤斑贴实验的人体安全性研究[J].国际沙棘研究与开发.2008,6(2):16-18
    [182]中华人民共和国卫生部.化妆品卫生规范[M].2002,北京:中国标准出版社,149-167,219-232.
    [183] Okamoto Y, Ohkoshi K, Itagaki H, et al. Inter-laboratory validation of the in vitro eye irritation testsfor cosmetic ingredients (3) Evaluation of the haemolysis Test [J]. Toxicology in vitro,1999,13(1):115-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700