用户名: 密码: 验证码:
HL-CMS不育候选基因orf216的克隆及稻瘟病抗性基因Pi36的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻(Oryza sativa L.)是世界最重要的粮食作物之一。上个世纪,以植物细胞质雄性不育(Cytoplasmic male sterility, CMS)为基础的“三系”杂交稻的利用使水稻的产量发生了飞跃的变化。目前,一方面由于世界人口的不断增长和耕地面积的不断减少,另一方面以病原菌和害虫等生物胁迫引起水稻的减产,使得目前世界的粮食问题尤为突出。因此,通过对作物品种的遗传改良以提高单位面积产量,将是解决人类对粮食的需求不断增加这一矛盾的主要途径。
     本研究在已有的HL-CMS不育相关片段HL-sp1分离和克隆基础上,利用TAIL-PCR技术进一步扩增其侧翼序列,对HL-sp1进行了结构和功能预测分析,并进行了遗传转化。采用RNAi技术以及亚细胞定位技术对稻瘟病抗性基因Pi36的功能进行了初步研究。取得了以下研究结果:
     1. HL-sp1侧翼序列的分析及基因预测
     采用单引物PCR以及改良的TAIL-PCR技术,成功地获得了HL-sp1 5’端2009 bp及3’端2555 bp的序列,将HL-sp1延伸至6740 bp。通过BLSAT序列比对,发现HL-sp1缺失了线粒体基因atp6的1-1772 bp,而且5’端近1700 bp序列与籼稻9311的线粒体序列同源性非常小,而与玉米的T-CMS和C-CMS线粒体DNA序列有部分的同源性。利用2种基因预测软件RiceGAAS (http://ricegaas.dna.affrc.go.jp)和Softberry的FGENESH (http://www.softberry.com)对HL-sp1进行了基因预测及注释分析。结果表明该序列包含2个ORFs。第一个ORF全长171bp,由4个不连续的较短的外显子组成,编码一个功能未知的蛋白;另外一个ORF由651bp组成,是一个独立的外显子,编码216个氨基酸,暂命名这个候选基因为orf216,通过与9311线粒体序列比对发现,orf216是由2个相差较远的基因的部分编码区和一个未知片段所组成的嵌合基因。
     2. HL-CMS不育候选基因orf216的细胞质特异性及表达分析
     以不育候选基因orf216的序列设计了特异性引物对水稻3种不同CMS类型的不育系、保持系、恢复系及杂交种进行PCR分析,证明不育候选基因orf216只存在于具有红莲型不育胞质的品种中。进一步利用反转录PCR对不育候选基因orf216进行了表达模式分析,初步结果表明该基因为组成型表达。
     3. HL-CMS相关不育候选基因orf216的克隆与遗传转化
     利用已经克隆的BT型水稻育性恢复基因Rf1b的线粒体定位信号肽序列和双元载体转化体系pCAMBIA1305.1,成功地构建了重组植物表达载体。以与红莲型不育系粤泰A(YTA)同核异质的保持系粤泰B(YTB)作为受体,通过农杆菌介导的遗传转化体系进行了候选基因的遗传转化,获得了一定数量的转化植株。对T0代转化植株进行了选择标记潮霉素基因和目的基因的PCR分子检测。结果表明候选基因成功地插入受体品种的基因组中。
     4.稻瘟病抗性基因Pi36 RNAi干涉载体的构建与遗传转化
     利用植物干涉表达载体pCAMBIA1300RS成功地构建了Pi36的5’端、3’端和NBS保守结构域的3个植物RNA干涉表达载体,分别将这些重组载体转化至农杆菌菌株EHA105后,对水稻抗病品种Q61进行遗传转化。经过分子鉴定后,获得了一批阳性转化植株。荧光定量PCR分析表明,3个干涉载体的转化植株中目的基因Pi36的表达量均有不同程度的下降,其中以ORF 5’端的片段构建的载体干涉程度最强。
     5.稻瘟病抗性基因Pi36亚细胞定位载体的构建与遗传转化
     将Pi36 ORF 1-1827 bp的序列通过NcoI和BglII酶切位点插入植物表达载体pCAMBIA1302,在35S强启动子的控制下在洋葱表皮细胞进行瞬时表达,结果表明Pi36基因的产物定位于细胞核。同时重组载体利用农杆菌介导法对烟草进行遗传转化,选取转化苗根尖进行观察,结果与瞬时表达一致。
Rice (Oryza sativa L.) is one of the most important crops for human consumption. A variety of hybrid rice cultivars derived from cytoplasmic male sterility (CMS) have largely increased rice yield. However, at present, the increase of human population and decrease of plantation result in the problem of food supplies worldwide. Furthermore, biostress from pathogeny and pest, such as rice blast, continues to be a potentially devastating disease of rice, affecting yield and decreasing its quality. Thus, increasing the yields in unit area by genetic improvement is the main approach to solve the food supply problem.
     HL-CMS/Rf system is one type of CMS systems of rice. The chimeric mitochondrial genome-associated candidate gene for HL-CMS, named as HL-sp1, was previously identified. In order to isolate the gene, analysis of HL-sp1 flanking sequence by TAIL-PCR and genetic transformation, mediated through Agrobacterium tumefaciems EHA105, were carried out. At the same time, to understand the molecular mechanism of Pi36 gene against rice blast, the technology of RNAi and subcellular localization were used to verify its function for rice blast resistance. The main results were as follows:
     1. Analysis of HL-sp1 flanking sequences and gene prediction
     A 6740 bp HL-sp1 sequence, extended 2009 bp and 2555 bp from the 5’- and 3’-end of the original HL-sp1 fragment, respectively, was obtained through the single primer PCR and improved TAIL-PCR. The 6740 bp sequence was then analyzed by Blast and alignment. In HL-sp1, there was an uncompleted mitochondrial atp6 gene with deletion of 1772 bp of at the 5’end; There were only a little homologous at the 5’end about 1700 bp of HL-sp1 with mitochondrial DNA (mtDNA) of Indica rice cultivar 9311, and a partial homologous with the mtDNA of maize T-CMS and C-CMS; The 2555 bp flanking sequence of 3’-end is highly homologous to 9311 mtDNA.
     Two gene prediction systems, RiceGAAS (http://ricegaas.dna.affrc.go.jp) and Softberry FGENESH (http://www.softberry.com), were used to predict if there are any candidate genes in the 6740 bp HL-sp1. The results showed that there were two ORFs in HL-sp1 sequence. The first one, composed of 4 exons with 171 bp, coded an unknown protein. And another one was a chimeric gene, named as orf216, tentatively, composed of 651 bp without intron, coding an unknown protein with 216 amino acid residues. 2. Analysis of the cytoplasm specificity and expression of candidate gene orf216 The DNAs isolated from the sterile lines, maintainer lines, restorer lines and the hybrid of HL-CMS/Rf, BT-CMS/Rf and WA-CMS/Rf systems were used for analyzing cytoplasm specificity with the special primer from the candidate gene orf216. The result showed that it existed only in YTA and HL-2 with HL-CMS cytoplasm. RT-PCR analysis suggested that the orf216 be constitutively expressed.
     3. Genetic transformation of HL-CMS associated candidate gene orf216
     To dissect the function of orf216 in HL-CMS, a fusion protein expression vector was constructed, using the binary vector pCAMBIA1305.1 to combine orf216 with a mitochondrial orientated signal peptide sequence from BT-CMS fertility restorer gene Rf1b. Genetic transformation was carried out by the Agrobacterium-mediated transformation system, using the maintainer line YTB as the acceptor, which is homokaryon with HL-CMS line YTA, and transgenic plants were obtained. The T0 generation was confirmed by PCR, using the selective markers from Hpt gene as well as candidate gene. The results showed that the foreign fragment carried by the construct had been integrated into YTB genome.
     4. Construction of Pi36 RNAi recombined vector and its genetic transformation
     To further identify the function of the resistance gene Pi36, the fragments from 5’-end, 3’-end and NBS region of Pi36 were cloned by using gene-silencing vector pCAMBIA1300RS, which were named as pI1, pI2 and pI3, respectively. The confirmed constructs were subsequently transformed into the donor cultivar Q61 of Pi36 by Agrobacterium-mediated transformation system. And transgenic plants corresponding to the candidate constructs pI1, pI2 and pI3 were obtained, respectively, and confirmed by PCR analysis with the selection marker gene Hpt. Expression of Pi36 in transgenic plants was estimated through real-time quantitative PCR. The results showed that the expression of Pi36 in the selected transgenic plants was decreased, especially in pI1 transgenic plants.
     5. Construction of Pi36 subcellular localization vector and genetic transformation
     To better know the function and molecular mechanism of host-pathogen interaction, N-terminal sequence of Pi36 protein was fused with GFP, and the subcellular localization vector was constructed by utilizing pCAMBIA1302. The transient expression analysis with onion cuticle system showed that the fused protein localized in cell nucleus, which was consistent with the observation in the root tip of stable hereditary transgenic plants obtained by Agrobacterium-mediated transformation system.
引文
[1]范昌发,孙春昀,郭骁才,张福耀,孙毅,牛天堂,贾敬芬.细胞质雄性不育高粱叶绿体ndhD基因的序列变异.遗传学报, 2002, 29(10): 907-914.
    [2]郝岗平,陈敏,杨清.植物线粒体与细胞质雄性不育研究进展.植物学通报, 2003, 20 (5): 549-557.
    [3]华志华,黄大年.转基因植物中外源基因的遗传学行为.植物学报, 1994, 41(1): 1-5.
    [4]黄红梅,杨永智,张治国,宛淑艳,郭蔼光,吴金霞,路铁刚.影响根癌农杆菌介导的高效水稻遗传转化的相关因素分析.西北农林科技大学学报(自然科学版), 2004, 32(9): 4-8.
    [5]李继耕.叶绿体遗传与细胞质雄性不育.中国农业科学, 1983, 1: 49-52.
    [6]凌杏元,周培疆,黄青阳,关和新,朱英国.红莲型水稻与细胞质雄性不育相关mtDNA片段的分离及序列测定.实验生物学报, 2000, 33: 151-155.
    [7]凌忠专.稻瘟病研究论文集.中国农业出版社, 2005, pp. 114-210
    [8]刘一农,李继耕.叶绿体DNA(ctDNA)与细胞质雄性不育性.遗传学报, 1983, 10(2): 114 - 122
    [9]刘忠松,官春云,陈社员.植物雄性不育机理的研究及应用.中国农业出版社. 2001, pp. 161– 191.
    [10]罗丽娟,施季森.一种DNA侧翼序列分离技术-TAIL-PCR.南京林业大学学报(自然科学版), 2003, 27(4): 87-90.
    [11]邱正明,邓晓辉,聂启军,朱凤娟.白菜胞质雄性不育系叶绿体DNA的SSR分析.湖北农业科学, 2008, 11(2): 134-137.
    [12]孙宗修,程式华.两系法杂交稻.杂交水稻育种一一从三系、二系到一系,北京:中国农业科技出版社, 1994,pp. 140-178.
    [13]涂珺,朱英国.红莲型水稻不育系与保持系线粒体DNA酶切分析.山西大学学报(自然科学版), 1997, 20(4): 420-424.
    [14]叶松青,储成才,曹守云,唐祚舜,王力,赵世民,田文忠.提高水稻转化效率几个主要因素的研究.遗传学报, 2001, 28 (10): 933-938.
    [15]易平,汪莉,孙清萍,朱英国.红莲型细胞质雄性不育水稻线粒体atp6基因转录本的编辑位点研究.生物化学与生物物理进展, 2002b, 29(5): 729-733.
    [16]易平,汪莉,孙清萍,朱英国.红莲型细胞质雄性不育水稻线粒体相关嵌合基因的发现.科学通报. 2002a, 47(2): 130-133.
    [17]易自立,王力,曹守云,李祥,周朴华,田文忠,储成才.提高籼稻基因枪转化频率的研究.高技术通讯, 2000, 11: 12-15.
    [18]应革,武威,何朝族. TAIL-PCR方法快速分离Xcc致病相关基因序列.生物工程学报, 2002, 18 (2): 182 -186.
    [19]翟文学,李晓兵,田文忠,周永力,潘学彪,曹守云,赵显峰,赵彬,章琦,朱立煌.由农杆菌介导将白叶枯病抗性基因Xa21转入我国的5个水稻品种.中国科学(C辑), 2000, 43(4): 361-368.
    [20] Akagi H, Nakamura A, Sawada R, Oka M, FujimuraT. Genetic diagnosis of cytoplasmic male sterile cybrid plants of rice. Theor Appl Genet, 1995, 90: 948-951.
    [21] Akagi H, Sakamoto M, Shinjyo C, Shimada H, Fujimura T. A unique sequence located downstream from the rice mitochondrial atp6 may cause male sterility. Curr Genet, 1994, 25: 52-58.
    [22] Arage A, Begu D, Litvak S. RNA editing in plants. Physiol Plant, 1994, 91: 543-550.
    [23] Bai J, Pennill LA, Ning J, Lee SW, Ramalingam J, Webb CR, Zhao B, Sun Q, Nelson JC, Leach JE, Hulbert SH. Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res, 2002, 12: 1871-1884.
    [24] Balk J, Leaver CJ. The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. Plant Cell, 2001, 13: 1803-1818.
    [25] Begu D, Graves PV, Domec C. RNA editing of wheat mitochondria ATP sythase subunit 9: Direct protein and cDNA sequencing. Plant Cell, 1990, 2: 1283-1290.
    [26] Bergman P, Edqvist J, Farbos I., Glimelius K. Male-sterile tobacco displays abnormal mitochondrial atpl transcript accumulation and reduced floral ATP/ADP ratio. Plant Mol Biol, 2000, 42: 531-544.
    [27] Bhadula SK, Sawhney VK. Protein analysis during the ontogeny of normal and malesterile stamenless-mutant stamens of tomato (Lycopersicon esculentum Mill.). Biochem Genet, 1991, 29(1-2): 29-41.
    [28] Bonhomme S, Budar F, Ferant M, Pelletier G. A 2.5 kb NcoI fragment of Ogura radish mitochondrial DNA is correlated with cytoplasmic male-sterility in Brassica cybrids. Curr Genet, 1991, 19: 121-127.
    [29] Bryan GT, Wu KS, Farrall L, Jia YL, Hershey HP, McAdams SA, Faulk KN, Donaldson GK, Tarchini R, Valent B. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell, 2000, 12: 2033-2045.
    [30] Budar F, Pelletier G. Male sterility in plants: occurrence, determinism, significance and use. Life Sci, 2001, 324: 543-550.
    [31] Budar F, Touzet P, De Paepe R. The nucleo-mitochondrial conflict in cytoplasmic male sterilities revisited. Genetica, 2003, 117(1): 3-16.
    [32] Cai D, Kleine M, Kifle S, Harloff H, Sandal NN, Marcker KA, Klein-Lankhorst RM, Saletijin EMJ, Lange W, Stiekema WJ, Wyss U, Grundler FMW, Jung C. Positional cloning of a gene for nematode resistance in sugar beet. Science, 1997, 275: 832-834.
    [33] Cannon SB, Zhu H, Baumgarten AM, Spangler A, May G, Cook DR, Yiung ND. Diversity, distribution, and ancient taxonomic relationships within the TIR and non-TIR NBS-LRR resistance gene subfamilies. J Mol Evol, 2002, 54: 548-562.
    [34] Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J, 2006, 46(5): 794-804.
    [35] Conley CA., Hanson MR. Tissue-specific protein expression in plant mitochondria. Plant Cell, 1994, 6: 85-91.
    [36] Cui X, Wise RP, Schnable PS. The Rf2 nuclear restorer gene of male-sterile T cytoplasm maize. Science, 1996, 272: 1334-1336.
    [37] Dai SM, Chen HH, Chang C, Riggs AD, Flanagan SD. Ligation-mediated PCR for quantitative in vivo footprinting. Nat Biotechnol, 2000, (10): 1108-1111.
    [38] Dangl JL, Jones JDG. Plant pathogens and integrated defence responses to infection.Nature, 2001, 411: 826-833.
    [39] Devon RS, Porteous DJ, Brookes AJ. Spilinkerettes improved vectorettes for greater efficiency in PCR walking. Nucleic Acids Res, 1995, 23: 1644-1645.
    [40] Dewey RE, Siedow JN, Timothy DH. A13-kilodalton maize mitochordrial protein in E. coli confer- sensitivity to Bipolaris maydis toxin. Science, 1988, 239: 293-295.
    [41] Dixon MS, Jones DA, Keddie JS, Thomas CM, Harrison K, Jones JD. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell, 1996, 84: 451-459.
    [42] Duroc Y, Gaillard C, Hiard S, Defrance MC, Pelletier G, Budar F. Biochemical and functional characterization of ORF138, a mitochondrial protein responsible for Ogura cytoplasmic male sterility in Brassiceae. Biochimie, 2005, 87(12): 1089-1100.
    [43] Duroc Y, Gaillard C, Hiard S, Tinchant C, Berthome R, Pelletier G, Budar F. Nuclear expression of a cytoplasmic male sterility gene modifies mitochondrial morphology in yeast and plant cells. Plant Sci, 2006, 170: 755-767.
    [44] Edqvist J, Bergman P. Nuclear identity specifies transcriptional initiation in plant mitochondria. Plant Mol Biol, 2002, 49(1): 59-68.
    [45] Ferreira Júnior JR, Ramos AS, Chambergo FS, Stambuk BU, Muschellack LK, Schumacher R, El-Dorry H. Functional expression of the maize mitochondrial URF13 down-regulates galactose-induced GAL1 gene expression in Saccharomyces cerevisiae. Biochem Biophys Res Commun, 2006, 339(1): 30-36.
    [46] Fomba SN, Taylor DR. Rice blast in West Africa: Its nature and control. In: Zeigler RS, Leong SA, Teng PS (eds), Rice Blast Disease, CAB International, Wallingford, UK, 1994, pp. 343-355.
    [47] Forde BG, Oliver RJ, Leaver CJ. Variation in mitochondrial translation products associated with male-sterile cytoplasms in maize. Proc Natl Acad Sci USA, 1978, 75: 3841 - 3845.
    [48] Gray MW, Covello PS. RNA editing in plant mitochondria and chloroplast. FASEB J, 1993, 7: 64-71.
    [49] Gutierres S, Sabar M, Lelandais C, Chetrit P, Diolez P, Degand H, Boutry M, VedelF, de Kouchkovsky Y, De Paepe R. Lack of mitochondrial and nuclear-encoded subunits of complex I and alteration of the respiratory chain in Nicotiana sylvestris mitochondrial deletion mutants. Proc Natl Acad Sci USA, 1997, 94(7): 3436-3441.
    [50] Hammond-Kosack KE, Jones JDG. Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48: 573-607.
    [51] Hanson MR, Bentolila S. Interaction of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell, 2004, 16(Suppl): 154-169.
    [52] Hanson MR. Plant mitochondrial mutation and male sterlity. Annu Rev Genet, 1991, 25: 461-486.
    [53] Hanson, MR, Sutton CA, Lu B. Plant organelle gene expression: altered by RNA editing, Trends Plant Sci, 1996, 1: 57-64.
    [54] He S, Abad AR, Gelvin SB, Mackenzie SA. A cytoplasmic male sterility-associated mitochordrical protein causes pollen disruption in transgenic tobacco. Proc Natl Acad Sci USA, 1996, 93: 11763-11768.
    [55] Helliwell C, Waterhouse P. Constructs and methods for high-throughput gene silencing in plants. Methods, 2003, 30: 289-295.
    [56] Hernould M, Suharsono S, Litvak S, Araya A, Mouras A. Male- sterility induction in transgenic tobacco plants with an unedited atp9 mitochondrial gene from wheat . Proc Natl Acad Sci USA, 1993, 90: 2370-2374.
    [57] Horn R, Hustedt JE, Horstmeyer A, Hahnen J, Zetsche K, Friedt W. The CMS-associated 16 kDa protein encoded by orfH522 in the PET1 cytoplasm is also present in other male- sterile cytoplasms of sunflower. Plant Mol Biol, 1996, 30(3): 523-538.
    [58] Howad W, Kempken F. Cell type-specific loss of atp6 RNA editing in cytoplasm male sterile Sorghum bicolor. Proc Natl Acad Sci USA, 1997, 94(20): 11090 - 11095.
    [59] Howad W,Tang HV, Pring DR , Kempken F. Nuclear genes from T-CMS maintainer lines are unable to maitain atp6 RNA deiting in any another cell-type in the Sorghum bicolor A3 cytoplasm. Curr Genet, 1999, 36: 62 - 68.
    [60] Huang J, Lee SH, Lin C, Medici R, Hack E, Myers AM. Expression in yeast of theT-URF13 protein from Texas male stenile maize mitochondria conders sensitivity to methomyl and to Texas-cytoplasm-specific fungal toxins. EMBO J, 1990, 92: 339-347.
    [61] Ingvarsson PK, Taylor DR. Genealogical evidence for epidemics of selfish genes. Proc Natl Acad Sci USA, 2002, 99 (17): 11265-11269.
    [62] Iwabuchi M, Kyozuka J, Shimamoto K. Processing followed by complete editing of an altered motochondrial apt6 RNA restores fertility of cytoplasmic male sterile rice. EMBO J, 1993, 12: 1437-1446.
    [63] Iyer AS, McCouch SR. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Mol Plant Microbe Interact, 2004, 17: 1348-1354.
    [64] Johal GS, Briggs SP. Reductase activity encoded by the Hm1 disease resistance gene in maize. Science, 1992, 258: 985-987.
    [65] Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, Jones JD. Isolation of the tomato Cf-9 gene for resistance to Claosporium fulvum by transposon tagging. Science, 1994, 266: 789-793.
    [66] Kadowaki K, Suzuki T, Kazama S. A Chimeric gene containing the 5’portion of atp6 is associated with cytoplasm is male sterility of rice. Mol Gen Genet, 1990, 224: 10-16.
    [67] Kadowaki K,Harada K. Differential organization of mitochondrial genes in rice with normal and male sterile cytoplasm. Jpn J Breed, 1989, 30: 179-186.
    [68] Kaul, MLH. Male Sterility in Higher Plants. (Berlin: Springer). 1988.
    [69] Kiyosawa S. Genetics of blast resistance. Rice Breeding, 1972, pp. 203-225.
    [70] K?hler RH, Horn R, L?ssl A, Zetsche K. Cytoplasmic male sterility in sunflower is correlated with the co-transcription of a new open reading frame with the atpA gene. Mol Gen Genet, 1991, 227(3): 369-376.
    [71] Korth KL, Levings CS III. Baculovirus expression of the maize mitochodrial protein URF13 confers insecticidal activity in cell culture and larvae. Pro Natl Acad Sci USA, 1993, 90: 3388-3392.
    [72] Krishnasamy S, Makaroff CA. Characterization of the radish mitochondrial orfB locus: possible relationship with male sterility in Ogura radish. Curr Genet, 1993,24(1-2): 156-163.
    [73] Lagerstrom M, Parik J, Malmgren H, Stewart J, Pettersson U, Landegren U. Capture PCR: efficient amplification of DNA fragments adjacent to a known sequence in human and YAC DNA. PCR Methods Appl, 1991, 1: 111-119.
    [74] Levings CS III, Pring DR. Restriction endonuclease analysis of mitochondrial DNA from normal and Texas cytoplasmic male-sterile maize. Science, 1976, 193: 158-160.
    [75] Li SQ, Wan CX, Kong J, Zhang ZJ, Li YS, Zhu YG. Programmed cell death during microgenesis in Honglian CMS line of rice is correlated with oxidative stress in mitochondria. Funct Plant Biol, 2004, 31: 369-376.
    [76] Lin F, Chen S, Que Z, Wang L, Liu X, Pan Q. The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics, 2007, 177(3): 1871-1880.
    [77] Liu F, Cui XC, Hrner HT, Weiner H, Schnable PS. Mitochondrial Aldehyde dehydrogenase activity is required for male fertility in maize. Plant Cell, 2001, 3: 1063-1078.
    [78] Liu X, Lin F, Wang L, Pan Q. The in silico map-based cloning of Pi36, a rice coiled-coil nucleotide-binding site leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics, 2007, 176(4): 2541-2549.
    [79] Liu XQ, Wang L, Chen S, Lin F, Pan QH. Genetic and physical mapping of Pi36(t), a novel rice blast resistance gene located on rice chromosome 8. Mol Genet Genomics, 2005, 274(4): 394-401.
    [80] Liu XQ, Xu X, Wang CT, Li YS, Zhu YG. A mitochondrial nucleotide sequence is specific for gametophytic sterility of Hong-lian cytoplasmic male-sterile lines in indica (Oryza sativa L.) Abstracts from Plant and Animal Genome XI, January 11–15, 2003, p 161, San Diego, USA
    [81] Liu YG, Mitsukawa N, Oosumi T, Whittier RF. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J, 1995b, 8 (3): 457 - 463.
    [82] Liu YG, Whittier RF. Thermal asymmetric interlaced PCR: automatableamplification and sequencing of insert end fragment from P1 and YAC clones for chromosome walking. Genomics, 1995a, 25: 674 - 681.
    [83] Mackenzie S, McIntosh L. Higher plant mitochondria. Plant Cell, 1999, 11(4): 571-586.
    [84] Marienfeld J, Unseld M, Brennicke A. The mitochondrial genome of Arabidopsis is composed of both native and immigrant information. Trends Plant Sci, 1999, 4(12): 495-502.
    [85] Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science, 1993, 262: 1432-1436.
    [86] Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J, 1999, 20: 317-332.
    [87] Meyers BC, Morgante M, Michelmore RW. TIR-X and TIR-NBS proteins: Two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidosis and other plant genomes. Plant J, 2002, 32: 77-92.
    [88] Michael MR, Elise D, Chaz A, Virginia W. Isolation of RNA and DNA from rice seedling mitochondria. Rice Genet Newsl, 1988, 5: 151-154.
    [89] Mohr S, Kappert ES, Odenbach W, Oettler G, Kuck U. Mitochondrial DNA of cytoplasm male-sterile Triticum timopheevi: rearrangement of upstream sequences of the atp6 and orf25 genes. Theor Appl Genet, 1993, 86: 259-268.
    [90] Moneger F, Smart CJ, Leaver CJ. Nuclear restoration of cytoplasmic male sterility in sunflower is associated with the tissue-specific regulation of a novel mitochondrial gene. EMBO J, 1994, 13(1): 8-17.
    [91] Mueller PR, Wold B. In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science, 1989, 246(4931): 780-786.
    [92] Nakai S, Noda D, Kondo M, Terachi T. High-level expression of a mitochondrial orf522 gene from the male-sterile sun-flower is lethal to E. coli. Breeding Sci, 1995, 45: 233-236.
    [93] Nivison HT, Hanson MR. Identification of a mitochondrial protein associated with cytoplasmic male sterility in petunia. Plant Cell, 1989, 1(11): 1121-30.
    [94] Nivison HT, Sutton CA, Wilson RK, Hanson MR. Sequencing, processing, and localization of the petunia CMS-associated mitochondrial protein. Plant J, 1994 5(5): 613-23.
    [95] Nthangeni MB, Ramagoma F, Tlou MG, Litthauer D. Development of a versatile cassette for directional genome walking using cassette ligation-mediated PCR and its application in the cloning of complete lipolytic genes from Bacillus species. J. Microb Meth, 2005, 61: 225-234.
    [96] Ochman H, Gerber AS, Hartl DL. Genetic applications of an inverse polymerase chain reaction. Genetics, 1988, 120(3): 621-3.
    [97] Ou SH. Rice Diseases, 2nd edn. Commonwealth Mycological Institute, Kew Surrey, UK, 1985, 109-201.
    [98] Palmer JD, Adams KL, Cho Y, Parkinson CL, Qiu YL, Song K. Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proc Natl Acad Sci USA, 2000, 97(13): 6960-6.
    [99] Pan Q, Wendel J, Fluhr R. Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J Mol Evol, 2000, 50: 203-213.
    [100] Pan QH, Hu Z, Tanisaka T, Wang L. Fine mapping of the blast resistance gene Pi15, linked to Pii, on rice chromosome 9. Acta Bot Sin, 2003, 45: 871-877.
    [101] Pfeifer GP, Drouin R, Riggs AD, Holmquist GP. In vivo mapping of a DNA adduct at nucleotide resolution: detection of pyrimidine (6-4) pyrimidone photoproducts by ligation-mediated polymerase chain reaction. Proc Natl Acad Sci USA, 1991, 88(4): 1374-1378.
    [102] Pfeifer GP, Steigerwald SD, Mueller PR, Wold B, Riggs AD. Genomic sequencing and methylation analysis by ligation mediated PCR. Science, 1989, 246(4931): 810-813.
    [103] Picardi E, Quagliariello C. Is plant mitochondrial RNA editing a source of phylogenetic incongruence? An answer from in silico and in vivo data sets. BMC Bioinformatics, 2008, 9 Suppl 2: S14.
    [104] Pring DR, Tang HV, Howad W, Kempken F. A unique two-gene gametophytic male sterility system in sorghum involving a possible role of RNA editing in fertility restoration. J Hered, 1999, 90(3): 386-393.
    [105] Pruitt KD, Hanson MR. Transcription of Petunia mitochmdrial CMS-associated pcf locus in sterile and fertility- restored line. Mol Gen Genet, 1991, 227(3): 348-355.
    [106] Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang GL. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 2006, 172: 1901–1914.
    [107] Rhoads DM, Kaspi CI, Levings CS III. N’-Dicyclohexyl-carbodimide cross-linking suggests a central core of heklices II in oligomers of URF13, the pore-forming T-toxin receptor of cms-Tmaize mitochondria. Proc Natl Acad Sci USA, 1994, 91: 8253-8257.
    [108] Rhoads DM, Levings CS III, Siedow JN. URF13, a ligand-gated, pore-forming receptor for T-toxin in the inner membrane of cms-T mitochondria. J Bioenerg Biomembr, 1995, 27: 437-445.
    [109] Richly E, Kurth J, Leister D. Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Mol Biol Evol, 2002, 19: 76-84.
    [110] Riley J, Butler R, Ogilvie D, Finniear R, Jenner D, Powell S. A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucleic Acids Res, 1990, 18: 2887-2890.
    [111] Rodriguez H, Drouin R, Holmquist GP, O'Connor TR, Boiteux S, Laval J, Doroshow JH, Akman SA. Mapping of copper/hydrogen peroxide-induced DNA damage at nucleotide resolution in human genomic DNA by ligation-mediated polymerase chain reaction. J Biol Chem, 1995, 270(29): 17633-40.
    [112] Rosenthal A, Jones DS. Genomic walking and sequencing by oligo-cassette mediated polymerase chain reaction. Nucleic Acids Res, 1990, 18: 3095-3096.
    [113] Sabar M, Gagliardi D, Balk J, Leaver CJ. ORFB is a subunit of F1F0-ATP synthase: Insight into the basis of cytoplasmic male sterility in sunflower. EMBO Rep, 2003, 4: 1-6.
    [114] Sandhu AP, Abdelnoor RV, Mackenzie SA. Transgenic induction of mitochondrial rearrangements for cytoplasmic male sterility in crop plants. Proc Natl Acad Sci USA, 2007, 104(6): 1766-70.
    [115] Sane AP, Nath P, Sane PV. Difference in kinetics of F1-ATPases of cytoplasmic male sterile, maintainer and fetility restored lines of sorghum. Plant Sci, 1997, 130: 19-25
    [116] Sarria R, Lyznik A, Vallejos CE, Mackenzie SA. A cytoplasmic male sterility-associated mitochondrial peptide in common bean is post-translationally regulated. Plant Cell, 1998, 10(7): 1217-1228.
    [117] Schnable PS, Wise RP. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci, 1998, 3 (5): 175 - 180.
    [118] Senda M. Genomic organization and sequence analysis of the cytochrome oxidase subunitⅡgene from normal and male sterile mitochondrial in sugar beat. Current Genetics, 1991, 19(3): 175-181.
    [119] Shen M, Lin JY. The economic impact of rice blast disease in China. In: Zeigler RS, Leong SA, Teng PS (eds). Rice Blast Disease, CAB International, Wallingford, UK, 1994, pp 321-331.
    [120] Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA. An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res, 1995, 23: 1087-1088.
    [121] Singh M, Brown GG. Characterization of expression of a mitochondrial gene region associated with Brassica“Polima"CMS: developmental influences. Curr Genet, 1993, 24: 316-322.
    [122] Song J, Hedgcoth C. A chimeric gene (orf256) is expressed as protein only in cytoplasmic male-sterile lines of wheat. Plant Mol Biol, 1994a, 26: 535 - 539.
    [123] Song J, Hedgcoth C. Influence of nuclear background on transcription of a chimetric gene ( orf256) and coxI in fertile and cytoplasmic male sterile wheats. Genome, 1994b, 37: 203-209.
    [124] Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Gardner J, Wang B, Holsten T, Zhai WX, Zhu LH, Fauquet C, Ronald PC. A receptor kinase-like protein encodedby the rice disease resistance gene, Xa21. Science, 1995, 270: 1804-1806.
    [125] Stahl R, Sun S, L'Homme Y, Ketela T, Brown GG. RNA editing of transcripts of a chimeric mitochondrial gene associated with cytoplasmic male-sterility in Brassica. Nucleic Acids Res, 1994, 22(11): 2109-2113.
    [126] Steigerwald SD, Pfeifer GP, Riggs AD. Ligation-mediated PCR improves the sensitivity of methylation analysis by restriction enzymes and detection of specific DNA strand breaks. Nucleic Acids Res, 1990, 18(6): 1435-1439.
    [127] Strauss EC, Orkin SH. Guanine-adenine ligation-mediated polymerase chain reaction in vivo footprinting. Method Enzymol, 1999, 304: 572-584.
    [128] Takenaka M, Verbitskiy D, van der Merwe JA, Zehrmann A, Brennicke A. The process of RNA editing in plant mitochondria. Mitochondrion, 2008, 8(1): 35-46.
    [129] Terauchi R, Kahl G. Rapid isolation of promoter sequences by TAIL-PCR: the 5’- flanking regions of Pal and Pgi genes from Yams(Dioscorea). Mol Gen Genet, 2000, 263: 554-560.
    [130] Thomas CM, Jones DA, Parniske M, Harrison K, Balint-Kurti PJ, Hatzixanthis K, Jones JDG. Characterization of the tomato Cf-4 gene for resistance to Cladosorium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell, 1997, 9: 2209-2224.
    [131] Traut TW. The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide-binding sites. Eur J Biochem, 1994, 229: 9-19.
    [132] Triglia T, Peterson MG, Kemp DJ. A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res, 1988, 16(16): 8186.
    [133] Wan C, Li S, Wen Li, Kong J, Wang Kun, Zhu Yingguo. Damage of oxidative stress on mitochondria during microspores development in Honglian CMS line of rice. Plant Cell Rep, 2007, 26: 373-382.
    [134] Wang Z, Zou Y, Zhang Q, Li X, Chen L, Wu H, Su D, Guo J,Chen Y, Luo D, Long Y, Zhong Y, Liu YG. Cytoplasmic male mterility of rice with Boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes viadistinct modes of mRNA silencing. Plant Cell, 2006, 18: 676-687.
    [135] Wang ZX, Yano M, Yamanouchi U, Lwamoto M, Monna L, Hayasaka H, Katayse Y, Sasaki T. The Pib gene for rice blast resistance belongs to the nucleotide bingding and leucinerich repeat class of plant disease resistance genes. Plant J, 1999, 19: 55-64.
    [136] Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG., Waterhouse PM. Construct design for efficient, effective and high throughput gene silencing in plants. Plant J, 2001, 27: 581-590.
    [137] Wise RP, Pring DR, Gengenbach BG. Mutation to male fertility and toxin insensitivity in Texas (T)-cytoplasm maize is associated with a frameshift in a mitochondrial open reading frame. Proc Natl Acad Sci USA, 1987, 84(9): 2858-2862.
    [138] Xiao SY, Ellwood S, Calis O, Patrick E, Li TX, Coleman M, Turner JG. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science, 2001, 291: 118-120.
    [139] Xu X, Kawasaki S, Fujimura T, Wang CT. A rapid and high-throughput isolation of genomic DNA in plants. Plant Molocular Biology Reporter, 2005, 23 (3): 291-295
    [140] Xue Y, Collin S, Davies DR, Thomas CM. Differential screening of mitochondrial cDNA libraries from male -fertile and cytoplasmic male-sterile sugar-beet reveals genome rearragemets at atp6 and atpA loci. Plant Mol Boil, 1994, 25(1): 91-103.
    [141] Yan YX, An ChC, Li L, Gu JY, Tan GH, Chen ZL. T-linker-specific ligation PCR (T-linker PCR): an advanced PCR technique for chromosome walking or for isolation of tagged DNA ends. Nucleic Acids Res, 2003, 31(12): e68.
    [142] Young EG, Hanson MR, Dierks PM. Sequence and transcription analysis of the Petunia mitochordrial gene for the ATP synthesis proteolipid subunit . Nuclei Acids Res, 1986, 14: 7995-8006.
    [143] Yui R, Iketani S, Mikami T, Kubo T. Antisense inhibition of mitochondrial pyruvate dehydrogenase E1[alpha] subunit in anther tapetum causes male sterility. Plant J, 2003, 34: 57-66.
    [144] Zeigler RS, Leong SA, Teng PS. Rice blast disease. CAB International, Wallingford, United Kingdom, 1994, pp. 16-26.
    [145] Zhang H, Li S, Yi P, Wan C, Chen Z, Zhu Y. A Honglian CMS line of rice displays aberrant F0 of F0F1-ATPase. Plant Cell Rep, 2007, 26: 1065-1071.
    [146] Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizzi M, Wang GL. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant Microbe Interact, 2006, 19(11): 1216-1228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700