用户名: 密码: 验证码:
受体型酪氨酸磷酸酯酶PTPRO表达调控机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人PTPRO是受体型酪氨酸磷酸酯酶家族的一员,其功能主要涉及肾脏肾小球细胞的结构和功能,神经组织中轴突的生长和导向,以及肿瘤抑制。与其功能相对应,PTPRO主要表达于不同发育时期的肾脏组织和神经组织,而在很多肿瘤细胞中则通过DNA甲基化沉默。例如,在肾脏中,PTPRO表达于发育早期的肾小球细胞顶部和发育成熟的肾小球足细胞顶部;在脑中,PTPRO最高表达出现于妊娠中后期,这一时期也是脑部轴突发生的主要时期;由高甲基化介导的PTPRO的沉默常见于不同的肿瘤和肿瘤细胞系中。尽管存在表达差异,但是我们对PTPRO表达的调控机制了解很少。
     我们详细地研究了PTPRO表达调控的机制。首先,我们发现PTPRO是一个新的E2F1的靶基因。过表达E2F1能上调PTPRO的mRNA水平并且激活PTPRO启动子荧光素酶报告基因活性;PTPRO启动子上存在两个E2F1的结合位点;EMSA和ChIP实验表明E2F1能够结合于PTPRO的启动子。其次,我们发现一个小的microRNA簇—miR-17-92也能够调控PTRPO的表达。生物信息学分析发现PTPRO mRNA的3’UTR区存在miR-17-92的结合位点;报告基因的实验结果表明这些位点对于PTPRO mRNA的稳定性是重要的,miR-17-92能下调PTPRO的mRNA和蛋白水平。最后,我们发现E2F1和miR-17-92在细胞周期进程中协同调控PTPRO的表达。PTPRO的mRNA在细胞周期的S期上调,这与E2F1上调于G1/S期,以及miR-17-5p(miR-17-92家族的一个成员)上调于后S期的结果相一致。我们还分别检测了PTPRO启动子和3’UTR荧光素酶报告基因的活性,发现启动子的活性高峰出现在S早期,而3’UTR的活性则于S后期下降,这与E2F1和miR-17-92的表达是一致的。总之,我们发现PTPRO能够被E2F1和miR17-92协同调控。
Human PTPRO is a member of the receptor-type protein tyrosine phosphatases (RPTPs) family, which is involved in podocyte function, axon pathfinding and tumor suppression. The expression of PTPRO varies under different conditions. For example, in kidney, PTPRO is expressed on the apical surface of the podocyte early in development and is present on the apical surface of podocyte foot processes in the mature phenotype; in brain, maximal expression of PTPRO is coincident with mid to late gestation and axonogenesis; in tumors, DNA hypermethylation-mediated silencing of PTPRO was reported in primary human tumors and cancer cell lines. However, we know little so far about the regulation mechanisms for PTPRO expression.
     This thesis describes the detailed study on the regulatory mechanisms of PTPRO expression. First, we discovered that PTPRO was a target of E2F1. E2F1 could up-regulate PTPRO mRNA level and activated PTPRO promoter. We also found that there existed two functional E2F1 binding sties in PTPRO promoter. By using EMSA and ChIP, we showed that E2F1 bound to PTPRO promoter in vitro and in vivo. Second, we showed that microRNA cluster miR-17-92, another target of E2F1, participated in PTPRO regulation. Bioinformatic analysis unraveled the existence of miR17-92 binding site in the 3’UTR of PTPRO mRNA, and luciferase reporter assay demonstrated the importance of miR-17-92 binding site in PTPRO post-transcriptional regulation. In addition, miR-17-92 could down-regulate PTPRO mRNA and protein level. Finally, we found that E2F1 and miR-17-92 were simultaneously involved in PTPRO regulation in cell cycle progression. We discovered that the promoter reporters inserted with PTPRO 3’UTR responded more weakly to E2F1 activation, implying that E2F1 first up-regulated PTPRO mRNA and then down-regulated PTPRO protein expression through up-regulating miR-17-92 transcription. Moreover, E2F1 overexpession indeed upregulated miR-17-5p, a member of miR-17-92 cluster. We then monitored PTPRO mRNA expression in synchronized HeLa cells, and found that PTPRO transcription was up-regulated at the S phase. Next, we examined the expression profiling of E2F1 and two miR-17-92 members, i.e., miR-17-5p and miR-20a, in synchronized HeLa cells. We found that both E2F1 mRNA and protein were up-regulated in G1 phase (2hr after released from double-thymidine arrest) whereas the expression of miR-17-5p was high in late S phase (6hr after released from double-thymidine arrest). These results demonstrated a positive correlation between E2F1 and PTPRO, and a negative correlation between miR-17-92 cluster, especially miR-17-5p and PTPRO. In addition, these results were coincided with our in vitro data that the PTPRO promoter activity was high in early S phase while the PTPRO 3’UTR reporter activity was low in late S phase in synchronized HeLa cells. Altogether, this study provides evidence that PTPRO gene is co-regulated by both E2F1 and miR-17-92.
引文
[1] L. Stepanek, Q.L. Sun, J. Wang, C. Wang, and J.L. Bixby, CRYP-2/cPTPRO is a neurite inhibitory repulsive guidance cue for retinal neurons in vitro. J Cell Biol 154 (2001) 867-78.
    [2] S.K. Hanks, and T. Hunter, Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. Faseb J 9 (1995) 576-96.
    [3] D.R. Robinson, Y.M. Wu, and S.F. Lin, The protein tyrosine kinase family of the human genome. Oncogene 19 (2000) 5548-57.
    [4] A. Bateman, E. Birney, R. Durbin, S.R. Eddy, K.L. Howe, and E.L. Sonnhammer, The Pfam protein families database. Nucleic Acids Res 28 (2000) 263-6.
    [5] T. Hunter, Oncoprotein networks. Cell 88 (1997) 333-46.
    [6] R. Patarca, Protein phosphorylation and dephosphorylation in physiologic and oncologic processes. Crit Rev Oncog 7 (1996) 343-432.
    [7] A.D. Levinson, H. Oppermann, L. Levintow, H.E. Varmus, and J.M. Bishop, Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein. Cell 15 (1978) 561-72.
    [8] M.S. Collett, and R.L. Erikson, Protein kinase activity associated with the avian sarcoma virus src gene product. Proc Natl Acad Sci U S A 75 (1978) 2021-4.
    [9] K.S. Kolibaba, and B.J. Druker, Protein tyrosine kinases and cancer. Biochim Biophys Acta 1333 (1997) F217-48.
    [10] A.C. Chan, T.A. Kadlecek, M.E. Elder, A.H. Filipovich, W.L. Kuo, M. Iwashima, T.G. Parslow, and A. Weiss, ZAP-70 deficiency in an autosomal recessive form of severe combined immunodeficiency. Science 264 (1994) 1599-601.
    [11] D. Vetrie, I. Vorechovsky, P. Sideras, J. Holland, A. Davies, F. Flinter, L. Hammarstrom, C. Kinnon, R. Levinsky, M. Bobrow, and et al., The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 361 (1993) 226-33.
    [12] P.T. Mattsson, M. Vihinen, and C.I. Smith, X-linked agammaglobulinemia (XLA): a genetic tyrosine kinase (Btk) disease. Bioessays 18 (1996) 825-34.
    [13] S. Tsukada, D.C. Saffran, D.J. Rawlings, O. Parolini, R.C. Allen, I. Klisak, R.S. Sparkes, H. Kubagawa, T. Mohandas, S. Quan, and et al., Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 72 (1993) 279-90.
    [14] S.M. Russell, N. Tayebi, H. Nakajima, M.C. Riedy, J.L. Roberts, M.J. Aman, T.S. Migone, M. Noguchi, M.L. Markert, R.H. Buckley, J.J. O'Shea, and W.J. Leonard, Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270 (1995) 797-800.
    [15] T. Nosaka, J.M. van Deursen, R.A. Tripp, W.E. Thierfelder, B.A. Witthuhn, A.P. McMickle, P.C. Doherty, G.C. Grosveld, and J.N. Ihle, Defective lymphoid development in mice lacking Jak3. Science 270 (1995) 800-2.
    [16] R. Ross, The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362 (1993) 801-9.
    [17] J.T. Elder, G.J. Fisher, P.B. Lindquist, G.L. Bennett, M.R. Pittelkow, R.J. Coffey, Jr., L. Ellingsworth, R. Derynck, and J.J. Voorhees, Overexpression of transforming growth factor alpha in psoriatic epidermis. Science 243 (1989) 811-4.
    [18] P.W. Cook, M.R. Pittelkow, W.W. Keeble, R. Graves-Deal, R.J. Coffey, Jr., and G.D. Shipley, Amphiregulin messenger RNA is elevated in psoriatic epidermis and gastrointestinal carcinomas. Cancer Res 52 (1992) 3224-7.
    [19] C. Lowe, T. Yoneda, B.F. Boyce, H. Chen, G.R. Mundy, and P. Soriano, Osteopetrosis in Src-deficient mice is due to an autonomous defect of osteoclasts. Proc Natl Acad Sci U S A 90 (1993) 4485-9.
    [20] B.F. Boyce, T. Yoneda, C. Lowe, P. Soriano, and G.R. Mundy, Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J Clin Invest 90 (1992) 1622-7.
    [21] P. Soriano, C. Montgomery, R. Geske, and A. Bradley, Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64 (1991) 693-702.
    [22] M.E. Gorre, M. Mohammed, K. Ellwood, N. Hsu, R. Paquette, P.N. Rao, and C.L. Sawyers, Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293 (2001) 876-80.
    [23] H. Charbonneau, N.K. Tonks, S. Kumar, C.D. Diltz, M. Harrylock, D.E. Cool, E.G. Krebs, E.H. Fischer, and K.A. Walsh, Human placenta protein-tyrosine-phosphatase: amino acid sequence and relationship to a family of receptor-like proteins. Proc Natl Acad Sci U S A 86 (1989) 5252-6.
    [24] K.L. Guan, R.S. Haun, S.J. Watson, R.L. Geahlen, and J.E. Dixon, Cloning and expression of a protein-tyrosine-phosphatase. Proc Natl Acad Sci U S A 87 (1990) 1501-5.
    [25] A.P. Czernilofsky, A.D. Levinson, H.E. Varmus, J.M. Bishop, E. Tischer, and H.M. Goodman, Nucleotide sequence of an avian sarcoma virus oncogene (src) and proposed amino acid sequence for gene product. Nature 287 (1980) 198-203.
    [26] E.H. Fischer, H. Charbonneau, and N.K. Tonks, Protein tyrosine phosphatases: a diverse family of intracellular and transmembrane enzymes. Science 253 (1991) 401-6.
    [27] K.M. Walton, and J.E. Dixon, Protein tyrosine phosphatases. Annu Rev Biochem 62 (1993) 101-20.
    [28] N.K. Tonks, and B.G. Neel, From form to function: signaling by protein tyrosine phosphatases. Cell 87 (1996) 365-8.
    [29] T. Mustelin, R.T. Abraham, C.E. Rudd, A. Alonso, and J.J. Merlo, Protein tyrosine phosphorylation in T cell signaling. Front Biosci 7 (2002) d918-69.
    [30] T. Mustelin, G.S. Feng, N. Bottini, A. Alonso, N. Kholod, D. Birle, J. Merlo, and H. Huynh, Protein tyrosine phosphatases. Front Biosci 7 (2002) d85-142.
    [31] T. Mustelin, and K. Tasken, Positive and negative regulation of T-cell activation through kinases and phosphatases. Biochem J 371 (2003) 15-27.
    [32] G. Manning, D.B. Whyte, R. Martinez, T. Hunter, and S. Sudarsanam, The protein kinase complement of the human genome. Science 298 (2002) 1912-34.
    [33] S. Brown-Shimer, K.A. Johnson, D.E. Hill, and A.M. Bruskin, Effect of protein tyrosine phosphatase 1B expression on transformation by the human neu oncogene. Cancer Res 52 (1992) 478-82.
    [34] Z. Wang, D. Shen, D.W. Parsons, A. Bardelli, J. Sager, S. Szabo, J. Ptak, N. Silliman, B.A. Peters, M.S. van der Heijden, G. Parmigiani, H. Yan, T.L. Wang, G. Riggins, S.M. Powell, J.K. Willson, S. Markowitz, K.W. Kinzler, B. Vogelstein, and V.E. Velculescu, Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science 304 (2004) 1164-6.
    [35] M.M. Keane, G.A. Lowrey, S.A. Ettenberg, M.A. Dayton, and S. Lipkowitz, The protein tyrosine phosphatase DEP-1 is induced during differentiation and inhibits growth of breast cancer cells. Cancer Res 56 (1996) 4236-43.
    [36] F. Trapasso, R. Iuliano, A. Boccia, A. Stella, R. Visconti, P. Bruni, G. Baldassarre, M. Santoro, G. Viglietto, and A. Fusco, Rat protein tyrosine phosphatase eta suppresses the neoplastic phenotype of retrovirally transformed thyroid cells through the stabilization of p27(Kip1). Mol Cell Biol 20 (2000) 9236-46.
    [37] R. Iuliano, F. Trapasso, I. Le Pera, F. Schepis, I. Sama, A. Clodomiro, K.R. Dumon, M. Santoro, L. Chiariotti, G. Viglietto, and A. Fusco, An adenovirus carrying the rat protein tyrosine phosphatase eta suppresses the growth of human thyroid carcinoma cell lines in vitro and in vivo. Cancer Res 63 (2003) 882-6.
    [38] F. Trapasso, S. Yendamuri, K.R. Dumon, R. Iuliano, R. Cesari, B. Feig, R. Seto, L. Infante, H. Ishii, A. Vecchione, M.J. During, C.M. Croce, and A. Fusco, Restoration of receptor-type protein tyrosine phosphatase eta function inhibits human pancreatic carcinoma cell growth in vitro and in vivo. Carcinogenesis 25 (2004) 2107-14.
    [39] B.G. Neel, H. Gu, and L. Pao, The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci 28 (2003) 284-93.
    [40] T. Motiwala, K. Ghoshal, A. Das, S. Majumder, D. Weichenhan, Y.Z. Wu, K. Holman, S.J. James, S.T. Jacob, and C. Plass, Suppression of the protein tyrosine phosphatase receptor type O gene (PTPRO) by methylation in hepatocellular carcinomas. Oncogene 22 (2003) 6319-31.
    [41] A. Ostman, C. Hellberg, and F.D. Bohmer, Protein-tyrosine phosphatases and cancer. Nat Rev Cancer 6 (2006) 307-20.
    [42] X.M. Zheng, Y. Wang, and C.J. Pallen, Cell transformation and activation of pp60c-src by overexpression of a protein tyrosine phosphatase. Nature 359 (1992) 336-9.
    [43] A. Elson, Protein tyrosine phosphatase epsilon increases the risk of mammary hyperplasia and mammary tumors in transgenic mice. Oncogene 18 (1999) 7535-42.
    [44] M. Kovalenko, K. Denner, J. Sandstrom, C. Persson, S. Gross, E. Jandt, R. Vilella, F. Bohmer, and A. Ostman, Site-selective dephosphorylation of the platelet-derived growth factor beta-receptor by the receptor-like protein-tyrosine phosphatase DEP-1. J Biol Chem 275 (2000) 16219-26.
    [45] C. Persson, C. Savenhed, A. Bourdeau, M.L. Tremblay, B. Markova, F.D. Bohmer, F.G. Haj, B.G. Neel, A. Elson, C.H. Heldin, L. Ronnstrand, A. Ostman, and C. Hellberg, Site-selective regulation of platelet-derived growth factor beta receptor tyrosine phosphorylation by T-cell protein tyrosine phosphatase. Mol Cell Biol 24 (2004) 2190-201.
    [46] D. Ferber, Immortalized cells seem cancer-free so far. Science 283 (1999) 154-5.
    [47] F.G. Haj, B. Markova, L.D. Klaman, F.D. Bohmer, and B.G. Neel, Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatase-1B. J Biol Chem 278 (2003) 739-44.
    [48] J. Lilien, and J. Balsamo, The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Curr Opin Cell Biol 17 (2005) 459-65.
    [49] X.F. Sui, T.D. Kiser, S.W. Hyun, D.J. Angelini, R.L. Del Vecchio, B.A. Young, J.D. Hasday, L.H. Romer, A. Passaniti, N.K. Tonks, and S.E. Goldblum, Receptor protein tyrosine phosphatase micro regulates the paracellular pathway in human lung microvascular endothelia. Am J Pathol 166 (2005) 1247-58.
    [50] K. Kappert, K.G. Peters, F.D. Bohmer, and A. Ostman, Tyrosine phosphatases in vessel wall signaling. Cardiovasc Res 65 (2005) 587-98.
    [51] T. Hunter, Signaling--2000 and beyond. Cell 100 (2000) 113-27.
    [52] D. Dixon, T. Moyana, and M.J. King, Elevated expression of the cdc25A protein phosphatase in colon cancer. Exp Cell Res 240 (1998) 236-43.
    [53] J. Tan, T. Town, T. Mori, Y. Wu, M. Saxe, F. Crawford, and M. Mullan, CD45 opposes beta-amyloid peptide-induced microglial activation via inhibition of p44/42 mitogen-activated protein kinase. J Neurosci 20 (2000) 7587-94.
    [54] G. Liu, Protein tyrosine phosphatase 1B inhibition: opportunities and challenges. Curr Med Chem 10 (2003) 1407-21.
    [55] Y.A. Puius, Y. Zhao, M. Sullivan, D.S. Lawrence, S.C. Almo, and Z.Y. Zhang, Identification of a second aryl phosphate-binding site in protein-tyrosine phosphatase 1B: a paradigm for inhibitor design. Proc Natl Acad Sci U S A 94 (1997) 13420-5.
    [56] P.E. Thomas, B.L. Wharram, M. Goyal, J.E. Wiggins, L.B. Holzman, and R.C. Wiggins, GLEPP1, a renal glomerular epithelial cell (podocyte) membrane protein-tyrosine phosphatase. Identification, molecular cloning, and characterization in rabbit. J Biol Chem 269 (1994) 19953-62.
    [57] R.C. Wiggins, J.E. Wiggins, M. Goyal, B.L. Wharram, and P.E. Thomas, Molecular cloning of cDNAsencoding human GLEPP1, a membrane protein tyrosine phosphatase: characterization of the GLEPP1 protein distribution in human kidney and assignment of the GLEPP1 gene to human chromosome 12p12-p13. Genomics 27 (1995) 174-81.
    [58] R. Wang, P.L. St John, M. Kretzler, R.C. Wiggins, and D.R. Abrahamson, Molecular cloning, expression, and distribution of glomerular epithelial protein 1 in developing mouse kidney. Kidney Int 57 (2000) 1847-59.
    [59] B.L. Wharram, M. Goyal, P.J. Gillespie, J.E. Wiggins, D.B. Kershaw, L.B. Holzman, R.C. Dysko, T.L. Saunders, L.C. Samuelson, and R.C. Wiggins, Altered podocyte structure in GLEPP1 (Ptpro)-deficient mice associated with hypertension and low glomerular filtration rate. J Clin Invest 106 (2000) 1281-90.
    [60] Y.H. Kim, M. Goyal, B. Wharram, J. Wiggins, D. Kershaw, and R. Wiggins, GLEPP1 receptor tyrosine phosphatase (Ptpro) in rat PAN nephrosis. A marker of acute podocyte injury. Nephron 90 (2002) 471-6.
    [61] H. Seimiya, T. Sawabe, J. Inazawa, and T. Tsuruo, Cloning, expression and chromosomal localization of a novel gene for protein tyrosine phosphatase (PTP-U2) induced by various differentiation-inducing agents. Oncogene 10 (1995) 1731-8.
    [62] M. Amoui, D.J. Baylink, J.B. Tillman, and K.H. Lau, Expression of a structurally unique osteoclastic protein-tyrosine phosphatase is driven by an alternative intronic, cell type-specific promoter. J Biol Chem 278 (2003) 44273-80.
    [63] H. Seimiya, and T. Tsuruo, Functional involvement of PTP-U2L in apoptosis subsequent to terminal differentiation of monoblastoid leukemia cells. J Biol Chem 273 (1998) 21187-93.
    [64] T. Motiwala, H. Kutay, K. Ghoshal, S. Bai, H. Seimiya, T. Tsuruo, S. Suster, C. Morrison, and S.T. Jacob, Protein tyrosine phosphatase receptor-type O (PTPRO) exhibits characteristics of a candidate tumor suppressor in human lung cancer. Proc Natl Acad Sci U S A 101 (2004) 13844-9.
    [65] Y. Mori, J. Yin, F. Sato, A. Sterian, L.A. Simms, F.M. Selaru, K. Schulmann, Y. Xu, A. Olaru, S. Wang, E. Deacu, J.M. Abraham, J. Young, B.A. Leggett, and S.J. Meltzer, Identification of genes uniquely involved in frequent microsatellite instability colon carcinogenesis by expression profiling combined with epigenetic scanning. Cancer Res 64 (2004) 2434-8.
    [66] K. Bodden, and J.L. Bixby, CRYP-2: a receptor-type tyrosine phosphatase selectively expressed by developing vertebrate neurons. J Neurobiol 31 (1996) 309-24.
    [67] M. Tagawa, T. Shirasawa, Y. Yahagi, T. Tomoda, H. Kuroyanagi, S. Fujimura, S. Sakiyama, and N. Maruyama, Identification of a receptor-type protein tyrosine phosphatase expressed in postmitotic maturing neurons: its structure and expression in the central nervous system. Biochem J 321 ( Pt 3) (1997) 865-71.
    [68] T. Tomemori, N. Seki, Y. Suzuki, T. Shimizu, H. Nagata, A. Konno, and T. Shirasawa, Isolation and characterization of murine orthologue of PTP-BK. Biochem Biophys Res Commun 276 (2000) 974-81.
    [69] P.J. Beltran, J.L. Bixby, and B.A. Masters, Expression of PTPRO during mouse development suggests involvement in axonogenesis and differentiation of NT-3 and NGF-dependent neurons. J Comp Neurol 456 (2003) 384-95.
    [70] B. Chen, and J.L. Bixby, A novel substrate of receptor tyrosine phosphatase PTPRO is required for nerve growth factor-induced process outgrowth. J Neurosci 25 (2005) 880-8.
    [71] T. Shintani, M. Ihara, H. Sakuta, H. Takahashi, I. Watakabe, and M. Noda, Eph receptors are negatively controlled by protein tyrosine phosphatase receptor type O. Nat Neurosci 9 (2006) 761-9.
    [72] F.J. Pixley, P.S. Lee, M.G. Dominguez, D.B. Einstein, and E.R. Stanley, A heteromorphic protein-tyrosine phosphatase, PTP phi, is regulated by CSF-1 in macrophages. J Biol Chem 270 (1995) 27339-47.
    [73] L.W. Wu, D.J. Baylink, and K.H. Lau, Molecular cloning and expression of a unique rabbitosteoclastic phosphotyrosyl phosphatase. Biochem J 316 ( Pt 2) (1996) 515-23.
    [74] R.C. Aguiar, Y. Yakushijin, S. Kharbanda, S. Tiwari, G.J. Freeman, and M.A. Shipp, PTPROt: an alternatively spliced and developmentally regulated B-lymphoid phosphatase that promotes G0/G1 arrest. Blood 94 (1999) 2403-13.
    [75] L. Chen, P. Juszczynski, K. Takeyama, R.C. Aguiar, and M.A. Shipp, Protein tyrosine phosphatase receptor-type O truncated (PTPROt) regulates SYK phosphorylation, proximal B-cell-receptor signaling, and cellular proliferation. Blood 108 (2006) 3428-33.
    [76] T. Motiwala, S. Majumder, H. Kutay, D.S. Smith, D.S. Neuberg, D.M. Lucas, J.C. Byrd, M. Grever, and S.T. Jacob, Methylation and silencing of protein tyrosine phosphatase receptor type O in chronic lymphocytic leukemia. Clin Cancer Res 13 (2007) 3174-81.
    [77] S. Takeuchi, N. Mori, M. Koike, J. Slater, S. Park, C.W. Miller, I. Miyoshi, and H.P. Koeffler, Frequent loss of heterozygosity in region of the KIP1 locus in non-small cell lung cancer: evidence for a new tumor suppressor gene on the short arm of chromosome 12. Cancer Res 56 (1996) 738-40.
    [78] K. Stegmaier, S. Pendse, G.F. Barker, P. Bray-Ward, D.C. Ward, K.T. Montgomery, K.S. Krauter, C. Reynolds, J. Sklar, M. Donnelly, and et al., Frequent loss of heterozygosity at the TEL gene locus in acute lymphoblastic leukemia of childhood. Blood 86 (1995) 38-44.
    [79] H. Kobayashi, K.T. Montgomery, S.K. Bohlander, C.N. Adra, B.L. Lim, R.S. Kucherlapati, H. Donis-Keller, M.S. Holt, M.M. Le Beau, and J.D. Rowley, Fluorescence in situ hybridization mapping of translocations and deletions involving the short arm of human chromosome 12 in malignant hematologic diseases. Blood 84 (1994) 3473-82.
    [80] J. Li, Z. Zhang, Z. Dai, C. Plass, C. Morrison, Y. Wang, J.S. Wiest, M.W. Anderson, and M. You, LOH of chromosome 12p correlates with Kras2 mutation in non-small cell lung cancer. Oncogene 22 (2003) 1243-6.
    [81] H. Cave, B. Gerard, E. Martin, C. Guidal, I. Devaux, J. Weissenbach, J. Elion, E. Vilmer, and B. Grandchamp, Loss of heterozygosity in the chromosomal region 12p12-13 is very common in childhood acute lymphoblastic leukemia and permits the precise localization of a tumor-suppressor gene distinct from p27KIP1. Blood 86 (1995) 3869-75.
    [82] J.N. Andersen, P.G. Jansen, S.M. Echwald, O.H. Mortensen, T. Fukada, R. Del Vecchio, N.K. Tonks, and N.P. Moller, A genomic perspective on protein tyrosine phosphatases: gene structure, pseudogenes, and genetic disease linkage. Faseb J 18 (2004) 8-30.
    [83] C.J. Sherr, and J.M. Roberts, Living with or without cyclins and cyclin-dependent kinases. Genes Dev 18 (2004) 2699-711.
    [84] A. Brehm, E.A. Miska, D.J. McCance, J.L. Reid, A.J. Bannister, and T. Kouzarides, Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391 (1998) 597-601.
    [85] J. Zhao, B.K. Kennedy, B.D. Lawrence, D.A. Barbie, A.G. Matera, J.A. Fletcher, and E. Harlow, NPAT links cyclin E-Cdk2 to the regulation of replication-dependent histone gene transcription. Genes Dev 14 (2000) 2283-97.
    [86] A. Blangy, H.A. Lane, P. d'Herin, M. Harper, M. Kress, and E.A. Nigg, Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83 (1995) 1159-69.
    [87] E.A. Nigg, Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2 (2001) 21-32.
    [88] K. Ando, T. Ozaki, H. Yamamoto, K. Furuya, M. Hosoda, S. Hayashi, M. Fukuzawa, and A. Nakagawara, Polo-like kinase 1 (Plk1) inhibits p53 function by physical interaction and phosphorylation. J Biol Chem 279 (2004) 25549-61.
    [89] D.L. Myer, M. Bahassi el, and P.J. Stambrook, The Plk3-Cdc25 circuit. Oncogene 24 (2005) 299-305.
    [90] S. Walsh, S.S. Margolis, and S. Kornbluth, Phosphorylation of the cyclin b1 cytoplasmic retention sequence by mitogen-activated protein kinase and Plx. Mol Cancer Res 1 (2003) 280-9.
    [91] S. Xie, B. Xie, M.Y. Lee, and W. Dai, Regulation of cell cycle checkpoints by polo-like kinases. Oncogene 24 (2005) 277-86.
    [92] M.L. Agarwal, W.R. Taylor, M.V. Chernov, O.B. Chernova, and G.R. Stark, The p53 network. J Biol Chem 273 (1998) 1-4.
    [93] T.M. Gottlieb, J.F. Leal, R. Seger, Y. Taya, and M. Oren, Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene 21 (2002) 1299-303.
    [94] T.M. Gottlieb, and M. Oren, p53 and apoptosis. Semin Cancer Biol 8 (1998) 359-68.
    [95] J.D. Siliciano, C.E. Canman, Y. Taya, K. Sakaguchi, E. Appella, and M.B. Kastan, DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev 11 (1997) 3471-81.
    [96] D.S. Lim, S.T. Kim, B. Xu, R.S. Maser, J. Lin, J.H. Petrini, and M.B. Kastan, ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404 (2000) 613-7.
    [97] G.R. Stark, and W.R. Taylor, Analyzing the G2/M checkpoint. Methods Mol Biol 280 (2004) 51-82.
    [98] A.L. Marston, and A. Amon, Meiosis: cell-cycle controls shuffle and deal. Nat Rev Mol Cell Biol 5 (2004) 983-97.
    [99] J.R. Nevins, The Rb/E2F pathway and cancer. Hum Mol Genet 10 (2001) 699-703.
    [100] R.C. Sears, and J.R. Nevins, Signaling networks that link cell proliferation and cell fate. J Biol Chem 277 (2002) 11617-20.
    [101] C. Xue, F. Li, T. He, G.P. Liu, Y. Li, and X. Zhang, Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics 6 (2005) 310.
    [102] N.C. Lau, L.P. Lim, E.G. Weinstein, and D.P. Bartel, An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294 (2001) 858-62.
    [103] L.P. Lim, M.E. Glasner, S. Yekta, C.B. Burge, and D.P. Bartel, Vertebrate microRNA genes. Science 299 (2003) 1540.
    [104] L.P. Lim, N.C. Lau, E.G. Weinstein, A. Abdelhakim, S. Yekta, M.W. Rhoades, C.B. Burge, and D.P. Bartel, The microRNAs of Caenorhabditis elegans. Genes Dev 17 (2003) 991-1008.
    [105] E.C. Lai, P. Tomancak, R.W. Williams, and G.M. Rubin, Computational identification of Drosophila microRNA genes. Genome Biol 4 (2003) R42.
    [106] X.J. Wang, J.L. Reyes, N.H. Chua, and T. Gaasterland, Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 5 (2004) R65.
    [107] E. Bonnet, J. Wuyts, P. Rouze, and Y. Van de Peer, Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci U S A 101 (2004) 11511-6.
    [108] J.W. Nam, K.R. Shin, J. Han, Y. Lee, V.N. Kim, and B.T. Zhang, Human microRNA prediction through a probabilistic co-learning model of sequence and structure. Nucleic Acids Res 33 (2005) 3570-81.
    [109] J.W. Nam, J. Kim, S.K. Kim, and B.T. Zhang, ProMiR II: a web server for the probabilistic prediction of clustered, nonclustered, conserved and nonconserved microRNAs. Nucleic Acids Res 34 (2006) W455-8.
    [110] E. Berezikov, V. Guryev, J. van de Belt, E. Wienholds, R.H. Plasterk, and E. Cuppen, Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120 (2005) 21-4.
    [111] M. Legendre, A. Lambert, and D. Gautheret, Profile-based detection of microRNA precursors in animal genomes. Bioinformatics 21 (2005) 841-5.
    [112] J. Lu, G. Getz, E.A. Miska, E. Alvarez-Saavedra, J. Lamb, D. Peck, A. Sweet-Cordero, B.L. Ebert, R.H. Mak, A.A. Ferrando, J.R. Downing, T. Jacks, H.R. Horvitz, and T.R. Golub, MicroRNA expression profiles classify human cancers. Nature 435 (2005) 834-8.
    [113] M.Z. Michael, O.C. SM, N.G. van Holst Pellekaan, G.P. Young, and R.J. James, Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1 (2003) 882-91.
    [114] J.M. Cummins, Y. He, R.J. Leary, R. Pagliarini, L.A. Diaz, Jr., T. Sjoblom, O. Barad, Z. Bentwich, A.E. Szafranska, E. Labourier, C.K. Raymond, B.S. Roberts, H. Juhl, K.W. Kinzler, B. Vogelstein, and V.E. Velculescu, The colorectal microRNAome. Proc Natl Acad Sci U S A 103 (2006) 3687-92.
    [115] Y. Murakami, T. Yasuda, K. Saigo, T. Urashima, H. Toyoda, T. Okanoue, and K. Shimotohno, Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 25 (2006) 2537-45.
    [116] J. Takamizawa, H. Konishi, K. Yanagisawa, S. Tomida, H. Osada, H. Endoh, T. Harano, Y. Yatabe, M. Nagino, Y. Nimura, T. Mitsudomi, and T. Takahashi, Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64 (2004) 3753-6.
    [117] G.A. Calin, C.D. Dumitru, M. Shimizu, R. Bichi, S. Zupo, E. Noch, H. Aldler, S. Rattan, M. Keating, K. Rai, L. Rassenti, T. Kipps, M. Negrini, F. Bullrich, and C.M. Croce, Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99 (2002) 15524-9.
    [118] H. He, K. Jazdzewski, W. Li, S. Liyanarachchi, R. Nagy, S. Volinia, G.A. Calin, C.G. Liu, K. Franssila, S. Suster, R.T. Kloos, C.M. Croce, and A. de la Chapelle, The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci U S A 102 (2005) 19075-80.
    [119] S.A. Ciafre, S. Galardi, A. Mangiola, M. Ferracin, C.G. Liu, G. Sabatino, M. Negrini, G. Maira, C.M. Croce, and M.G. Farace, Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334 (2005) 1351-8.
    [120] P.M. Voorhoeve, C. le Sage, M. Schrier, A.J. Gillis, H. Stoop, R. Nagel, Y.P. Liu, J. van Duijse, J. Drost, A. Griekspoor, E. Zlotorynski, N. Yabuta, G. De Vita, H. Nojima, L.H. Looijenga, and R. Agami, A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124 (2006) 1169-81.
    [121] M.V. Iorio, M. Ferracin, C.G. Liu, A. Veronese, R. Spizzo, S. Sabbioni, E. Magri, M. Pedriali, M. Fabbri, M. Campiglio, S. Menard, J.P. Palazzo, A. Rosenberg, P. Musiani, S. Volinia, I. Nenci, G.A. Calin, P. Querzoli, M. Negrini, and C.M. Croce, MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65 (2005) 7065-70.
    [122] N. Yanaihara, N. Caplen, E. Bowman, M. Seike, K. Kumamoto, M. Yi, R.M. Stephens, A. Okamoto, J. Yokota, T. Tanaka, G.A. Calin, C.G. Liu, C.M. Croce, and C.C. Harris, Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9 (2006) 189-98.
    [123] J. Kluiver, S. Poppema, D. de Jong, T. Blokzijl, G. Harms, S. Jacobs, B.J. Kroesen, and A. van den Berg, BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 207 (2005) 243-9.
    [124] P.S. Eis, W. Tam, L. Sun, A. Chadburn, Z. Li, M.F. Gomez, E. Lund, and J.E. Dahlberg, Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci U S A 102 (2005) 3627-32.
    [125] G.A. Calin, C. Sevignani, C.D. Dumitru, T. Hyslop, E. Noch, S. Yendamuri, M. Shimizu, S. Rattan, F. Bullrich, M. Negrini, and C.M. Croce, Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101 (2004) 2999-3004.
    [126] A. Ota, H. Tagawa, S. Karnan, S. Tsuzuki, A. Karpas, S. Kira, Y. Yoshida, and M. Seto, Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res 64 (2004) 3087-95.
    [127] Y. Saito, G. Liang, G. Egger, J.M. Friedman, J.C. Chuang, G.A. Coetzee, and P.A. Jones, Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9 (2006) 435-43.
    [128] Y. Karube, H. Tanaka, H. Osada, S. Tomida, Y. Tatematsu, K. Yanagisawa, Y. Yatabe, J. Takamizawa, S. Miyoshi, T. Mitsudomi, and T. Takahashi, Reduced expression of Dicer associatedwith poor prognosis in lung cancer patients. Cancer Sci 96 (2005) 111-5.
    [129] G.A. Calin, M. Ferracin, A. Cimmino, G. Di Leva, M. Shimizu, S.E. Wojcik, M.V. Iorio, R. Visone, N.I. Sever, M. Fabbri, R. Iuliano, T. Palumbo, F. Pichiorri, C. Roldo, R. Garzon, C. Sevignani, L. Rassenti, H. Alder, S. Volinia, C.G. Liu, T.J. Kipps, M. Negrini, and C.M. Croce, A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353 (2005) 1793-801.
    [130] R. Duan, C. Pak, and P. Jin, Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Hum Mol Genet 16 (2007) 1124-31.
    [131] S.M. Johnson, H. Grosshans, J. Shingara, M. Byrom, R. Jarvis, A. Cheng, E. Labourier, K.L. Reinert, D. Brown, and F.J. Slack, RAS is regulated by the let-7 microRNA family. Cell 120 (2005) 635-47.
    [132] F. Yu, H. Yao, P. Zhu, X. Zhang, Q. Pan, C. Gong, Y. Huang, X. Hu, F. Su, J. Lieberman, and E. Song, let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131 (2007) 1109-23.
    [133] J. Yang, F. Zhou, T. Xu, H. Deng, Y.Y. Ge, C. Zhang, J. Li, and S.M. Zhuang, Analysis of sequence variations in 59 microRNAs in hepatocellular carcinomas. Mutat Res 638 (2008) 205-9.
    [134] Y.S. Lee, and A. Dutta, The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 21 (2007) 1025-30.
    [135] V.B. Sampson, N.H. Rong, J. Han, Q. Yang, V. Aris, P. Soteropoulos, N.J. Petrelli, S.P. Dunn, and L.J. Krueger, MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 67 (2007) 9762-70.
    [136] L. Lu, D. Katsaros, I.A. de la Longrais, O. Sochirca, and H. Yu, Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res 67 (2007) 10117-22.
    [137] A. Cimmino, G.A. Calin, M. Fabbri, M.V. Iorio, M. Ferracin, M. Shimizu, S.E. Wojcik, R.I. Aqeilan, S. Zupo, M. Dono, L. Rassenti, H. Alder, S. Volinia, C.G. Liu, T.J. Kipps, M. Negrini, and C.M. Croce, miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102 (2005) 13944-9.
    [138] E.S. Raveche, E. Salerno, B.J. Scaglione, V. Manohar, F. Abbasi, Y.C. Lin, T. Fredrickson, P. Landgraf, S. Ramachandra, K. Huppi, J.R. Toro, V.E. Zenger, R.A. Metcalf, and G.E. Marti, Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood 109 (2007) 5079-86.
    [139] P.S. Linsley, J. Schelter, J. Burchard, M. Kibukawa, M.M. Martin, S.R. Bartz, J.M. Johnson, J.M. Cummins, C.K. Raymond, H. Dai, N. Chau, M. Cleary, A.L. Jackson, M. Carleton, and L. Lim, Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol 27 (2007) 2240-52.
    [140] J.A. Chan, A.M. Krichevsky, and K.S. Kosik, MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65 (2005) 6029-33.
    [141] F. Meng, R. Henson, H. Wehbe-Janek, K. Ghoshal, S.T. Jacob, and T. Patel, MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133 (2007) 647-58.
    [142] C.H. Lawrie, S. Soneji, T. Marafioti, C.D. Cooper, S. Palazzo, J.C. Paterson, H. Cattan, T. Enver, R. Mager, J. Boultwood, J.S. Wainscoat, and C.S. Hatton, MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer 121 (2007) 1156-61.
    [143] D. Loffler, K. Brocke-Heidrich, G. Pfeifer, C. Stocsits, J. Hackermuller, A.K. Kretzschmar, R. Burger, M. Gramatzki, C. Blumert, K. Bauer, H. Cvijic, A.K. Ullmann, P.F. Stadler, and F. Horn, Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 110 (2007) 1330-3.
    [144] I.A. Asangani, S.A. Rasheed, D.A. Nikolova, J.H. Leupold, N.H. Colburn, S. Post, and H. Allgayer,MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27 (2008) 2128-36.
    [145] L. He, J.M. Thomson, M.T. Hemann, E. Hernando-Monge, D. Mu, S. Goodson, S. Powers, C. Cordon-Cardo, S.W. Lowe, G.J. Hannon, and S.M. Hammond, A microRNA polycistron as a potential human oncogene. Nature 435 (2005) 828-33.
    [146] Y. Hayashita, H. Osada, Y. Tatematsu, H. Yamada, K. Yanagisawa, S. Tomida, Y. Yatabe, K. Kawahara, Y. Sekido, and T. Takahashi, A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65 (2005) 9628-32.
    [147] K.A. O'Donnell, E.A. Wentzel, K.I. Zeller, C.V. Dang, and J.T. Mendell, c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435 (2005) 839-43.
    [148] M. Dews, A. Homayouni, D. Yu, D. Murphy, C. Sevignani, E. Wentzel, E.E. Furth, W.M. Lee, G.H. Enders, J.T. Mendell, and A. Thomas-Tikhonenko, Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38 (2006) 1060-5.
    [149] N. Raver-Shapira, E. Marciano, E. Meiri, Y. Spector, N. Rosenfeld, N. Moskovits, Z. Bentwich, and M. Oren, Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26 (2007) 731-43.
    [150] H. Tazawa, N. Tsuchiya, M. Izumiya, and H. Nakagama, Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A 104 (2007) 15472-7.
    [151] G.T. Bommer, I. Gerin, Y. Feng, A.J. Kaczorowski, R. Kuick, R.E. Love, Y. Zhai, T.J. Giordano, Z.S. Qin, B.B. Moore, O.A. MacDougald, K.R. Cho, and E.R. Fearon, p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17 (2007) 1298-307.
    [152] V. Tarasov, P. Jung, B. Verdoodt, D. Lodygin, A. Epanchintsev, A. Menssen, G. Meister, and H. Hermeking, Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6 (2007) 1586-93.
    [153] L. He, X. He, L.P. Lim, E. de Stanchina, Z. Xuan, Y. Liang, W. Xue, L. Zender, J. Magnus, D. Ridzon, A.L. Jackson, P.S. Linsley, C. Chen, S.W. Lowe, M.A. Cleary, and G.J. Hannon, A microRNA component of the p53 tumour suppressor network. Nature 447 (2007) 1130-4.
    [154] W. Tam, S.H. Hughes, W.S. Hayward, and P. Besmer, Avian bic, a gene isolated from a common retroviral site in avian leukosis virus-induced lymphomas that encodes a noncoding RNA, cooperates with c-myc in lymphomagenesis and erythroleukemogenesis. J Virol 76 (2002) 4275-86.
    [155] J. Kluiver, A. van den Berg, D. de Jong, T. Blokzijl, G. Harms, E. Bouwman, S. Jacobs, S. Poppema, and B.J. Kroesen, Regulation of pri-microRNA BIC transcription and processing in Burkitt lymphoma. Oncogene 26 (2007) 3769-76.
    [156] J. Kluiver, E. Haralambieva, D. de Jong, T. Blokzijl, S. Jacobs, B.J. Kroesen, S. Poppema, and A. van den Berg, Lack of BIC and microRNA miR-155 expression in primary cases of Burkitt lymphoma. Genes Chromosomes Cancer 45 (2006) 147-53.
    [157] S. Costinean, N. Zanesi, Y. Pekarsky, E. Tili, S. Volinia, N. Heerema, and C.M. Croce, Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci U S A 103 (2006) 7024-9.
    [158] R.M. O'Connell, K.D. Taganov, M.P. Boldin, G. Cheng, and D. Baltimore, MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A 104 (2007) 1604-9.
    [159] A. Rodriguez, E. Vigorito, S. Clare, M.V. Warren, P. Couttet, D.R. Soond, S. van Dongen, R.J. Grocock, P.P. Das, E.A. Miska, D. Vetrie, K. Okkenhaug, A.J. Enright, G. Dougan, M. Turner, and A. Bradley, Requirement of bic/microRNA-155 for normal immune function. Science 316 (2007) 608-11.
    [160] T.H. Thai, D.P. Calado, S. Casola, K.M. Ansel, C. Xiao, Y. Xue, A. Murphy, D. Frendewey, D. Valenzuela, J.L. Kutok, M. Schmidt-Supprian, N. Rajewsky, G. Yancopoulos, A. Rao, and K. Rajewsky, Regulation of the germinal center response by microRNA-155. Science 316 (2007) 604-8.
    [161] E. Vigorito, K.L. Perks, C. Abreu-Goodger, S. Bunting, Z. Xiang, S. Kohlhaas, P.P. Das, E.A. Miska, A. Rodriguez, A. Bradley, K.G. Smith, C. Rada, A.J. Enright, K.M. Toellner, I.C. Maclennan, and M. Turner, microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 27 (2007) 847-59.
    [162] L. Ma, J. Teruya-Feldstein, and R.A. Weinberg, Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449 (2007) 682-8.
    [163] K.S. Kosik, The neuronal microRNA system. Nat Rev Neurosci 7 (2006) 911-20.
    [164] M. Kapsimali, W.P. Kloosterman, E. de Bruijn, F. Rosa, R.H. Plasterk, and S.W. Wilson, MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol 8 (2007) R173.
    [165] L.F. Sempere, S. Freemantle, I. Pitha-Rowe, E. Moss, E. Dmitrovsky, and V. Ambros, Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5 (2004) R13.
    [166] E.A. Miska, E. Alvarez-Saavedra, M. Townsend, A. Yoshii, N. Sestan, P. Rakic, M. Constantine-Paton, and H.R. Horvitz, Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5 (2004) R68.
    [167] A.M. Krichevsky, K.S. King, C.P. Donahue, K. Khrapko, and K.S. Kosik, A microRNA array reveals extensive regulation of microRNAs during brain development. Rna 9 (2003) 1274-81.
    [168] J.C. Pearson, D. Lemons, and W. McGinnis, Modulating Hox gene functions during animal body patterning. Nat Rev Genet 6 (2005) 893-904.
    [169] A.A. Aboobaker, P. Tomancak, N. Patel, G.M. Rubin, and E.C. Lai, Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proc Natl Acad Sci U S A 102 (2005) 18017-22.
    [170] L. Smirnova, A. Grafe, A. Seiler, S. Schumacher, R. Nitsch, and F.G. Wulczyn, Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21 (2005) 1469-77.
    [171] P.T. Nelson, D.A. Baldwin, W.P. Kloosterman, S. Kauppinen, R.H. Plasterk, and Z. Mourelatos, RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. Rna 12 (2006) 187-91.
    [172] C. Presutti, J. Rosati, S. Vincenti, and S. Nasi, Non coding RNA and brain. BMC Neurosci 7 Suppl 1 (2006) S5.
    [173] O. Hobert, Common logic of transcription factor and microRNA action. Trends Biochem Sci 29 (2004) 462-8.
    [174] J.G. Doench, and P.A. Sharp, Specificity of microRNA target selection in translational repression. Genes Dev 18 (2004) 504-11.
    [175] N. Vo, M.E. Klein, O. Varlamova, D.M. Keller, T. Yamamoto, R.H. Goodman, and S. Impey, A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A 102 (2005) 16426-31.
    [176] M.E. Klein, S. Impey, and R.H. Goodman, Role reversal: the regulation of neuronal gene expression by microRNAs. Curr Opin Neurobiol 15 (2005) 507-13.
    [177] X. Xie, J. Lu, E.J. Kulbokas, T.R. Golub, V. Mootha, K. Lindblad-Toh, E.S. Lander, and M. Kellis, Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals. Nature 434 (2005) 338-45.
    [178] L.P. Lim, N.C. Lau, P. Garrett-Engele, A. Grimson, J.M. Schelter, J. Castle, D.P. Bartel, P.S. Linsley, and J.M. Johnson, Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433 (2005) 769-73.
    [179] F. Benfenati, Synaptic plasticity and the neurobiology of learning and memory. Acta Biomed 78 Suppl 1 (2007) 58-66.
    [180] C. Jiang, and E.M. Schuman, Regulation and function of local protein synthesis in neuronal dendrites.Trends Biochem Sci 27 (2002) 506-13.
    [181] O. Steward, and E.M. Schuman, Protein synthesis at synaptic sites on dendrites. Annu Rev Neurosci 24 (2001) 299-325.
    [182] P.A. Brittis, Q. Lu, and J.G. Flanagan, Axonal protein synthesis provides a mechanism for localized regulation at an intermediate target. Cell 110 (2002) 223-35.
    [183] O. Steward, Translating axon guidance cues. Cell 110 (2002) 537-40.
    [184] X. Zhang, and M.M. Poo, Localized synaptic potentiation by BDNF requires local protein synthesis in the developing axon. Neuron 36 (2002) 675-88.
    [185] F. Angenstein, A.M. Evans, R.E. Settlage, S.T. Moran, S.C. Ling, A.Y. Klintsova, J. Shabanowitz, D.F. Hunt, and W.T. Greenough, A receptor for activated C kinase is part of messenger ribonucleoprotein complexes associated with polyA-mRNAs in neurons. J Neurosci 22 (2002) 8827-37.
    [186] K.C. Martin, and K.S. Kosik, Synaptic tagging -- who's it? Nat Rev Neurosci 3 (2002) 813-20.
    [187] G.M. Schratt, F. Tuebing, E.A. Nigh, C.G. Kane, M.E. Sabatini, M. Kiebler, and M.E. Greenberg, A brain-specific microRNA regulates dendritic spine development. Nature 439 (2006) 283-9.
    [188] H.Y. Cheng, J.W. Papp, O. Varlamova, H. Dziema, B. Russell, J.P. Curfman, T. Nakazawa, K. Shimizu, H. Okamura, S. Impey, and K. Obrietan, microRNA modulation of circadian-clock period and entrainment. Neuron 54 (2007) 813-29.
    [189] J.K. Gillies, and I.A. Lorimer, Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle 6 (2007) 2005-9.
    [190] J.F. Abelson, K.Y. Kwan, B.J. O'Roak, D.Y. Baek, A.A. Stillman, T.M. Morgan, C.A. Mathews, D.L. Pauls, M.R. Rasin, M. Gunel, N.R. Davis, A.G. Ercan-Sencicek, D.H. Guez, J.A. Spertus, J.F. Leckman, L.S.t. Dure, R. Kurlan, H.S. Singer, D.L. Gilbert, A. Farhi, A. Louvi, R.P. Lifton, N. Sestan, and M.W. State, Sequence variants in SLITRK1 are associated with Tourette's syndrome. Science 310 (2005) 317-20.
    [191] R.I. Gregory, and R. Shiekhattar, MicroRNA biogenesis and cancer. Cancer Res 65 (2005) 3509-12.
    [192] Y. Sylvestre, V. De Guire, E. Querido, U.K. Mukhopadhyay, V. Bourdeau, F. Major, G. Ferbeyre, and P. Chartrand, An E2F/miR-20a autoregulatory feedback loop. J Biol Chem 282 (2007) 2135-43.
    [193] M.R. Suh, Y. Lee, J.Y. Kim, S.K. Kim, S.H. Moon, J.Y. Lee, K.Y. Cha, H.M. Chung, H.S. Yoon, S.Y. Moon, V.N. Kim, and K.S. Kim, Human embryonic stem cells express a unique set of microRNAs. Dev Biol 270 (2004) 488-98.
    [194] H.K. Kim, Y.S. Lee, U. Sivaprasad, A. Malhotra, and A. Dutta, Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol 174 (2006) 677-87.
    [195] Y. Zhao, E. Samal, and D. Srivastava, Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436 (2005) 214-20.
    [196] Y. Zhao, J.F. Ransom, A. Li, V. Vedantham, M. von Drehle, A.N. Muth, T. Tsuchihashi, M.T. McManus, R.J. Schwartz, and D. Srivastava, Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129 (2007) 303-17.
    [197] S. Galardi, N. Mercatelli, E. Giorda, S. Massalini, G.V. Frajese, S.A. Ciafre, and M.G. Farace, miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem 282 (2007) 23716-24.
    [198] S.U. Mertens-Talcott, S. Chintharlapalli, X. Li, and S. Safe, The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res 67 (2007) 11001-11.
    [199] A. Hossain, M.T. Kuo, and G.F. Saunders, Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol 26 (2006) 8191-201.
    [200] K. Woods, J.M. Thomson, and S.M. Hammond, Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors. J Biol Chem 282 (2007) 2130-4.
    [201] R. Triboulet, B. Mari, Y.L. Lin, C. Chable-Bessia, Y. Bennasser, K. Lebrigand, B. Cardinaud, T. Maurin, P. Barbry, V. Baillat, J. Reynes, P. Corbeau, K.T. Jeang, and M. Benkirane, Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 315 (2007) 1579-82.
    [202] H. Matsubara, T. Takeuchi, E. Nishikawa, K. Yanagisawa, Y. Hayashita, H. Ebi, H. Yamada, M. Suzuki, M. Nagino, Y. Nimura, H. Osada, and T. Takahashi, Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene 26 (2007) 6099-105.
    [203] Y. Lu, J.M. Thomson, H.Y. Wong, S.M. Hammond, and B.L. Hogan, Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 310 (2007) 442-53.
    [204] Q. Wang, Y.C. Li, J. Wang, J. Kong, Y. Qi, R.J. Quigg, and X. Li, miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc Natl Acad Sci U S A 105 (2008) 2889-94.
    [205] A. Ventura, A.G. Young, M.M. Winslow, L. Lintault, A. Meissner, S.J. Erkeland, J. Newman, R.T. Bronson, D. Crowley, J.R. Stone, R. Jaenisch, P.A. Sharp, and T. Jacks, Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132 (2008) 875-86.
    [206] Z. Yu, C. Wang, M. Wang, Z. Li, M.C. Casimiro, M. Liu, K. Wu, J. Whittle, X. Ju, T. Hyslop, P. McCue, and R.G. Pestell, A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol 182 (2008) 509-17.
    [207] M.A. Martinez-Balbas, U.M. Bauer, S.J. Nielsen, A. Brehm, and T. Kouzarides, Regulation of E2F1 activity by acetylation. Embo J 19 (2000) 662-71.
    [208] S.N. Ho, H.D. Hunt, R.M. Horton, J.K. Pullen, and L.R. Pease, Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77 (1989) 51-9.
    [209] S. Kyo, M. Takakura, T. Taira, T. Kanaya, H. Itoh, M. Yutsudo, H. Ariga, and M. Inoue, Sp1 cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene (hTERT). Nucleic Acids Res 28 (2000) 669-77.
    [210] A.R. Black, J.D. Black, and J. Azizkhan-Clifford, Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol 188 (2001) 143-60.
    [211] N.D. Perkins, N.L. Edwards, C.S. Duckett, A.B. Agranoff, R.M. Schmid, and G.J. Nabel, A cooperative interaction between NF-kappa B and Sp1 is required for HIV-1 enhancer activation. Embo J 12 (1993) 3551-8.
    [212] A. Blais, D. Monte, F. Pouliot, and C. Labrie, Regulation of the human cyclin-dependent kinase inhibitor p18INK4c by the transcription factors E2F1 and Sp1. J Biol Chem 277 (2002) 31679-93.
    [213] J.M. Trimarchi, and J.A. Lees, Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 3 (2002) 11-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700