用户名: 密码: 验证码:
过热蒸汽焙炒黄酒酿造大米机理及其工程优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国黄酒的年产量约150万吨,发展非常迅速,与此同时,黄酒产业也存在污染及能耗大,装备水平及自动化程度不高等发展“瓶颈”。亟需进行系统深入的研究,提升黄酒生产过程的技术及装备水平,实现黄酒产业现代化,使黄酒产业在保持传统特色的基础上走上可持续发展的道路。
     在黄酒酿造过程中,蒸煮操作是污染物排放及能源消耗最大的工序,包括大米的浸泡和蒸饭两个操作步骤。浸泡操作每年产生90万吨高浓有机废水,其中含2.7万吨COD污染物。蒸饭操作年蒸汽消耗约为48万吨,折合标煤6.48万吨。不需要浸泡操作的焙炒技术属于粮食淀粉干法糊化技术,可以革除大米蒸煮糊化操作的浸泡废水,大幅度降低黄酒酿造过程的废水排放量和污染物排放量。但是,当前大米焙炒技术还存在许多问题,主要包括:焙炒尾气排放造成大气污染和能源浪费;焙炒设备加工精密度要求高,设备投资大,控制精度也有较高要求,维护保养困难等;对焙炒技术的研究也存在研究水平低,缺乏对焙炒过程粮食淀粉糊化变化模式和机制的清晰认识,缺乏明确直接指导焙炒过程控制和设备放大的理论基础和方法。过热蒸汽焙炒可以克服空气焙炒时尾气排放造成的大气污染和能源浪费,实现酒类的“绿色”酿造。为此,进行过热蒸汽焙炒技术的系统研究,最终得出结论如下:
     (1)根据传热能力高的稀相流化床和浅层流化床的原理及大米流化特性优化设计实验流化床,并优化得到实验流化床的最佳传热操作条件即进料量为10g,气体流速为1.5倍起始流化速度,即4m s-1。在这种条件下,实验流化床的焙炒传热速率最高。在最佳传热条件下进行了焙炒大米工艺参数的优化和水化性质及膨胀率比较分析,发现过热蒸汽200oC时,在30~50s的时间范围内大米的糊化率基本相同,并且无明显的副反应,保证了大米在连续操作条件下有一定的停留时间分布,被确定为实验大米焙炒的最佳工艺参数。采用不同加热介质焙炒大米的比较研究发现,加热介质对焙炒糊化效果影响不大,过热蒸汽与空气焙炒大米的糊化率基本相同,过热蒸汽略高。
     (2)根据对焙炒过程中大米细微结构、糊化性质和结晶等的变化分析,发现在最佳操作条件下,焙炒过程存在两个明显不同的阶段,升温阶段和膨化阶段,其中升温阶段又可以分为两个时期:准备期和快速糊化期。在升温阶段,大米快速升温,内部的分子结构和特性急剧变化,但宏观并不大。膨化阶段,大米升温速度显著下降,但由于温度已经超过大米的熔点,发生了膨化现象,大米的体积和宏观结构变化发生了巨大的变化。两个阶段的分界点在20~25s之间。由于两个阶段的显著差异,在焙炒控制上也需要采用不同的控制方式。利用模拟实验装置的数学模型分析焙炒过程中大米内部温度分布变化,确定了焙炒过程中大米温度变化的最佳模式,提出了焙炒过程的标准温度控制曲线。由此提出焙炒过程设计和放大策略:根据焙炒过程温度变化特征控制焙炒过程中大米的温度变化,大米平均温度变化应符合标准温度控制曲线。
     (3)采用部分数值模拟法构建了过热蒸汽焙炒大米活塞流流化床的数学模型。根据焙炒初期蒸汽冷凝及再蒸发的特征,采用第一类边界条件下偏微分方程模拟了这一过程,并以分段函数的形式表达了整个过热蒸汽的焙炒过程。
     利用活塞流流化床模型分析了工业过程焙炒流化床的结构和操作参数对焙炒过程的影响,针对工业过程的要求提出了两段焙炒流程。通过两段焙炒模型分析发现在两段焙炒系统中大米平均温度曲线与标准温度控制曲线很接近,处理能力远高于实验装置,常规的活塞流型流化床可以用于两段焙炒大米。利用工业模型对两段焙炒过程进行优化,得出两段大米焙炒时,处理能力为实验条件下处理能力的7~8倍,即12.88~14.72kg (s m-2)。加热段的操作条件是过热蒸汽温度270~280oC,停留时间12.5s,过热蒸汽的空床速度4m s-1。保温段的过热蒸汽温度200oC,停留时间27.5s,过热蒸汽空床速度3m s-1。综合取得的优化参数,确定了工业化焙炒工艺设计和系统设计步骤,为实施黄酒“绿色”中试和产业化提供了完整的节能减排解决方案。
     (4)采用蛋白质溶解度分析法,研究了焙炒过程蛋白质热变性现象,发现大米蛋白的热变性发生在焙炒前期,并且变性程度较深,但焙炒大米的蛋白质变性程度低于传统的浸泡蒸煮大米,粳米与糯米的变性过程和程度基本相同,使用不同的加热介质对大米蛋白的变性没有显著影响。通过测定大米中油脂含量在在焙炒过程中的变化,发现焙炒大米中游离油脂的挥发量较大而结合油脂的挥发量较小。粳米油脂难挥发而糯米油脂容易挥发。
     比较研究了不同加料方式对黄酒发酵的影响,初步认定补料发酵法是适合焙炒大米酿酒黄酒的工艺。通过理化指标检测、感官分析和风味物质分析,认为使用焙炒大米可以酿造出与传统黄酒相同风味的黄酒,但与传统酿造的黄酒相比,在感官品评上还存在微小的差距,主要原因是焙炒米黄酒的风味物质含量略低。认定以过热蒸汽为介质焙炒大米的方法可以用于黄酒生产,但需要对焙炒大米酿酒黄酒技术进行更深入的研究和优化。
At present, the annual output of Chinese rice wine is1.5million tons with a rapid rate ofdevelopment. Meanwhile, the development of the Chinese rice wine industry has encounteredsome bottlenecks, such as low level of processing technology and production efficiency, highpollution and excessive energy consumption, and the low degree of Equipment level andautomation. The further system research is necessary to enhance the level of productiontechnology and equipment in order to achieve a modern Chinese rice wine industry, resultingin a path of sustainable development based on the traditional characteristics.During rice wine production process, the production units of soaking and rice cooking arethe main source of pollutants and high energy consuming.0.9million tons of waste water withhigh concentrated organic waste, containing27thousand tons of COD pollutants, are generatedannually in the soaking phase. Meanwhile, it takes0.48million tons of vapor for rice cookingevery year, converting into64.8thousand tons of standard coal. The roasting technique withoutsoak water, significantly reduces emissions of waste water and other pollutants. However, thistechnique causes several extra problems, such as exhaust gas pollution by roasting, highprecision and investment requirement on roasting equipment, a large cost on control andmaintenance. In addition, study on roasting technique and substance variation is not in depth,causing the lack of theoretical basis guidelines on roasting process control and equipmentamplification.
     A new technique, called superheated steam roasting, could overcome the air pollution andenergy waste during roasting, and thus implement "green" brewing of Chinese rice wine.Therefore, the systematic study focused on the Chinese rice wine brewing with superheatedsteam rice roasting process. The main results are concluded as follows:
     (1) The experimental fluidized device is designed according to the fluidizationcharacteristic of rice based on the theories of dilute phase fluidized bed and shallowfluidized bed with high capacity of heat transfer. And the operating parameters areoptimized to achieve the optimal heat transfer rate of roast: input amount of10g,fluidized gas velocity of4m s-1which is1.5times higher than initial velocity. In thecase of optimal heat transfer, the technological parameters of roasting are optimized andthe hydration property and expansion rate is compared. The results showed that theexpansion rate of rice had no significant differences during the30~50seconds ofroasting time at superheated steam200oC without occurrence of secondary reactions.The above technological parameters are considered to be the optimal condition for riceroasting since certain retention time is available during the continuous operation.Comparative study of the different heating medium roast rice find gelatinization rate ofsuperheated steam rice and air roasted rice is similar and gelatinization rate ofsuperheated steam rice superheated steam is slightly higher.
     (2) Analysis of change information of rice microstructure, properties and crystallineduring roasting process, that under the optimal operation condition, roasting processcan be divided into two stages, heating and puffing. The heating stage can be divided into the two period: preparation period and rapid gelatinization period. The sharp risein the temperature of rice during heating stage, molecular structure and characteristicof internal change sharply. The heating rate significantly decreased during puffing,but rice begins puffing due to the temperature over the melting point of it. Greatchanges have taken place in the volume and the macro structural changes of rice. Thedividing point of the two stages is between20~25seconds. Changes in the riceinternal temperature distribution during roasting process have been analyzed using theexperimental model, so the best mode roasted rice temperature changes duringroasting is determined, the standard temperature control curve for roasting is proposed.The roasting process design and amplifying strategy is proposed: According to thetemperature change characteristics of roastcheng process control temperaturevariation of rice. Change of rice average temperature should conform to the standardtemperature control curve.
     (3) By using the method of numerical simulation, industrial process models of continuousrice roasting using superheated steam were constructed respectively. Roasted rice usingsuperheated steam model contains the initial steam condensation simulations.
     Influence of the structure of fluidized bed and operating parameters on the roastingprocess were analyzed using a section roasting process model. According to therequirement of industrial process, two sections roasting technology has been proposed.The roasting model analysis found that the average temperature curve of rice in the twosections roasting system is close to the standard temperature control curve. Productioncapacity is far higher than the capacity of the experimental device. The ordinary plugflow fluidized bed can be used for two sections roasting. The optimization results showthat processing ability of the two sections roasting system is7~8times the processingability of experiment equipment, that is12.88~14.72kg (s-1m-2). The heating sectionoperating conditions are the superheated steam temperature of270~280℃, residencetime of12.5s, the superheated steam empty bed velocity4m s-1. Insulation section ofsuperheated steam temperature of200℃, residence time of27.5s, superheated steamempty bed velocity3m s-1.
     Industrial roasting system design and process design procedures have beenproposed. Complete program is provided for the implementation of pilot andindustrialization.
     (4) The thermal denaturation of rice protein occurred in the roasting stage is studied byprotein solubility analysis. It is found that the thermal denaturation of rice proteinoccurred in the early roasting stage, and a greater degree of degeneration. But roastedrice protein denaturation degree is smaller than the traditional soaking and cooking rice.The degree of degeneration of no waxy rice and waxy rice is basically the same. Use ofdifferent heating medium has no effect on rice protein denaturation.
     The change of oil content in rice during roasting is mensurated. It is found thatvolatilization of free oil is larger and volatilization of bound oil is smaller. No waxy riceoil difficultly volatile and waxy rice oil easily volatile.
     Comparative study on the effects of different feeding methods on the rice winefermentation. Preliminary identification of fed batch fermentation method is suitable forroasted rice wine brewing technology. Through the determination of physicochemicalproperties, sensory analysis and flavor analysis that the use of roasted rice wine with thetraditional flavor can be brewed. But with the traditional rice wine, there are still somegaps. Therefore roasted rice by superheated steam can be used for rice wine production.
引文
[1]Juliano B O. Rice: chemistry and technology [M]. St. Paul, Minn., USA: AmericanAssociation of Cereal Chemists,1985
    [2]李海霞,何国庆,楼凤鸣,等.米浆水和淋饭水回收利用对黄酒发酵过程的影响[J].中国食品学报,2012,12(4):146-152
    [3]盛凤云.液化法黄酒酿造新工艺的开发[D]:[博士学位论文].地点:江南大学,2009
    [4]陈佩仁,王有崇,王林秋.蒸煮方法改变对黄酒和糟烧白酒质量及原料利用的影响[J].酿酒,2010,37(4):58-60
    [5]丁美珍.高温液化黄酒酿造工艺研究[J].酿酒科技,2013,(05):76-78+81
    [6]陆燕,徐岩,徐文琦,等.糯米膨化法对黄酒酿造及其风味的影响[J].食品与发酵工业,2003,29(06):67-71
    [7]盛凤云,徐岩,赵光鳌,等.优势传统黄酒类制造业关键技术与应用系列-5液化法黄酒酿造新工艺中液化程度控制的研究[J].中国酿造,2009,(09):110-114
    [8]徐呈祥.酿造黄酒的蒸煮新技术介绍[J].嘉兴高等专科学校学报,1995,(00):42-43.
    [9]赵宝成,杨国琪,赵光鳌.液化法黄酒酿造新技术的应用[J].酿酒,2003,30(05):63-65
    [10]Beizhao Z J. Roasted technology in the application of sake brewing [M].97InternationalAlcoholic Beverage Culture and Technology Symp. Wuxi; Academia Press.1997:39-42
    [11]高山卓美.清酒“焙炒造り”について[J].日本醸造協会雑誌,1992,7(12):849-859.
    [12]石原直树.日本国公开特许公报平3-292878
    [13]Zhu Y B, Zhang J H, Shi Z P,等. Optimization of operating conditions in rice heat blastprocess for Chinese rice wine production by combinational utilization of neural network andgenetic algorithms [J]. Journal of the Institute of Brewing,2004,110(2):117-123
    [14]彭昌亚,张建华,帅桂兰,等.利用高温流化米酿制新型黄酒[J].酿酒,2002,29(2):90-91
    [15]张建华,牛磊,毛忠贵.高温流化α-化大米液态发酵工艺研究[J].食品科学,2009,30(02):74-78
    [16]张建华,陶绍木,毛忠贵.高温流化α-化工艺对酿造黄酒风味的影响[J].食品与发酵工业,2008,34(05):92-96
    [17]张建华,陶绍木,彭昌亚,等.高温流化法糊化在黄酒生产中的应用[J].酿酒,2005,32(2):79-81
    [18]张建华,陶绍木,朱益波,等.高温流化α-化在酿酒用大米预处理中的应用[J].食品与生物技术学报,2006,25(02):88-92
    [19]朱益波,张建华,毛忠贵,等.基于高温瞬时α化大米酿造清酒的发酵工艺研究[J].食品科学,2009,30(05):209-213
    [20]毛青钟,张水娟,鲁瑞刚,等.焙炒米酿制黄洒的中试报告[J].江苏调味副食品,2007,25(5):15-17
    [21]李浪,周平,杜平定.淀粉科学与技术[M].郑州:河南科学技术出版社,1994
    [22]刘亚伟.淀粉生产及其深加工技术[M].北京:中国轻工业出版社,2001
    [23]张力田.淀粉糖[M].北京:中国轻工业出版社,1998
    [24]R.L.惠斯特勒, J.N.贝密勒, E.F.帕斯卡尔.淀粉的化学与工艺学[M].北京:中国食品出版社,1988
    [25]Whistler R L, Bemiller J N, Paschall E F. Starch: chemistry and technology [M]. Orlando,Florida; Academic Press.1984
    [26]Biliaderis C G, Page C M, Maurice T J,等. Thermal characterization of rice starches: apolymeric approach to phase transitions of granular starch [J]. Journal of Agricultural andFood Chemistry,1986,34(1):6-14
    [27]Di Q, Wang.S.S. Kinetics of the Formations of Gelatinized and Melted Starch atExtrusion Cooking Conditions [J]. starch,1994,46:225-229
    [28]Chen P, Yu L, Simon G P,等. Internal structures and phase-transitions of starch granulesduring gelatinization [J]. Carbohydrate Polymers,2011,83:1975–1983
    [29]Cheyne A, Barnes J, Gedney S,等. Extrusion behaviour of cohesive potato starch pastes:II. Microstructure–process interactions [J]. Journal of Food Engineering,2005,66:13-24
    [30]Hsieh H M, Swanson B G, Lumpkin T A. Starch Gelatinization and Microstructure ofAzuki An Granules Prepared From Whole, Abraded, or Ground Beans [M].1999.469-480
    [31]Lai L, Kokini J L. Physicochemical changes and rheological properties of starch duringextrusion [M].1991.251-266
    [32]Mason W R, Hoseney R C. Factors affecting the viscosity of extrusion cooked wheat-starch [M].1986.604
    [33]Toru Takahashi M M, Naganori Ohisa, Kobayashi S. Modification of GelatinizationProperties of Rice Flour by Heat-Treatment [M].2005.81-85
    [34]Lai H M. Effects of hydrothermal treatment on the physicochemical properties ofpregelatinized rice flour [J]. Food Chemistry,2001,72:455-463
    [35]Lai H M. Effects of rice properties and emulsifiers on the quality of rice pasta [J]. Journalof the Science of Food and Agriculture,2002,82(2):203-216
    [36]Huang Y C, Lai H M. Characteristics of the starch fine structure and pasting properties ofwaxy rice during storage [M].2014.432-439
    [37]Shinde Y H, Vijayadwhaja A, Pandit A B,等. Kinetics of cooking of rice: A review [J].Journal of Food Engineering,2014,123(0):113-129
    [38]Guha M, Ali S Z, Bhattacharya S. Twin-screw extrusion of rice flour without a die: Effectof barrel temperature and screw speed on extrusion and extrudate characteristics [J]. Journalof Food Engineering,1997,32(3):251-267
    [39]Beizhao Z J. Roasted technology in the application of sake brewing [M].97International Alcoholic Beverage Culture and Technology Symposium. Wuxi; AcademiaPress.1997:39-42
    [40]Ono K. Superheated steam [J]. Journal of the Japanese Society for Food Science andTechnology-Nippon Shokuhin Kagaku Kogaku Kaishi,2008,55(3):121-121
    [41]Mujumdar A S. Superheated Steam Drying [M]//MUJUMDAR A S. Handbook ofIndustrial Drying (3th ed). Boca Raton, FL; CRC Press.2006:439-452
    [42]白丽青,马晓建.过热蒸汽干燥及其在食品干燥中的应用[J].农机化研究,2008,(09):158-161
    [43]Abe T, Miyashita K. Heat treatment of scallop adductor muscle using superheated steam[J]. Journal of Food Science,2007,72(6): E345-E350
    [44]Amatsubo T, Hagura Y, Suzuki K. The effect of superheated steam treatment on thequality of vegetable oils [J]. Food Science and Technology Research,2006,12(2):114-118
    [45]Borquez R M, Canales E R, Quezada H R. Drying of fish press-cake with superheatedsteam in a pilot plant impingement system [J]. Drying Technology,2008,26(3):290-298
    [46]Cenkowski S, Pronyk C, Zmidzinska D,等. Decontamination of food products withsuperheated steam [J]. Journal of Food Engineering,2007,83(1):68-75
    [47]Karimi F. Applications of superheated steam for the drying of food products [J]. INTAGROPHYS,2010,24(2):195-204
    [48]Kozanoglu B, Vazquez A C, Chanes J W,等. Drying of seeds in a superheated steamvacuum fluidized bed [J]. Journal of Food Engineering,2006,75(3):383-387
    [49]Markowski M, Cenkowski S, Hatcher D W,等. The effect of superheated-steamdehydration kinetics on textural properties of Asian noodles [J]. Transactions of the Asae,2003,46(2):389-395
    [50]Moreira R G. Impingement drying of foods using hot air and superheated steam [J].Journal of Food Engineering,2001,49(4):291-295
    [51]Nathakaranakule A, Kraiwanichkul W, Soponronnarit S. Comparative study of differentcombined superheated-steam drying techniques for chicken meat [J]. Journal of FoodEngineering,2007,80(4):1023-1030
    [52]Nimmol C, Devahastin S, Swasdisevi T,等. Drying of banana slices using combined low-pressure superheated steam and far-infrared radiation [J]. Journal of Food Engineering,2007,81(3):624-633
    [53]Ono K, Endo H, Inatsu Y,等. Sterilizing effect of superheated steam on microbes inChinese cabbage [J]. Journal of the Japanese Society for Food Science and Technology-Nippon Shokuhin Kagaku Kogaku Kaishi,2006,53(3):172-178
    [54]Ono K, Endo H, Yamada J,等. Effect of superheated steam treatment on the preservationand sensory characteristics of buckwheat noodles [J]. Journal of the Japanese Society forFood Science and Technology-Nippon Shokuhin Kagaku Kogaku Kaishi,2007,54(7):320-325
    [55]Prachayawarakorn S, Prachayawasin P, Soponronnarit S. Heating process of soybeanusing hot-air and superheated-steam fluidized-bed dryers [J]. Lwt-Food Science andTechnology,2006,39(7):770-778
    [56]Pronyk C, Cenkowski S, Abramson D. Superheated steam reduction of deoxynivalenol innaturally contaminated wheat kernels [J]. Food Control,2006,17(10):789-796
    [57]Pronyk C, Cenkowski S, Muir W E. Drying foodstuffs with superheated steam [J]. DryingTechnology,2004,22(5):899-916
    [58]Pronyk C, Cenkowski S, Muir W E,等. Effects of superheated steam processing on thetextural and physical properties of Asian noodles [J]. Drying Technology,2008,26(2):192-203
    [59]Soponronnarit S, Nathakaranakule A, Jirajindalert A,等. Parboiling brown rice usingsuper heated steam fluidization technique [J]. Journal of Food Engineering,2006,75(3):423-432
    [60]Soponronnarit S, Prachayawarakorn S, Rordprapat W,等. A superheated-steam fluidized-bed dryer for parboiled rice: Testing of a pilot-scale and mathematical model development [J].Drying Technology,2006,24(11):1457-1467
    [61]Sotome I, Suzuki K, Koseki S,等. Blanching of potato with superheated steam containingmicro-droplets of hot water [J]. Journal of the Japanese Society for Food Science andTechnology-Nippon Shokuhin Kagaku Kogaku Kaishi,2006,53(9):451-458
    [62]Taechapairoj C, Dhuchakallaya I, Soponronnarit S,等. Superheated steam fluidised bedpaddy drying [J]. Journal of Food Engineering,2003,58(1):67-73
    [63]Taechapairoj C, Prachayawarakorn S, Soponronnarit S. Modelling of parboiled rice insuperheated-steam fluidized bed [J]. Journal of Food Engineering,2006,76(3):411-419
    [64]Tang Z W, Cenkowski S, Izydorczyk M. Thin-layer drying of spent grains in superheatedsteam [J]. Journal of Food Engineering,2005,67(4):457-465
    [65]Tatemoto Y, Mawatari Y, Sakurai K,等. Drying characteristics of porous material in afluidized bed of fluidizing particles with superheated steam [J]. Journal of ChemicalEngineering of Japan,2003,36(6):655-662
    [66]Uengkimbuan N, Soponronnarit S, Prachayawarakorn S,等. A comparative study of porkdrying using superheated steam and hot air [J]. Drying Technology,2006,24(12):1665-1672
    [67]Zielinska M, Cenkowski S, Markowski M. Superheated Steam Drying of Distillers' SpentGrains on a Single Inert Particle [J]. Drying Technology,2009,27(12):1279-1285
    [68]Rordprapat W, Nathakaranakule A, Tia W,等. Comparative study of fluidized bed paddydrying using hot air and superheated steam [J]. Journal of Food Engineering,2005,71(1):28-36
    [69]Iyota H, Konishi Y, Inoue T,等. Popping of amaranth seeds in hot air and superheatedsteam [J]. Drying Technology,2005,23(6):1273-1287
    [70]Iyota H, Nishimura N, Yoshida M,等. Simulation of superheated steam dryingconsidering initial steam condensation [J]. Drying Technology,2001,19(7):1425-1440
    [71]郭慕孙,李洪钟.流态化手册[M].北京:化学工业出版社,2008
    [72]郭宜诂.流化床基本原理及其工业应用[M].北京:化学工业出版社,1980
    [73]李佑楚.流态化过程工程导论[M].北京:科学出版社,2007
    [74]吴占松,马润田,汪展文.流态化技术基础及应用[M].北京:化学工业出版社,2006
    [75]Geldart D. Types of gas fluidization [J]. Powder Technology,1973,7(5):285-292
    [76]郭慕孙,庄一安.流态化-垂直系统中均匀球体和流体运动[M].北京:科学出版社,1963.25-63
    [77]Ali B M a A, Broughton J. Shallow fluidised-bed heat transfer [J]. Applied Energy,1977,3(2):101-114
    [78]Zanoelo E F. A theoretical and experimental study of simultaneous heat and masstransport resistances in a shallow fluidized bed dryer of mate leaves [J]. ChemicalEngineering and Processing,2007,46(12):1365-1375
    [79]俞昌铭.热传导及其数值分析[M].北京:清华大学出版社,1981
    [80]蒋慰孙,俞金寿.化工过程动态数学模型[M].北京:化学工业出版社,1988
    [81]江体乾.化工数学模型[M].北京:中国石化出版社,1999
    [82]J.H.Seinfeid, L.Lapidus.化工过程数学模型理论[M].南京:江苏科学技术出版社,1981
    [83]郑煜,温广玉.数学模型[M].哈尔滨:东北林业大学出版社,2006
    [84]熊启才.数学模型方法及应用[M].重庆:重庆大学出版社,2005
    [85]近藤次郎.数学模型[M].北京:机械工业出版社,1985
    [86]Lee S-W, Lee J-H, Han S-H,等. Effect of Various Processing Methods on the PhysicalProperties of Cooked Rice and on in vitro Starch Hydrolysis and Blood Glucose esponse inRats [J]. starch,2005,57:531–539
    [87]Lai H M, Cheng H H. Properties of pregelatinized rice flour made by hot air or gumpuffing [J]. International Journal of Food Science and Technology,2004,39(2):201-212
    [88]李玥,钟芳,麻建国,等.大米淀粉糊化过程的光谱分析[J].高分子学报,2008,(7):720-725
    [89]Aacc. Approved method of the American association of cereal chemists (9th ed.).[M]. St.Paul.MN: American Association of Cereal Chemists,1995
    [90]张洪齐.热传导[M].北京:高等教育出版社,1992.189-215
    [91]Ozisik M N, Oezisik M N. Heat conduction [M]. Wiley New York,1993
    [92]乔宝明.偏微分方程及数值解[M].西安:西北工业大学出版社,2009
    [93]郇中丹,黄海洋.偏微分方程[M].北京:高等教育出版社,2004
    [94]潘祖梁,陈仲慈.工程技术中的偏微分方程[M].杭州:浙江大学出版社,1995
    [95]蒋叔豪,孙庆新.偏微分方程数值解[M].杭州:浙江大学出版社,1985
    [96]徐长发.实用偏微分方程数值解法[M].武汉:华中理工大学出版社,1990
    [97]陆金甫,顾丽珍.偏微分方程差分方法[M].北京:高等教育出版社,1988
    [98]Ranz W E, Marshall J, W.R. Evaporation from drops. Part I [J]. Chemical EngineeringProgress1952,48:141-146
    [99]余敏,叶佰英,吕永林.微积分基础--引入Mathematica软件求解[M].上海:华东理工大学出版社,2010
    [100]阳明盛,林建华. Mathematica基础及数学软件[M].大连:大连理工大学出版社,2003
    [101]Mcgaw D R. Heat transfer in shallow crossflow fluidized bed heat exchangers-I. Ageneralized theory [J]. International Journal of Heat and Mass Transfer,1976,19(6):657-663
    [102]Mcgaw D R. Heat transfer in shallow crossflow fluidized bed heat exchangers-II.Experimental [J]. International Journal of Heat and Mass Transfer,1976,19(6):665-671
    [103]粮食、油料检验粗蛋白质测定法[M].中华人民共和国国家标准.1985
    [104]Liu K, Hsieh F-H. Protein–Protein Interactions during High-Moisture Extrusion forFibrous Meat Analogues and Comparison of Protein Solubility Methods Using DifferentSolvent Systems [J]. Journal of Agricultural and Food Chemistry,2008,56(8):2681-2687
    [105]Prudencio-Ferreira S H, Areas J a G. Protein-protein interactions in the extrusion of soyaat various temperatures and moisture contents [J]. J Food Sci,1993,58:378-381,384
    [106]曹小敏,王志勇,刘欲文,等.等转化率法分析溶菌酶在添加剂影响下的热变性行为[J].化学学报,2010,68(2):194-198
    [107]何建川,邵阳,张波.蛋白质和变性蛋白质二级结构的FTIR分析进展[J].化学研究与应用,2012,24(8):1176-1186
    [108]刘珊,刘晓艳.热变性对蛋白质理化性质的影响[J].中国食品添加剂,2006,79(6):108-112
    [109]萨楚尔夫,罗辽复.蛋白质热变性现象的研究[J].内蒙古师范大学学报,2002,31(4):337-342
    [110]魏晓芳,刘会洲.热变性对蛋白质结构及泡沫行为的影响[J].化工冶金,2000,21(4):379-383
    [111]王璋,许时婴,汤坚.食品化学[M].北京:中国轻工业出版社,2007
    [112]傅金泉.黄酒生产技术[M].北京:化学工业出版社,2005
    [113]全国食品工业标准化技术委员会酿酒分技术委员会. GB/T13662-2008.黄酒[S].北京:中国标准出版社,2008
    [114]罗涛,范文来,郭翔,等.顶空固相微萃取(HS-SPME)和气相色谱-质谱(GC-MS)联用分析黄酒中挥发性和半挥发性微量成分[J].酿酒科技,2007,(6):121-124

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700