用户名: 密码: 验证码:
一种新型具抗菌作用的免疫活性肽及其抗菌机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牛乳酪蛋白经过适当的蛋白酶和适当的水解条件水解后具有抗菌活性,经过乙醇沉淀——透析——Sephadex G-25层析分离等程序获得一种富含酪氨酸的多肽。一系列的实验结果表明,这种多肽在体外表现出免疫刺激作用,并具有抗革兰氏阴性和阳性菌等广谱的抗菌作用。因其含有异常多的酪氨酸,故命名为富含酪氨酸的免疫活性多肽,缩写为:Trpi。
     对Trpi的氨基酸组分进行了分析,结合蛋白酶切位点和富含酪氨酸的特点对其一级结构进行了推测,并进行了χ~2-检验,结果证明了这种推断的正确性。这种富含酪氨酸具抗菌作用的免疫活性肽对应于κ-酪蛋白的11-63氨基酸残基片段(κ-CNf11-63),由53个氨基酸组成。数据库查询结果证明属于一种新的免疫活性肽和抗微生物肽。对其理化特性进行了研究,发现其具有热稳定性、带有较多的阳离子、等电点和乳铁蛋白相似等特性。在此基础上,对其抗菌机理进行了较为系统的研究,为进一步开发为食品防腐剂、口服抗菌药物或免疫增强功能性食品打下了理论和实验基础。本项研究还对其水解和纯化工艺进行了优化,获得了适合于放大规模制备Trpi的工艺路线和参数。
     研究结果显示:用胰蛋白酶水解牛乳酪蛋白制备Trpi的水解条件是:牛乳酪蛋白先在80℃条件下溶解,进行10min的适度热变性,然后再在45℃,pH=8,底物浓度为9.0%,酶与底物比为1∶120(U/mg)的条件下,酶解90min,所得Trpi抗菌活性最好。树脂NKA-8对Trpi有较好的吸附和解吸附效果,在上柱浓度为0.6mg/mL,上柱液的pH值为7.2,4倍树脂床体积的50%乙醇以1.5BV/h的流速进行洗脱即可基本将Trpi从NKA-8树脂上解吸下来;经等电聚焦电泳测定,Trpi的等电点为8.61。Trpi抗菌机制的初步研究结果为:Trpi有可能取代了细胞壁表面的镁离子,然后与负电性的脂多糖(LPS)紧密结合或者中和细胞壁上某一区域的电荷,导致细胞壁结构变形,Trpi穿过细胞壁,然后在细胞膜上打孔,改变细菌细胞膜的通透性而导致靶细胞死亡。此外,本课题还通过软件TheSwiss-PdbViewer(v.3.7)根据Trpi序列各组成、氨基酸之间潜在的键合力、非键合力、静电引力、扭矩等参数,结合Trpi的抗菌机制,对Trpi空间结构进行了模拟。
The proteolytic solution of bovine casein which has antimicrobial and immunostimulating activity was found and a novel immunopeptide named Tyr-rich polypeptide was separated from the solution by the process of ethanolprecipitation——dialysis——Sephadex G-25 chromatography, the results of A serialexperiments showed that Trpi has antibacterial action to Gram-positive and Gram-negative bacteria, such as E.coli, S.aureus, and enhance lymphocyte cell mediated immunity markedly in vitro.
     The amino acid composition of the peptide was also tested, and its position in the bovine milk casein was determined with the help of the site-specific character of trypsin. The result of x~2 -test proved the deduce to be correct; The result showed that this immunopeptide was a novel peptide that hadn't been reported comparing with the known antibacterial and immunopeptide sequences. This novel immunopeptide was composed of 53 amino acids, and it was the fragment of the bovine milkκ-CNf11-63. Some of the biochemical properties of the Tyr-rich polypeptide were tested, such as its high thermostablility, high contents of Tyr, pI and aminal acid sequence. On the basis of these works, the elucidation of the mechanisms of the action of Trpi was able to provide a basis for research and development of functional sanitarian food and oral medicament, more efficient methods to prepare immunopeptides are also being tried, so that a scale up method had established.
     The results of the study showed that the optimum enzyme hydrolysis conditions of enzymolysis of casein catalysed by trypsin were that dissolving casein in water at 80℃to denaturalize the casein moderately first, then trypsinized at 45℃, substrate 9%(w/v), enzyme: substrate ratio [E/S] l:120(U/mg), hydrolyzed for 90 minutes. NKA-8 , which has better adsorption and desorption function, was the most appropriate resin for the purification of Trpi. The concentration of 0.6mg/ml, pH 7.2 and being eluted with 4BV 50% ethanol in 1BV/h speed were the optimal conditions. The result of IEF showed that pI of Trpi is 8.61. Trpi was likely to displace the magnesium ions on the surface of the cellular wall, then either bind tightly to the negatively charged membrane lipopolysaccharide (LPS) or neutralize the charges over an area of the cellular wall, subsequently distorting the cellular wall structure. Once this is accomplished, Trpi can drill through the cellular wall. In addition, the three-dimensional structure of Trpi was studied in this thesis. The three-dimensional structure of Trpi was modeled according as the parameter of amino acid residue, formed Trpi, computed by The Swiss-PdbViewer(v.3.7), such as bonds, nonbonded, electrostatic constraint, torsion and so on.
引文
[1]Hancock R,Knowles D.Are we approaching the end of the antibiotic era.Current Opinion in Microbiology,1998,1:493-494.
    [2]Hancock RE,Cationic peptides:effectors in innate immunity and novel antimicrobials.Lancet Infect Disease,2001,1:156-164.
    [3]Breithaupt H,The new antibiotics.Nat Biotechnol,1999,17:1165-1169.
    [4]Sara Wilcox.The New Antimicrobials:Cationic Peptides.BioTeach Reviews &Readings,fall 2004,2(1):88-91.
    [5]Janeway CA,Jr.The road less traveled by:the role of innate immunity in the adaptive immune response.Immunol,1998,161:539-544.
    [6]Zasloff M.Antimicrobial peptides of multicellular organisms.Nature,2002,415:389-395.
    [7]Bonomo RA,Multiple antibiotic-resistant bacteria in long-term-care facilities:an emerging problem in the practice of infectious diseases.Clinic.Infection.Disease.2000,31:1414-1422.
    [8]李峦峰,庞广昌,阎亚丽.酪蛋白来源新型抗菌肽(Trpi)抗菌活性的初步研究,食品科学,2003,24(12):34-36.
    [9]Hultmark D.Drosophila immunity:paths and patterns.Curr.Opin.Immunol.2003,15:12-19.
    [10]Bals R.Epithelial antimicrobial peptides in host defense against infection.Resp Res,2000,1:141-50.
    [11]Fearon D,Locksley R.The instructive role of innate immunity in the acquired immune response.Science,1996,272:50-54.
    [12]Lehrer RI,Ganz T.Antimicrobial peptides in mammalian and insect host defense.Curr Opin Immunol,1999,11:23-7.
    [13]Mainous,Arch Pomeroy,Claire.Management of Antimicrobials in Infectious Diseases.Humana Press,2001.349 p.ISBN 0-89603-821-1.
    [14]Hancock REW,Chapple DS.Peptide antibiotics(Minireview).Antimicrobial Agents Chemotherapy,1999,43(6):1317-1323.
    [15]Zasloff M.Antimicrobial peptides of multicellular organisms.Nature,2002,415(6870):389-395.
    [16]Luders T,Birkemo GA,Fimland G,et al.Strong synergy between a eukaryotic antimicrobial peptide and bacteriocins from lactic acid bacteria.Applied and Environmental Microbiology,2003,69(3):1797-1799.
    [17]Selitrennikoff CP.Antifungal proteins.Applied and Environmental Microbiology,2001,67(7):2883-2894.
    [18] Tanaka K. P-I3 - kinase p85 is a target molecule of pro line-rich antimicrobial peptide to suppress proliferation of ras - transformed cells. Japanese Journal of Cancer Research, 2001, 92(9): 959-967.
    [19] Chernysh S, Kim SI, Beckeer G, et al. Antiviral and antitumor peptides from insects. Proceedings of the National Academy of Science USA, 2002, 99(20): 12628-12632.
    [20] Hancock REW. Cationic antimicrobial peptides: towards clinical applications. Expert Opinion on Investigational Drugs, 2000, 9: 1723-1729.
    [21] Zasloff M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415(6870): 389-395.
    [22] Roder BL, Wandall DA, Frimodt-Moller N, et al. Clinical features of Staphylococcus aureus endocarditis: a 10-year experience in Denmark. Archives Internal Medicine, 1999, 159(5): 462-469.
    [23] Novak R, Henriques B, Charpentier E, et al. Emergence of vancomycin tolerance in Streptococcus pneumoniae. Nature, 1999, 399(6736): 590-591.
    [24] Hoffmann JA, Reichhart JM. Drosophila innate immunity: an evolutionary perspective. Nature Immunology, 2002, 3(2): 121-126.
    [25] Singh PK, Parsek MR, Greenberg EP, et al. A component of innate immunity prevents bacterial biofilm development. Nature, 2002, 417(6888): 552-555.
    [26] Akira S, Takeda K, Kaicho T. Toll-like receptors: Critical proteins linking innate and acquired immunity. Nature Immunology, 2001, 2(8): 675-680.
    [27] Dangl JL, Jones JD. Plant pathogens and integrated defense responses to infection. Nature, 2001, 411(6839): 826-833.
    [28] Otvos L. Jr. Antibacterial peptides isolated from insects. Journal of Peptide Sciences, 2000, 6(10): 497-511.
    [29] Yang L, Harroun TA, Weiss TM. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J. 2001, 81: 1475-1485.
    [30] Zasloff M. Antimicrobial peptides of muticellular organisms. Nature, 2002, 415: 389-395.
    [31] Kourie JI, Shorthouse AA. Properties of cytotoxic peptide-formed ion channels. Am. J. Physiol-Cell Physiol, 2000, 278: C1063-C1087.
    [32] Hancock REW, Rozek A. Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol. Lett, 2002, 206:143-149.
    [33] Bonomo RA. Multiple antibiotic-resistant bacteria in long-term-care facilities: an emerging problem in the practice of infectious diseases. Clin. Infect. Dis, 2000, 31:1414-1422.
    [34] Lohner K. The role of membrane lipid composition in cell targeting of antimicrobial peptides. In: Lohner, K. (ed.), Development of novle antimicrobial agents: emerging strategies. Horizon Scientific Press, Wymondham, Norfolk, UK, 2001, pp: 149-165.
    [35] Van't Hof W, Veerman ECI, Helmerhorst EJ, et al. Antimicrobial peptides: properties and applicability. Biol. Chem, 2001, 382: 597-619.
    [36] Louise A, Rollins-Smitha, Michael Conlon J. Antimicrobial peptide defenses against chytridiomycosis, an emerging infectious disease of amphibian populations, Developmental and Comparative Immunology, 2005, 29: 589-598.
    [37] Antonio Pellegrini, Monika Engels. Antiviral Compounds Derived from Naturally Occurring Proteins Curr. Med. Chem. - Anti-Infective Agents, 2005, 4: 55-66.
    [38] Schnapp D, Reid CJ, Harris A. Localization and expression of human defensin-1 in the pancreas and kidney. J Pathol, 1998, 186:99-103.
    
    [39] Luders T, Birkemo GA, Fimland G, et al. Strong synergy between a eukaryotic antimicrobial peptide and bacteriocins from lactic acid bacteria. Appl Environ Microbiol, 2003, 69:1797-9.
    [40] Steiner H, Hultmark D, Engstrom A, et al. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature, 1981, 292: 246-8.
    [41] Zasloff M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415: 389-95.
    [42] Orivel J, Redekar V, Le Caer JP, et al. New antibacterial and insecticidal peptides from the venom of the ant Pachycondyla goeldii. J Biol Chem, 2001, 276: 17823-29.
    
    [43] Matsuyama K, Nafori S. Purification of three antibacterial proteins from the culture medium of NIH-Sape-4, an embryonic cell line of Sarcophaga peregrina. J Biol Chem, 1988,263: 17112-6.
    [44] Lambert J, Keppi E, Dimarcq JL, et al. Insect immunity: isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proc Natl Acad Sci USA, 1989, 86: 262-6.
    [45] Dimopoulos G, Richman A, Muller HM, et al. Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc Natl Acad Sci USA, 1997,94: 11508-13.
    [46] Simmaco M, Mignogna G, Barra D, et al. Antimicrobial peptides from skin secretions of Rana esculenta. Molecular cloning of cDNAs encoding esculentin and brevinins and isolation of new active peptides. J Biol Chem, 1994, 269: 11956-61.
    [47] Imamura M, Wada S, Koizumi N, et al. Acaloleptins A: inducible antibacterial peptides from larvae of the beetle, Acalolepta luxuriosa. Arch Insect Biochem Physiol, 1999, 40: 88-98.
    
    [48] Kuhn-Nentwig L, Miller J, Schaller J, et al. Cupiennin-1, a new family of highly basic antimicrobial peptides in the venom of the spider Cupiennius salei (Ctenidae). J Biol Chem, 2002, 277: 1208-16.
    
    [49] Sitaram N, Nagaraj R. Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. BBA, 1999, 1462: 29-54.
    
    [50] Nakamura T, Furunaka H, Miyata T, et al. Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab {Tachypleus tridentatus): isolation and chemical structure. J Biol Chem, 1988, 263: 16709-13.
    
    [51] Shigenaga T, Muta T, Toh Y, et al. Antimicrobial tachyplesin peptide precursor: cDNA cloning and cellular localization in the horseshoe crab {Tachypleus tridentatus). J Biol Chem, 1990, 265: 21350-4.
    
    [52] Miyata T, Tokunaga F, Yoneya T, et al. Antimicrobial peptides, isolated from horseshoe crab hemocytes, tachyplesin Ⅱ, and polyphemusins Ⅰ and Ⅱ. Chemical strucutre and biological activity. J Biochem (Tokyo), 1989,106: 663-8.
    
    [53] Saito T, Kawabata S, Shigenaga T, et al. A novel big defensin identified in horseshoe crab hemocytes: isolation, amino acid sequence and antibacterial activity. J Biol Chem (Tokyo), 1995, 117: 1131-7.
    
    [54] Kawabata S, Nagayama R, Hirata M, et al. Tachycytin, a small granular component in horseshoe crab hemocytes, is an antimicrobial protein with chitin binding activity. J Biochem (Tokyo), 1996, 120: 1253-60.
    
    [55] Ehret-Sabatier L, Loew D, Goyffon M, et al. Characterization of novel cysteine-rich antimicrobial peptides from scorpion blood. J Biol Chem, 1996, 271:29537-44.
    
    [56] Destoumieux D, Munoz M, Bulet P, et al. Penaeidins, a family of antimicrobial peptides from penaeid shrimp (Crustacea, Decapoda). Cell Mol Life Sci, 2000, 57: 1260-71.
    
    [57] Destoumieux D, Bulet P, Strub JM, et al. Recombinant expression and range of activity of penaeidins, antimicrobial peptides from penaeid shrimp. Eur J Biochem, 1999, 266: 335-46.
    [58] Charlet M, Chernysh S, Philippe H, et al. Innate immunity: isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc Mytilus edulis. J Biol Chem, 1996, 271: 21808-13.
    
    [59] Zeya HI, Spitznagel JK. Cationic proteins of polymorphonuclear leucocytes lysosomes I. Resolution of antibacterial and enzymatic activities. J Bacteriol, 1966,91:750-4.
    
    [60] Ouellette AJ, Bevins CL. Paneth cell defensins and innate immunity of the small bowel. Infl Bowel Dis, 2001, 7: 43-50.
    
    [61] Hoover DM, Chertov O, Lubkowski J. The structure of human beta defensin-1. New insights into structural properties of beta defensins. J Biol Chem, 2001, 276: 39021-26.
    
    [62] Schroder JM, Harder J. Human beta-defensins-2. Int J Biochem Cell Biol, 1999, 31:645-51.
    
    [63] Zanetti M, Gennaro R, Romeo D. The cathelicidins family of antimicrobial peptide precursors: a component of the oxygen independent defense mechanisms neutrophils. AnnN YAcad Sci, 1997, 832: 147-62.
    
    [64] Zanetti M, Litteri L, Gennaro R, et al. Bactenecins, defense polypeptides of bovine neutrophils are generated from precursor molecules stored in the large granules. J Cell Biol, 1990, 111: 363-71.
    
    [65] Agerberth B, Gunne H, Odeberg J, et al. FALL-39, a putative human peptide antibiotic, is cysteine free and expressed in bone marrow and testes. Proc Natl Acad Sci USA, 1995, 92: 195-9.
    
    [66] Agerberth B, Charo J, Werr J. The human antimicrobial and chemotactic peptides LL-37 and alpha defensins are expressed by specific lymphocyte and monocyte populations. Blood, 2000, 96: 3086-93.
    
    [67] Skerlavaj B, Gennaro R, Bagella L, et al. Biological characterization of two novel cathelicidin derived peptides and identification of structural requirements for their antimicrobial cell lytic activities. J Biol Chem, 1996, 271: 28375-81.
    
    [68] Shi J, Ganz T. The role of protegrins and other elastase activated polypeptides in the bactericidal properties of porcine inflammatory fluids. Infect Immunol, 1998, 66:3611-17.
    
    [69] Tsai H, Bobek LA. Human salivary histatins: promising antifungal therapeutic agents. Crit Rev Oral Biol Med, 1998, 9: 480-97.
    
    [70] Wuthrich K, editor. NMR of proteins and nucleic acids. New York: Wiley, 1986.
    [71] Steiner J, Hultmark D, Engstrom A, et al. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature, 1981, 292: 246-8.
    
    [72] Matsuzaki K. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. BBA, 1999, 1462: 1-10.
    
    [73] Hill CP, Yee J, Selsted ME, et al. Crystal structure of defensin HNP-3, an amphipathic dimer: mechanisms of membrane permeabiization. Science, 1991, 251:1482-85.
    
    [74] Kawano K, Yoneya Y, Miyata T, et al. Antimicrobial peptide, tachyplesin I, isolated from hemocytes of the horseshoe crab (Tachypleus tridentatus). J Biol Chem 1990;265:15365-7.
    [75] Tamamura H, Kuroda M, Masuda M, et al. A comparative study of the solution structures of tachyplesin I and a novel anti-HIV synthetic peptide. T 22 ([tyr 5,12, lys 7]-polyphemusin ii), determined by nuclear magnetic resonance. BBA, 1993, 1163:209-16.
    
    [76] Hwang PM, Zhou N, Shan X, et al. Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferricin. Biochemistry, 1998, 27:7620-9.
    
    [77] Xu T, Levitz SM, Diamond RD, et al. Anticandidal activity of major human salivary histatins. Infect Immunol, 1991, 59: 2549-54.
    
    [78] Reddy KVR, Yedery RD, Aranha C. Antimicrobial peptides: premises and promises. International Journal of Antimicrobial Agents, 2004, 24(6): 536-547.
    
    [79] Lawyer C, Pai S, Watabe M, et al. Antimicrobial activity of a 13 amino acid trytophan-rich peptide derived from a puative porcine precursor protein of a novel family of antibacterial peptides. FEBS Lett, 1996, 390: 95-8.
    
    [80] Gennaro R, Skerlavaj B, Romeo D. Purification, composition and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect Immunol, 1989, 57:3142-46.
    
    [81] Agerberth B, Lee JY, Bergman T, et al. Amino acid sequence of PR-39 isolation fom pig intestine of a new member of the family of pro, arg rich antibacterial pepides. Eur J Biochem, 1991, 202: 849-54.
    
    [82] DeVos WM, Mulders JW, Siezen RJ, et al. Properties of nisin Z and distribution of its gene, nisZ, in Lactococcus lactis. Appl Environ Microbiol, 1993, 59: 213-218.
    
    [83] Van Den Hooven HW, Doeland CCM, Van De Kamp M,et al. Three dimensional structure of the antibiotic nisin in the presence of membrane-mimetic micelles of dodecylphosphocholine and of dodecylsulphate. Eur J Biochem, 1996, 235: 382-93.
    
    [84] Fregeau Gallagher NL, Sailer M, Niemczura WP, et al. Three-dimensional structure of leucocin A in trifluoroethanol and dodecylphosphocholine micelles: spatial location of residues critical for biological activity in type IIa bacteriocins from lactic acid bacteria. Biochemistry, 1997, 36: 15062-72.
    
    [85] Gibbs AC, Kondejewski IH, Gromwald W, et al. Unusual beta-sheet periodicity in small cyclic peptides. Nat Struct Biol, 1998, 5: 284-8.
    
    [86] Hancock RE. Peptide antibiotics. Lancet, 1997, 349: 418-422.
    
    [87] Schibli DJ, Hwang PM, Vogel HJ. Structure of the antimicrobial peptide tritrpticin bound to micelles: a distinct membrane-bound peptide fold. Biochemistry, 1999, 38: 16749-6755.
    
    [88] Matsuzaki K. Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim Biophys Acta, 1998, 1376: 391-400.
    
    [89] Dathe M, Nikolenko H, Meyer J, et al. Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett, 2001, 501: 146-150.
    
    [90] Dathe M, Wieprecht T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta, 1999, 1462: 71-87.
    
    [91] Pathak N, Salas-Auvert R, Ruche G, et al. Comparison of the effects of hydrophobicity, amphiphilicity and alpha-helicity on the activities of antimicrobial peptides. Proteins, 1995, 22: 182-186.
    
    [92] Wieprecht T, Dathe M, Krause E, et al. Modulation of membrane activity of amphipathic, antibacterial peptides by slight modifications of the hydrophobic moment. FEBS Lett, 1997, 417: 135-140.
    
    [93] Sitaram N, Nagaraj R. Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. Biochim Biophys Acta, 1999, 1462: 29-54.
    
    [94] Dimarcq JL, Bulet P, Hetru Cet al. Cysteine-rich antimicrobial peptides in invertebrates. Biopolymers, 1998, 47: 465-477.
    
    [95] Kondejewski LH, Jelokhani-Niaraki M, Farmer SW, et al. Dissociation of antimicrobial and hemolytic activities in cyclic peptide diastereomers by systematic alterations in amphipathicity. J Biol Chem, 1999, 274: 13181-13192.
    
    [96] Wieprect T, Dathe M, Epand RM, et al. Influence of the angle subtended by the positively charged helix face on the membrane activity of amphipathic, antibacterial peptides. Biochemistry, 1997, 36: 12869-12880.
    
    [97] Uematsu N, Matsuzaki K. Polar angle as a determinant of amphipathic alpha-helix-lipid interactions: a model peptide study. Biophys J, 2000,79: 2075-2083.
    
    [98] Matsuzaki K, Mitani Y, Akada KY, et al. Mechanism of synergism between antimicrobial peptides magainin 2 and PGLa. Biochemistry, 1998,37: 15144-15153.
    
    [99] Dathe M, Schumann M, Wieprecht T, et al. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry, 1996, 35: 12612-12622.
    
    [100] Verkleij AJ, Post JA. Membrane phospholipid asymmetry and signal transduction. J Membr Biol, 2000, 178: 1-10.
    
    [101] Breukink E, de Kruijff B. The lantibiotic nisin, a special case or not? Biochim Biophys Acta, 1999, 1462: 223-234.
    [102] Wade D, Boman A, Wahlin B, et al. All-D amino acid-containing channel-forming antibiotic peptides. Proc Natl Acad Sci USA, 1990, 87: 4761-4765.
    
    [103] Brotz H, Bierbaum G, Leopold K,et al. The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother, 1998,42: 154-160.
    
    [104] Hirakura Y, Koabyashi S, Matsuzaki K. Specific interactions of the antimicrobial peptide cyclic (?)-sheet tachyplesin I with lipopolysaccharides. Biochim Biophys Acta, 2002, 1562: 32-36.
    
    [105] Vunnam S, Juvvadi P, Merrifield RB. Synthesis and antibacterial action of cecropin and proline-arginine-rich peptides from pig intestine. J Pept Res, 1997, 49: 59-66.
    [106] Yang L, Weiss TM, Lehrer RI, et al. Crystallization of antimicrobial pores in membranes: magainin and protegrin. Biophys J, 2000, 79: 2002-2009.
    [107] Hirsh DJ, Hammer J, Maloy WL, et al. Secondary structure and location of a magainin analogue in synthetic phospholipid bilayers. Biochemistry, 1996, 35: 12733-12741.
    
    [108] Yang L, Harroun TA, Weiss TM, et al. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J, 2001, 81: 1475-1485.
    
    [109] Hara T, Mitani Y, Tanaka K, et al. Heterodimer formation between the antimicrobial peptides magainin 2 and PGLa in lipid bilayers: a cross-linking study. Biochemistry, 2001, 40: 12395-12399.
    
    [110] Matsuzaki K. Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim Biophys Acta, 1998, 1376: 391-400.
    
    [111] Shai Y, Oren Z. From "carpet" mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides, 2001, 22: 1629-1641.
    
    [112] Rozek A, Friedrich CL, Hancock RE. Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry, 2000, 39: 15765-15774.
    
    [113] Hancock RE, Chappie DS. Peptide antibiotics. Antimicrob Agents Chemother, 1999, 43:1317-1323.
    
    [114] Matsuzaki K, Nakamura A, Murase O, et al. Modulation of magainin 2-lipid bilayer interactions by peptide charge. Biochemistry, 1997, 36: 2104-2111.
    
    [115] Koo SP, Bayer AS, Yeaman MR. Diversity in antistaphylococcal mechanisms among membrane-targeting antimicrobial peptides. Infect Immun, 2001, 69: 4916-4922.
    
    [116] Zhang L, Dhillon P, Yan H, Farmer S,et al. Interactions of bacterial cationic peptide antibiotics with outer and cytoplasmic membranes of Pseudomonas aeruginosa. Antimicrob Agents Chemother, 2000, 44: 3317-3321.
    
    [117] Xiong YQ, Bayer AS, Yeaman MR. Inhibition of intracellular macromolecular synthesis in Staphylococcus aureus by thrombin-induced platelet microbicidal proteins. J Infect Dis, 2002, 186: 668-677.
    
    [118] Kragol G, Lovas S, Varadi G, et al. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochem, 2001, 40: 3016-3026.
    
    [119] Del Castillo FJ, del Castillo I, Moreno F. Construction and characterization of mutations at codon 751 of the Escherichia coli gyrB gene that confer resistance to the antimicrobial peptide microcin B17 and alter the activity of DNA gyrase. J Bacteriol, 2001, 183: 2137-2140.
    
    [120] Kim DH, Lee DG, Kim KL,et al. Internalization of tenecin 3 by a fungal cellular process is essential for its fungicidal effect on Candida albicans. Eur J Biochem, 2001, 268:4449-4458.
    [121] Helmerhorst EJ, Breeuwer P, van't Hof W, et al. The cellular target of histatin 5 on Candida albicans is the energized mitochondrion. J Biol Chem, 1999, 274: 7286-7291.
    
    [122] Tang YQ, Yeaman MR, Selsted ME. Antimicrobial peptides from human platelets. Infect Immun, 2002, 70: 6524-6533.
    
    [123] Hara T, Kodama H, Kondo M, et al. Effects of peptide dimerization on pore formation: Antiparallel disulfide-dimerized magainin 2 analogue. Biopolymers, 2001,58:437-446.
    
    [124] Zhang L, Benz R, Hancock RE. Influence of proline residues on the antibacterial and synergistic activities of alpha-helical peptides. Biochemistry, 1999,38:8102-8111.
    
    [125] Kim A, Brogden. Antimicrobial Peptides: Pore Formers or Metabolic inhibbitors in Bacteria? Nature Reviews Microbiology, 2005, 3: 238-250.
    
    [126] Huang HW. Molecular mechanism of peptide induced pores in membranes. Phys. Rev. Lett, 2004, 92:198304-1 -198304-4.
    
    [127] Huey W, Huang Fang-Yu, Ming-Tao Lee. Molecular mechanism of peptideinduced pores in membranes. Phys. Rev. Lett, 2004, 92:198304-5 - 198304-7.
    
    [128] Zeya HI, Spitznagel JK. Antibacterial and enzymic basic proteins from leukocyte lysosomes: separation and identification. Science, 1963, 142: 1085-1087.
    
    [129] Steiner H, Hultmark D, Engstrom A, et al. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature, 1981, 292: 246-248.
    
    [130] Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity J. Leukocyte Biol, 2004,75: 39-48.
    [131] Okumura K, Itoh A, Isogai E, et al. C-terminal domain of human CAP 18 antimicrobial peptide induces apoptosis in oral squamous cell carcinoma SAS-H1 cells. Cancer Lett, 2004, 212:185-194.
    
    [132] Koczulla R, Von Degenfeld G, Kupatt C, et al. An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J. Clin. Investig, 2003,111: 1665-1672.
    [133] Brogden KA, Guthmiller JM, Salzet M, et al. The nervous system and innate immunity: the neuropeptide connection. Nat. Immunol, 2005, 6: 558-564.
    [134] Nordahl EA, Rydengard V, Nyberg P, et al. Activation of the complement system generates antibacterial peptides. Proc. Natl. Acad. Sci. USA, 2004, 101: 16879-16884.
    [135] Andersson E, Rydengard V, Sonesson A, et al. Antimicrobial activities of heparin-binding peptides. Eur. J. Biochem, 2004, 271: 1219-1226.
    [136] Park PW, Pier GB, Hinkes MT, et al. Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence. Nature, 2001, 411: 98-102.
    [137] Emma Andersson Nordahl, Victoria Rydengard, Matthias Morgelin, et al. Domain 5 of High Molecular Weight Kininogen Is Antibacterial, J. Biol. Chem, 2005, 280(41): 34832-34839.
    [138] Aurelie Tasiemski, Michel Salzet, Herbert Benson,et al. The presence of antibacterial and opioid peptides in human plasma during coronary artery bypass surgery, Journal of Neuroimmunology, 2000,109: 228-235.
    [139] Stefano GB, Salzet B, Fricchione GL. Enkelytin and opioid peptide association in invertebrates and vertebrates: immune activa- tion and pain. Immunol. Today, 1998,19: 265-268.
    [140] Ase Bjorstad, Huamei Fu, Anna Karlsson, et al. Interleukin-8-derived peptide has antibacterial activity. Antimicrobial Agents and Chemotherapy, 2005, 49(9): 3889-3895.
    [141] Sturfelt G, Truedsson L. Complement and its breakdown products in SLE. Rheumatology, 2005, 44(10): 1227-1232.
    [142] Sandra Tjabringa G, Klaus Rabe F, Pieter Hiemstra S. The human cathelicidin LL-37: a multifunctional peptide involved in infection and inflammation in the lung Pulmonary. Pharmacology & Therapeutics, 2005, 18: 321-27.
    [143] De Yang, Qian Chen, David Hoover M, et al. Many chemokines including CCL20/MIP-3adisplay antimicrobial activity. Journal of Leukocyte Biology, 2003, 74: 1-8.
    [144] Wojciech Kamyszl, Marcin Okroj, Jerzy (?)ukasiak. Novel properties of antimicrobial peptides. Acta Biochimica Polonica, 2003, 50(2): 461-469.
    [145] Utsugi T, Schroit AJ, Connor J, et al. Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumour cells and recognition by activated human blood monocytes. Cancer Res, 1991, 51: 3062-6.
    [146] Baker MA, Maloy WL, Zasloff M, et al. Anticancer efficacy of Magainin 2 and analogue peptides. Cancer Res, 1993, 53: 3052-7.
    [147] Murphy CJ, Foster BA, Mannis MJ, et al. Defensins are mitogenic for epithelial cells and fibroblasts. J Cell Physiol, 1993, 155: 408-13.
    
    [148] Aarbiou J, Ertmann M, van Wetering S, et al. Human neutrophil defensins induce lung epithelial cell proliferation in vitro. J Leukoc Biol, 2002, 72: 167-74.
    
    [149] Hobta A, Lisovskiy I, Mikhalap S, et al. Epidermoid carcinoma-derived antimicrobial peptide (ECAP) inhibits phosphorylation by protein kinases in vitro. Cell Biochem Funct, 2001, 19: 291-8.
    
    [150] Huang HJ, Ross CR, Blecha F. Chemoattractant properties of PR-39, a neutrophil antibacterial peptide. J Leukoc Biol, 1997, 61: 624-9.
    
    [151] Chaly YV, Paleolog EM, Kolesnikova TS, et al. Neutrophil alpha-defensin human neutrophil peptide modulates cytokine production in human monocytes and adhesion molecule expression in endothelial cells. Eur Cytokine Netw, 2000, 11:257-66.
    
    [152] Yang D, Chertov O, Bykovskaia SN, et al. Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science, 1999, 286: 525-8.
    
    [153] Alison R. Kerr, Gavin K. Paterson, Alan Riboldi-Tunnicliffe,et al. Innate Immune Defense against Pneumococcal Pneumonia Requires Pulmonary Complement Component C3, Infection and Immunity, 2005, 73(7): 4245-4252,
    
    [154] Emma Andersson Nordahl, Victoria Rydengard, Matthias Morgelin,et al. Domain 5 of High Molecular Weight Kininogen Is Antibacterial, J. Biol. Chem, 2005, 280(41):32~39.
    
    [155] Ling C. Huang, Tihomira D. Petkova, Rose Y. Reins, et al. Multifunctional Roles of Human Cathelicidin (LL-37) at the Ocular Surface, Investigative Ophthalmology and Visual Science, 2006,47: 2369-2380.
    
    [156] Mygind Per H, Rikke Fischer L, Kirk Schnorr M, et al. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus, Nature, 2005, 437: 975-980.
    
    [157] Emmanuel Andr'es, Jean Luc Dimarcq. Clinical development of antimicrobial peptides, International Journal of Antimicrobial Agents, 2005, 25: 448-452.
    
    [158] Jens-M. Schroder, Jurgen Harder. Antimicrobial peptides in skin disease Drug Discovery Today: Therapeutic Strategies. Skin diseases, 2006, 3 (1): 93-100.
    [159] Brantl VH, Teschemacher, Henschen A, et al. Novel opioid peptides derived from casein β-casomorphins Isolation from bovine casein peptone.Hoppe-Seyler's Z.Physiol.Chem,1997,360-1211.
    [160]Clare DA,Swaisgood HE.Bioactive milk peptides:a prospectus.J Dairy Sci,2000,83(6):1187-95.
    [161]庞广昌.乳在哺乳动物进化中的作用,食品科学,2002,23(10):146-152.
    [162]庞广昌,王清连.生物化学实验技术.郑州,河南科学技术出版社,1994:178-184.
    [163]Rogers AM,Montville TJ.Improved agar diffusion assay for nisin quantification.Food Biotechnol,1991,5:161.
    [164]Zhao WS,Zhang YQ,Ren LJ,et al.Immunopotentiating effects of polysaccharides isolated from Medicago sativa.L.Acta Pharm Sin,1993,14:273.
    [165]Mosman T.Rapid colorimetric assay for cellular growth and surrival capplication to proliferation and cytoxicity assays.J Immunol Methods,1983,65:55.
    [166]韩从辉,郑宝钟,田军等.超抗原细胞毒性T淋巴细胞抗膀胱肿瘤效应的研究.临床泌尿外科杂志,2000,15:266.
    [167]Clare DA,Swaisgood HE.Bioactive Milk Peptides:A Prospectus.J.Dairy Sci.2000,83:1187-1195.
    [168]余冰宾.生物化学实验指导.北京:清华大学出版社,2003.
    [169]Hancock RE.Cationic peptides:effectors in innate immunity and novel antimicrobials.Lancet Infect Disease,2001,1:156-164.
    [170]Leonor Michaelis,Maud Menten.Die Kinetik der Invertinwirkung,.Biochem.Z,1913,49:333-369.
    [171]Dionysius DA,Milne JM.Antibacterial peptides of bovine lactoferrin:purification and characterization.J Dairy Sci,1997,80:667-674.
    [172]Rogers AM,Montville TJ.Improved agar diffusion assay for nisin quantification.FoO.D.Biotechnol,1991,5:161.
    [173]Malkoski Marina.Kappacin,a novel antibacterial peptide from bovine milk.Antimicrobial agents and chemotherapy,2001,8:2309-2315.
    [252]Shin K.Antibacterial activity of bovine lactoferrin and its peptides against enterohaemorrhagic Escherichia coli.O157:H7.Letters in Microbiology,1999,26:407-411.
    [174]Dewey G McCafferty.Synergy and duality in peptide antibiotic mechanisms.Current Opinion in Chemical Biology,1999,3:672-680.
    [175]Sara Wilcox.The New Antimicrobials:Cationic Peptides.BioTeach Reviews &Readings fall,2004,2(1):88-91.
    [176] Newey H, Parsons BJ, Smyth DH. The site of action of phlorrhizin in inhibiting intestinal absorption of glucose. JPhysiol,1959,148(1): 83-92.
    
    [177] Newey H, Smyth DH. Intracellular hydrolysis of dipeptides during intestinal absorption. JPhysiol,1960, 152(2):367~380.
    
    [178] Hurwitz A. On The Conditions Under Which an Equation Has Only Roots With Negative Real Parts, Selected Papers on Mathematical Trends in Control Theory, Edited by R. Bellman and R. Kalaba, Dover, New York, 1964, 336-341.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700