用户名: 密码: 验证码:
烟草核基质结合序列TM6在转基因植物中的功能鉴定及机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核基质结合序列(Matrix Attachment Region,MAR)是真核生物基因组上一段富含A/T,且能够将DNA或染色质附着到核基质上的一段DNA序列。当染色体周围富集大量置换蛋白时,这些置换蛋白能特异识别并结合到MAR序列区域并替换掉H1组蛋白,使MAR区域的染色体形成一种易于调节因子及修饰因子接近的开放结构,因而MAR序列的出现使染色质上核小体处于松散状态,从而影响邻近基因的表达。根据研究推断,MAR在维持和/或修饰DNA或染色质结构及调控相关基因表达中发挥重要的作用。
     TM6是本实验室从烟草核基质中分离得到的一段具有MAR结构特征的DNA序列。为了验证TM6在植物体内的功能,我们构建不同的植物表达载体转化烟草,对转基因烟草中外源基因的表达情况进行了分析检测。为了进一步研究TM6的作用机理,本实验分析了TM6周围的染色体区域活跃程度及TM6的结合蛋白与TM6相互作用关系,主要实验结果如下:
     1.在双子叶植物烟草中,双端TM6序列均能显著提高表达盒中报告基因gusA的表达。虽然细胞类型对转基因表达有一定的影响,但并不影响TM6的调控功能。本实验将P35S,PPNZIP,PCOR及Pmini35S特异型启动子引入MAR研究,结果显示,TM6的作用依赖于启动子的类型,但TM6并不能改变启动子的作用模式。本实验结果为以后在转基因植物特定发育时期或特定器官中提高外源基因的表达提供了实验依据。
     2.在转化烟草的过程中发现,连有TM6的载体其转化效率高于不连TM6的载体。通过对转基因烟草中卡那抗性基因的表达分析发现,抗性基因的表达量的高低与转化频率存在着直接的关系,因此推测TM6通过增加抗性基因的表达来提高了转化效率,同时这种转化效率的提高使抗性芽发生提前,数量增多,并且抗性苗的生长势也明显高于对照。
     3.对TM6的缺失分析表明,TM6II(551-1193bp)区域是TM6的核心功能区,占TM6功能的79.1%。TM6II序列上的拓扑异构酶Ⅱ结合位点、MRS区域及AT?box区域在调控基因表达上起到了协同作用。推测TM6通过序列上的拓扑异构酶Ⅱ结合位点与植物体内的拓扑异构酶Ⅱ相结合,从而促进T?DNA插入位点附近的DNA解旋,进而一些外源的调控元件识别并结合到TM6上的AT富含区及ARS区,同时加快外源基因的复制和转录。
     4.烟草TM6序列能够显著提高侧翼启动子区对核酸酶的敏感性。在微球菌核酸酶(MNase)处理后的转TM6的转基因烟草细胞核内,TM6显著降低了35S和NOS启动子区域的特异扩增水平,说明TM6能够使邻近启动子区域DNA结构松散,便于外源转录因子的结合从而开启外源基因表达。
     5.从烟草cDNA文库中分离到两个TM6序列的潜在结合蛋白NtMBP1和NtHMGB,凝胶阻滞(EMSA)分析表明这些蛋白能够与TM6片段体外结合。在竞争性EMSA实验中,蛋白NtDBP1和NtHMGB分别特异结合到TM6II的两个不同区域TM6II-I(761-870 bp)和TM6II?II(934-1013 bp)。同时多种侯选靶位点竞争结合实验验证:NtHMGB能特异结合到TM6II上MRS区域,而NtDBP1蛋白在TM6II上可能有多个潜在的核基质结合位点,也间接说明TM6作用机理的复杂性。
     6.根据以上的实验结论,对TM6作用模型进行推测:TM6周围的染色体区域与外源染色质调控蛋白(拓扑异构酶II等)识别并结合后,解开TM6染色体区域的高级结构从而使染色体敏感性增强。同时TM6结合蛋白(NtMBP1和NtHMGB等)将TM6II上特定位点的DNA双链释放,便于外源调控因子(RNA聚合酶和甲基化酶等)的结合从而增加外源基因表达。
Matrix Attachment Regions (MARs) are the DNA sequences with A/T rich nucleotides that may be involved in anchoring DNA/chromatin to the nuclear matrix. The displacement proteins specifically bind to MAR regions in chromatin to facilitate the mediated displacement of H1 histones, and the enrichment of those proteins might open the chromatin structure of TM6 regions. MAR plays an important role in the maintance and modification of the DNA/ chromatin structure and the regulation of the gene expression.
     TM6 is a matrix attachment region isolated from the genomic DNA of tobacco, which can strongly bind to the nuclear matrix and significantly enhance the transgene expression in transgenic plants of tobacco. To gain insight into the regulatory mechanism of TM6 by which transcription enhancement of transgene occurs, we give the detailed analysis of the expression variation of flanking transgenes drived by different promoters in different expression systems. We present the main results as follows:
     1. TM6 is a novel element to increase the transgene expression levels in both dicotyledons (tobacco) and monocotyledons (arabidopsis). The difference of the cell development in plants and calli does not influnce the function of TM6. Four different promoters (P35S, PPNZIP, PCOR and Pmini35S) have been used to test the influence of MAR on transgenic plants, and the results show that TM6 does not change the gene expression pattern. The result, that MAR increase gene expression in desired tissues with tissue?specific promoters, is a new way to enhance the transgene expression.
     2. Assays of transgenic plants show that the expression level of nptⅡ, the quantitative GUS activity and the transformation efficiency are quite consistent, TM6 transgenic plants have higher transformation efficiency than those without TM6. We presume that TM6 increases the transgene efficiency through the increase expression levels of nptⅡ, and the TM6 transgenic plants show the stronger seed germination.
     3. Deletion analysis shows that TM6II (551-1193 bp) plays 79.1% role of the whole TM6 sequence. The effect of the site?specific deletion of one topoisomerase II binding site, one AT?box and one MRS element in TM6II indicate that they perform the vast majority of the enhancement mediated from TM6. There is some functional redundancy in the contribution to open the TM6 chromatin structure and recruit transcription factors, increasing the genes transcription.
     4.According to the micrococcal nuclease accessibility analysis, the CaMV 35S promoter adjacent to the TM6 is degraded more rapidly than the control without MAR. Considering the increasing accessibility to micrococcal nuclease would result in the decrease of PCR products for the regions of interest, the difference reveals that TM6 plays a role in nucleosome remodeling of the promoter region. The deletion of the four sites determines the effect of TM6 on the micrococcal nuclease accessibility.
     5. Two potential genes encoding TM6 sequence?binding proteins, NtMBP1 and NtHMGB, are screened from the cDNA pool by yeast one?hybrid method. The two proteins show high affinity with two specific fragments, TM6II?I (761 to 870 bp) and TM6II?II (934 to 1013 bp), by electrophoresis mobility shift assay (EMSA). NtHMGB can specifically bind to MRS element of TM6, and NtMBP1 might associate with other elements on TM6. These potential multiple targets implicate the functional complexity of the TM6.
     6. Proposed models for the chromatin regulation of MARs on gene expression. We persume that some DNA duplex?destabilized enzymes and chromatin regulated factors, such as the helicases and topoisomerases, bind to specific elements in TM6 loosening the TM6 chromatin. The NtMBP1 and NtHMGB proteins act as the architectural factors to displace the H1 histones to decrease compactness of the chromatin fiber at the TM6 regions. Meanwhile the transcription factors (such as FACTs) bind to the opening chromatin regions to increase the transcription.
引文
李旭刚,朱祯,徐军望,吴茜,徐鸿林. (2001)豌豆核基质结合区的分离及其在转基因烟草中的功能分析。中国科学C辑3:230-237
    李旭刚,陈松彪,徐军望,刘翔,朱祯.(2002)玉米MAR序列的分离及其在转基因烟草中的功能研究。自然科学进展5:491-496
    张可伟,王健美,杨国栋,郭兴启,温孚江,崔德才,郑成超.(2002)强MAR的分离及其体内外功能鉴定。科学通报47:1527-1577
    Abranches, R., Shultz, R.W., Thompson, W.F., and Allen, G.C. (2005). Matrix attachment regions and regulated transcription increase and stabilize transgene expression. Plant Biotechnology Journal 3, 535-543.
    Adachi, Y., Kas, E., and Laemmli, U.K. (1989). Preferential, cooperative binding of DNA topoisomerase II to scaffold-associated regions. The European Molecular Biology Organization Journal 8, 3997-4006.
    Allen, G.C., Spiker, S., and Thompson, W.F. (2000). Use of matrix attachment regions (MARs) to minimize transgene silencing. Plant Molecular Biology 43, 361-376.
    Allen, G.C., Hall, G.E., Jr., Childs, L.C., Weissinger, A.K., Spiker, S., and Thompson, W.F. (1993). Scaffold attachment regions increase reporter gene expression in stably transformed plant cells. The Plant Cell 5, 603-613.
    Alvarez, F.J., Fyffe, R.E., Dewey, D.E., Haftel, V.K., and Cope, T.C. (2000a). Factors regulating AMPA-type glutamate receptor subunit changes induced by sciatic nerve injury in rats. The Journal of Comparative Neurology 426, 229-242.
    Alvarez, J.D., Yasui, D.H., Niida, H., Joh, T., Loh, D.Y., and Kohwi-Shigematsu, T. (2000b). The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes & Development 14, 521-535.
    Amati, B., and Gasser, S.M. (1990). Drosophila scaffold-attached regions bind nuclear scaffolds and can function as ARS elements in both budding and fission yeasts. Molecular and Cellular Biology 10, 5442-5454.
    Amati, B.B., and Gasser, S.M. (1988). Chromosomal ARS and CEN elements bind specifically to the yeast nuclear scaffold. Cell 54, 967-978.
    Assaad, F.F., Tucker, K.L., and Signer, E.R. (1993). Epigenetic repeat-induced genesilencing (RIGS) in Arabidopsis. Plant Molecular Biology 22, 1067-1085.
    Avramova, Z., and Bennetzen, J.L. (1993). Isolation of matrices from maize leaf nuclei: identification of a matrix-binding site adjacent to the Adh1 gene. Plant Molecular Biology 22, 1135-1143.
    Avramova, Z., SanMiguel, P., Georgieva, E., and Bennetzen, J.L. (1995). Matrix attachment regions and transcribed sequences within a long chromosomal continuum containing maize Adh1. The Plant Cell 7, 1667-1680.
    Avramova, Z., Tikhonov, A., Chen, M., and Bennetzen, J.L. (1998). Matrix attachment regions and structural colinearity in the genomes of two grass species. Nucleic Acids Research 26, 761-767.
    Balasubramanian, S., Kannan, T.R., and Baseman, J.B. (2008). The surface-exposed carboxyl region of Mycoplasma pneumoniae elongation factor Tu interacts with fibronectin. Infection and Immunity 76, 3116-3123.
    Belshaw, N., and Archer, D. (1997). Trichoderma reesei sequences that bind to the nuclear matrix enhance transformation frequency. Molecular Gene Genetic 256, 18-27.
    Belshaw, R., Watson, J., Katzourakis, A., Howe, A., Woolven-Allen, J., Burt, A., and Tristem, M. (2007). Rate of recombinational deletion among human endogenous retroviruses. Journal of Virology 81, 9437-9442.
    Berezney, R., and Coffey, D.S. (1974). Identification of a nuclear protein matrix. Biochemical and Biophysical Research Communications 60, 1410-1417.
    Bode, J., Kohwi, Y., Dickinson, L., Joh, T., Klehr, D., Mielke, C., and Kohwi-Shigematsu, T. (1992). Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science 255, 195-197.
    Bonifer, C., Hecht, A., Saueressig, H., Winter, D.M., and Sippel, A.E. (1991). Dynamic chromatin: the regulatory domain organization of eukaryotic gene loci. Journal Cell Biochemistry 47, 99-108.
    Bonifer, C., Yannoutsos, N., Kruger, G., Grosveld, F., and Sippel, A.E. (1994). Dissection of the locus control function located on the chicken lysozyme gene domain in transgenic mice. Nucleic Acids Research 22, 4202-4210.
    Boulikas, T. (1995). Chromatin domains and prediction of MAR sequences. International Review of Cytology 162A, 279-388.
    Breyne, P., van Montagu, M., Depicker, N., and Gheysen, G. (1992). Characterization of aplant scaffold attachment region in a DNA fragment that normalizes transgene expression in tobacco. The Plant Cell 4, 463-471.
    Brouwer, C., Bruce, W., Maddock, S., Avramova, Z., and Bowen, B. (2002). Suppression of transgene silencing by matrix attachment regions in maize: a dual role for the maize 5' ADH1 matrix attachment region. The Plant Cell 14, 2251-2264.
    Bustin, M., and Reeves, R. (1996). High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. Nucleic Acid Research 54, 35-100.
    Catez, F., Yang, H., Tracey, K.J., Reeves, R., Misteli, T., and Bustin, M. (2004). Network of dynamic interactions between histone H1 and high-mobility-group proteins in chromatin. Molecular and Cellular Biology 24, 4321-4328.
    Cossons, N., Nielsen, T.O., Dini, C., Tomilin, N., Young, D.B., Riabowol, K.T., Rattner, J.B., Johnston, R.N., Zannis-Hadjopoulos, M., and Price, G.B. (1997). Circular YAC vectors containing a small mammalian origin sequence can associate with the nuclear matrix. Journal of Cellular Biochemistry 67, 439-450.
    Croft, J.A., Bridger, J.M., Boyle, S., Perry, P., Teague, P., and Bickmore, W.A. (1999). Differences in the localization and morphology of chromosomes in the human nucleus. The Journal of Cell Biology 145, 1119-1131.
    Das, A.T., Luderus, M.E., and Lamers, W.H. (1993). Identification and analysis of a matrix-attachment region 5' of the rat glutamate-dehydrogenase-encoding gene. European journal of biochemistry / FEBS J 215, 777-785.
    de Belle, I., Cai, S., and Kohwi-Shigematsu, T. (1998). The genomic sequences bound to special AT-rich sequence-binding protein 1 (SATB1) in vivo in Jurkat T cells are tightly associated with the nuclear matrix at the bases of the chromatin loops. The Journal of Cell Biology 141, 335-348.
    Dickinson, L.A., Joh, T., Kohwi, Y., and Kohwi-Shigematsu, T. (1992). A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition. Cell 70, 631-645.
    Dietz-Pfeilstetter, A., Arndt, N., Kay, V., and Bode, J. (2003). Molecular structure and regulatory potential of a T-DNA integration site in petunia. Transgenic Research 12, 83-99.
    Fackelmayer, F.O., and Richter, A. (1994). Purification of two isoforms of hnRNP-U and characterization of their nucleic acid binding activity. Biochemistry 33, 10416-10422.
    Finnegan, E.J., Genger, R.K., Peacock, W.J., and Dennis, E.S. (1998). DNA Methylation in Plants. Annual Review of Plant Physiology and Plant Molecular Biology 49, 223-247.
    Fishel, B.R., Sperry, A.O., and Garrard, W.T. (1993). Yeast calmodulin and a conserved nuclear protein participate in the in vivo binding of a matrix association region. Proceedings of the National Academy of Sciences of the United States of America 90, 5623-5627.
    Forrester, W.C., Fernandez, L.A., and Grosschedl, R. (1999). Nuclear matrix attachment regions antagonize methylation-dependent repression of long-range enhancer-promoter interactions. Genes & Development 13, 3003-3014.
    Fujiki, Y., Yoshimoto, K., and Ohsumi, Y. (2007). An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiology 143, 1132-1139.
    Fujimoto, S., Matsunaga, S., Yonemura, M., Uchiyama, S., Azuma, T., and Fukui, K. (2004). Identification of a novel plant MAR DNA binding protein localized on chromosomal surfaces. Plant Molecular Biology 56, 225-239.
    Fujiwara, S., Matsuda, N., Sato, T., Sonobe, S., and Maeshima, M. (2002). Molecular properties of a matrix attachment region-binding protein located in the nucleoli of tobacco cells. Plant & Cell Physiology 43, 1558-1567.
    Fukuda, Y., and Nishikawa, S. (2003). Matrix attachment regions enhance transcription of a downstream transgene and the accessibility of its promoter region to micrococcal nuclease. Plant Molecular Biology 51, 665-675.
    Gasser, S.M., and Laemmli, U.K. (1986). Cohabitation of scaffold binding regions with upstream/enhancer elements of three developmentally regulated genes of D. melanogaster. Cell 46, 521-530.
    Gerace, L., and Blobel, G. (1980). The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell 19, 277-287.
    Gerdes, M.G., Carter, K.C., Moen, P.T., Jr., and Lawrence, J.B. (1994). Dynamic changes in the higher-level chromatin organization of specific sequences revealed by in situ hybridization to nuclear halos. The Journal of Cell Biology 126, 289-304.
    Gheysen, G., Montagu, M.V., and Zambryski, P. (1987). Integration of Agrobacterium tumefaciens transfer DNA (T-DNA) involves rearrangements of target plant DNA sequences. Proceedings of the National Academy of Sciences of the United States of America 84, 6169-6173.
    Gheysen, G., Herman, L., Breyne, P., Gielen, J., Van Montagu, M., and Depicker, A. (1990). Cloning and sequence analysis of truncated T-DNA inserts from Nicotiana tabacum. Gene 94, 155-163.
    Gindullis, F., Peffer, N.J., and Meier, I. (1999). MAF1, a novel plant protein interacting with matrix attachment region binding protein MFP1, is located at the nuclear envelope. The Plant Cell 11, 1755-1768.
    Gohring, F., and Fackelmayer, F.O. (1997). The scaffold/matrix attachment region binding protein hnRNP-U (SAF-A) is directly bound to chromosomal DNA in vivo: a chemical cross-linking study. Biochemistry 36, 8276-8283.
    Hall, G., Jr., Allen, G.C., Loer, D.S., Thompson, W.F., and Spiker, S. (1991). Nuclear scaffolds and scaffold-attachment regions in higher plants. Proceedings of the National Academy of Sciences of the United States of America 88, 9320-9324.
    Han K H. (1997). Matrix attachment regions (MARs) enhance transformation frequency and transgene expression in polar. Transgenic Research 6, 415~420.
    Haque, N.S., Buchberg, A.M., and Khalili, K. (1994). Isolation and characterization of MRF-1, a brain-derived DNA-binding protein with a capacity to regulate expression of myelin basic protein gene. Journal Biology Chemistry 269, 31149-31156.
    Hassan, A.B., Errington, R.J., White, N.S., Jackson, D.A., and Cook, P.R. (1994). Replication and transcription sites are colocalized in human cells. Journal of Cell Science 107 ( Pt 2), 425-434.
    Heng, H.H., Krawetz, S.A., Lu, W., Bremer, S., Liu, G., and Ye, C.J. (2001). Re-defining the chromatin loop domain. Cytogenet Cell Genetic 93, 155-161.
    Heng, H.H., Goetze, S., Ye, C.J., Liu, G., Stevens, J.B., Bremer, S.W., Wykes, S.M., Bode, J., and Krawetz, S.A. (2004). Chromatin loops are selectively anchored using scaffold/matrix-attachment regions. Journal of Cell Science 117, 999-1008.
    Henikoff, S. (1994). A reconsideration of the mechanism of position effect. Genetics 138, 1-5.
    Hino, S., Fan, J., Taguwa, S., Akasaka, K., and Matsuoka, M. (2004). Sea urchin insulator protects lentiviral vector from silencing by maintaining active chromatin structure. Gene Therapy 11, 819-828.
    Hsiao, C., and Carbon, J. (1979). High frequency transformation of yeast by plasmids containing the cloned yeast ARG4 gene. Proceedings of the National Academy of Sciences of the United States of America 76, 3829-3833.
    Ingelbrecht, J.A., Verwimp, T., and Delcour, J.A. (2000). Endoxylanases in durum wheat semolina processing: solubilization of arabinoxylans, action of endogenous inhibitors, and effects on rheological properties. Journal of Agricultural and Food Chemistry 48, 2017-2022.
    Ishida, F., Sato, A., Iizuka, Y., Sawasaki, Y., Aizawa, A., and Kamei, T. (1988). Effects of MK-733, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, on absorption and excretion of [3H]cholesterol in rabbits. Biochimica et Biophysica Acta 963, 35-41.
    Izaurralde, E., Mirkovitch, J., and Laemmli, U.K. (1988). Interaction of DNA with nuclear scaffolds in vitro. Journal of Molecular Biology 200, 111-125.
    Jackson, D.A., Dickinson, P., and Cook, P.R. (1990). The size of chromatin loops in HeLa cells. The European Molecular Biology Organization Journal 9, 567-571.
    Jones, J.D., Burnett, P., and Zollman, P. (1999). The glyoxylate cycle: does it function in the dormant or active bear? Comparative Biochemistry and Physiology 124, 177-179.
    Jorgensen, E.C., Pedersen, F.S., and Jorgensen, P. (1992). Matrix protein of Akv murine leukemia virus: genetic mapping of regions essential for particle formation. Journal of Virology 66, 4479-4487.
    Kas, E., and A, C.L. (1987). Anchorage of the Chinese hamster dihydrofolate reductase gene to the nuclear scaffold occurs in an intragenic region. Journal of Molecular Biology 198, 677-692.
    Kas, E., Lzaurralde, E.K., and U K , L. (1989). Highly preferential nucleation of histone H1 assembly on scaffold-associated regions. Journal of Molecular Biology 219, 587~599.
    Kas, E., Lzaurralde, E.K., and U K , L. (1993). A model for chromatin opening: stimulation of topoisomeraseⅡa nd restriction enzyme cleavage of chromatin by histaminic. The European Molecular Biology Organization Journal 95, 461~470.
    Kalamajka, R., Hahnen, S., Cavalar, M., Topsch, S., Weier, D., and Peterhansel, C. (2003). Restriction accessibility in isolated nuclei reveals light-induced chromatin reorganization at the PEPC promoter in maize. Plant Molecular Biology 52, 669-678.
    Kanno, T., Kanno, Y., Chen, L.F., Ogawa, E., Kim, W.Y., and Ito, Y. (1998). Intrinsic transcriptional activation-inhibition domains of the polyomavirus enhancer binding protein 2/core binding factor alpha subunit revealed in the presence of the beta subunit. Molecular and Cellular Biology 18, 2444-2454.
    Kohwi-Shigematsu, T., Maass, K., and Bode, J. (1997). A thymocyte factor SATB1 suppresses transcription of stably integrated matrix-attachment region-linked reporter genes. Biochemistry 36, 12005-12010.
    Levy-Wilson, B., and Fortier, C. (1989). The limits of the DNase I-sensitive domain of the human apolipoprotein B gene coincide with the locations of chromosomal anchorage loops and define the 5' and 3' boundaries of the gene. Journal Biology Chemistry 264, 21196-21204.
    Li, J., Brunner, A.M., Meilan, R., and Strauss, S.H. (2008). Matrix attachment region elements have small and variable effects on transgene expression and stability in field-grown Populus. Plant Biotechnology Journal 456, 1143-1156
    Luderus, M.E., den Blaauwen, J.L., de Smit, O.J., Compton, D.A., and van Driel, R. (1994). Binding of matrix attachment regions to lamin polymers involves single-stranded regions and the minor groove. Molecular and Cellular Biology 14, 6297-6305.
    Luderus, M.E., de Graaf, A., Mattia, E., den Blaauwen, J.L., Grande, M.A., de Jong, L., and van Driel, R. (1992). Binding of Matrix Attachment Regions to Lamin B1. Cell 70, 949-959.
    Lutzko, C., Senadheera, D., Skelton, D., Petersen, D., and Kohn, D.B. (2003). Lentivirus vectors incorporating the immunoglobulin heavy chain enhancer and matrix attachment regions provide position-independent expression in B lymphocytes. Journal of Virology 77, 7341-7351.
    Mankin, S.L., Allen, G.C., Phelan, T., Spiker, S., and Thompson, W.F. (2003). Elevation of transgene expression level by flanking matrix attachment regions (MAR) is promoter dependent: a study of the interactions of six promoters with the RB7 3' MAR. Transgenic Research 12, 3-12.
    Marsden, M.P., and Laemmli, U.K. (1979). Metaphase chromosome structure: evidence for a radial loop model. Cell 17, 849-858.
    Martins, R.P., Ostermeier, G.C., and Krawetz, S.A. (2004). Nuclear matrix interactions at the human protamine domain: a working model of potentiation. The Journal of Biological Chemistry 279, 51862-51868.
    Masliah, G., Rene, B., Zargarian, L., Fermandjian, S., and Mauffret, O. (2008). Identification of intrinsic dynamics in a DNA sequence preferentially cleaved by topoisomerase II enzyme. Journal of Molecular Biology 381, 692-706.
    Metzlaff, M., O'Dell, M., Cluster, P.D., and Flavell, R.B. (1997). RNA-mediated RNA degradation and chalcone synthase A silencing in petunia. Cell 88, 845-854.
    Milot, E., Belmaaza, A., Wallenburg, J.C., Gusew, N., Bradley, W.E., and Chartrand, P. (1992). Chromosomal illegitimate recombination in mammalian cells is associated with intrinsically bent DNA elements. The European Molecular Biology Organization Journal 11, 5063-5070.
    Mirkovitch, J., Mirault, M.E., and Laemmli, U.K. (1984). Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell 39, 223-232.
    Morisawa, G., Han-Yama, A., Moda, I., Tamai, A., Iwabuchi, M., and Meshi, T. (2000). AHM1, a novel type of nuclear matrix-localized, MAR binding protein with a single AT hook and a J domain-homologous region. The Plant Cell 12, 1903-1916.
    Namciu, S.J., Friedman, R.D., Marsden, M.D., Sarausad, L.M., Jasoni, C.L., and Fournier, R.E. (2004). Sequence organization and matrix attachment regions of the human serine protease inhibitor gene cluster at 14q32.1. Mammal Genome 15, 162-178.
    Nayler, O., Stratling, W., Bourquin, J.P., Stagljar, I., Lindemann, L., Jasper, H., Hartmann, A.M., Fackelmayer, F.O., Ullrich, A., and Stamm, S. (1998). SAF-B protein couples transcription and pre-mRNA splicing to SAR/MAR elements. Nucleic Acids Research 26, 3542-3549.
    Patel, S., Brkljacic, J., Gindullis, F., Rose, A., and Meier, I. (2005). The plant nuclear envelope protein MAF1 has an additional location at the Golgi and binds to a novel Golgi-associated coiled-coil protein. Planta 222, 1028-1040.
    Paul, A.L., and Ferl, R.J. (1998). Higher order chromatin structures in maize and Arabidopsis. The Plant Cell 10, 1349-1359.
    Paulson, J.R., and Laemmli, U.K. (1977). The structure of histone-depleted metaphase chromosomes. Cell 12, 817-828.
    Pemov, A., Bavykin, S., and Hamlin, J.L. (1995). Proximal and long-range alterations in chromatin structure surrounding the Chinese hamster dihydrofolate reductase promoter. Biochemistry 34, 2381-2392.
    Petrov, A., Allinne, J., Pirozhkova, I., Laoudj, D., Lipinski, M., and Vassetzky, Y.S. (2008). A nuclear matrix attachment site in the 4q35 locus has an enhancer-blocking activity in vivo: implications for the facio-scapulo-humeral dystrophy. Genome Research 18, 39-45.
    Phi-Van, L., and Stratling, W.H. (1996). Dissection of the ability of the chicken lysozymegene 5' matrix attachment region to stimulate transgene expression and to dampen position effects. Biochemistry 35, 10735-10742.
    Pienta, K.J., Getzenberg, R.H., and Coffey, D.S. (1991). Cell structure and DNA organization. Critical Reviews in Eukaryotic Gene Expression 1, 355-385.
    Poizner, H., Merians, A.S., Clark, M.A., Macauley, B., Rothi, L.J., and Heilman, K.M. (1998). Left hemispheric specialization for learned, skilled, and purposeful action. Neuropsychology 12, 163-182.
    Ragab, A., and Travers, A. (2003). HMG-D and histone H1 alter the local accessibility of nucleosomal DNA. Nucleic Acids Research 31, 7083-7089.
    Rampalli, S., Pavithra, L., Bhatt, A., Kundu, T.K., and Chattopadhyay, S. (2005). Tumor suppressor SMAR1 mediates cyclin D1 repression by recruitment of the SIN3/histone deacetylase 1 complex. Molecular and Cellular Biology 25, 8415-8429.
    Rao, M.V., Donoghue, M.J., Merlie, J.P., and Sanes, J.R. (1996). Distinct regulatory elements control muscle-specific, fiber-type-selective, and axially graded expression of a myosin light-chain gene in transgenic mice. Molecular and Cellular Biology 16, 3909-3922.
    Reeves, R., Langan, T.A., and Nissen, M.S. (1991). Phosphorylation of the DNA-binding domain of nonhistone high-mobility group I protein by cdc2 kinase: reduction of binding affinity. Proceedings of the National Academy of Sciences of the United States of America 88, 1671-1675.
    Renz, A., and Fackelmayer, F.O. (1996). Purification and molecular cloning of the scaffold attachment factor B (SAF-B), a novel human nuclear protein that specifically binds to S/MAR-DNA. Nucleic Acids Research 24, 843-849.
    Ronai, D., Berru, M., and Shulman, M.J. (1999). Variegated expression of the endogenous immunoglobulin heavy-chain gene in the absence of the intronic locus control region. Molecular and Cellular Biology 19, 7031-7040.
    Rudd, M.D., Joiner, T.E., Jr., and Rumzek, H. (2004). Childhood diagnoses and later risk for multiple suicide attempts. Suicide & life-threatening Behavior 34, 113-125.
    Sander, M., and Hsieh, T.S. (1985). Drosophila topoisomerase II double-strand DNA cleavage: analysis of DNA sequence homology at the cleavage site. Nucleic Acids Research 13, 1057-1072.
    Sawasaki, T., Takahashi, M., Goshima, N., and Morikawa, H. (1998). Structures oftransgene loci in transgenic Arabidopsis plants obtained by particle bombardment: junction regions can bind to nuclear matrices. Gene 218, 27-35.
    Shan, D.P., Huang, J.G., Yang, Y.T., Guo, Y.H., Wu, C.A., Yang, G.D., Gao, Z., and Zheng, C.C. (2007). Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. The New Phytologist 176, 70-81.
    Shimizu, N., Hanada, N., Utani, K., and Sekiguchi, N. (2007). Interconversion of intra- and extra-chromosomal sites of gene amplification by modulation of gene expression and DNA methylation. Journal of Cellular Biochemistry 102, 515-529.
    Sidorenko, L., Bruce, W., Maddock, S., Tagliani, L., Li, X., Daniels, M., and Peterson, T. (2003). Functional analysis of two matrix attachment region (MAR) elements in transgenic maize plants. Transgenic Research 12, 137-154.
    Slatter, R.E., Dupree, P., and Gray, J.C. (1991). A scaffold-associated DNA region is located downstream of the pea plastocyanin gene. The Plant Cell 3, 1239-1250.
    Spector, D.L. (1990). Higher order nuclear organization: three-dimensional distribution of small nuclear ribonucleoprotein particles. Proceedings of the National Academy of Sciences of the United States of America 87, 147-151.
    Sperry, A.O., Blasquez, V.C., and Garrard, W.T. (1989). Dysfunction of chromosomal loop attachment sites: illegitimate recombination linked to matrix association regions and topoisomerase II. Proceedings of the National Academy of Sciences of the United States of America 86, 5497-5501.
    Spiker, S., and Thompson, W.F. (1996). Nuclear Matrix Attachment Regions and Transgene Expression in Plants. Plant Physiology 110, 15-21.
    Stalder, J., Larsen, A., Engel, J.D., Dolan, M., Groudine, M., and Weintraub, H. (1980). Tissue-specific DNA cleavages in the globin chromatin domain introduced by DNAase I. Cell 20, 451-460.
    Stam, R., Croiset, G., Akkermans, L.M., and Wiegant, V.M. (1997). Behavioural and intestinal responses to novelty in rats selected for diverging reactivity in the open field test. Behavioural Brain Research 88, 231-238.
    Sumner, A.T. (1996). The distribution of topoisomerase II on mammalian chromosomes. Chromosome Research 4, 5-14.
    Sundaresan, V., Springer, P., Volpe, T., Haward, S., Jones, J.D., Dean, C., Ma, H., and Martienssen, R. (1995). Patterns of gene action in plant development revealed byenhancer trap and gene trap transposable elements. Genes & Development 9, 1797-1810.
    Suzuki, T., Michishita, E., Ogino, H., Fujii, M., and Ayusawa, D. (2002). Synergistic induction of the senescence-associated genes by 5-bromodeoxyuridine and AT-binding ligands in HeLa cells. Experimental Cell Research 276, 174-184.
    Swedlow, J.R., Sedat, J.W., and Agard, D.A. (1993). Multiple chromosomal populations of topoisomerase II detected in vivo by time-lapse, three-dimensional wide-field microscopy. Cell 73, 97-108.
    Tagashira, H., Shimotori, T., Sakamoto, N., Katahira, M., Miyanoiri, Y., Yamamoto, T., Mitsunaga-Nakatsubo, K., Shimada, H., Kusunoki, S., and Akasaka, K. (2006). Unichrom, a novel nuclear matrix protein, binds to the Ars insulator and canonical MARs. Zoological Science 23, 9-21.
    Tajima, S., Shinohara, K., Fukumoto, M., Zaitsu, R., Miyagawa, J., Hino, S., Fan, J., Akasaka, K., and Matsuoka, M. (2006). Ars insulator identified in sea urchin possesses an activity to ensure the transgene expression in mouse cells. Journal of Biochemistry 139, 705-714.
    Takano, M., Egawa, H., Ikeda, J.E., and Wakasa, K. (1997). The structures of integration sites in transgenic rice. Plant Journal 11, 353-361.
    Thompson, A.J., and Myatt, S.C. (1997). Tetracycline-dependent activation of an upstream promoter reveals transcriptional interference between tandem genes within T-DNA in tomato. Plant Molecular Biology 34, 687-692.
    Tikhonov, A.P., Bennetzen, J.L., and Avramova, Z.V. (2000). Structural domains and matrix attachment regions along colinear chromosomal segments of maize and sorghum. The Plant Cell 12, 249-264.
    Torney, F., Partier, A., Says-Lesage, V., Nadaud, I., Barret, P., and Beckert, M. (2004). Heritable transgene expression pattern imposed onto maize ubiquitin promoter by maize adh-1 matrix attachment regions: tissue and developmental specificity in maize transgenic plants. Plant Cell Reports 22, 931-938.
    van Drunen, C.M., Oosterling, R.W., Keultjes, G.M., Weisbeek, P.J., van Driel, R., and Smeekens, S.C. (1997). Analysis of the chromatin domain organisation around the plastocyanin gene reveals an MAR-specific sequence element in Arabidopsis thaliana. Nucleic Acids Research 25, 3904-3911.
    Van Leeuwen, W., Mlynarova, L., Nap, J.P., van der Plas, L.H., and van der Krol, A.R.(2001). The effect of MAR elements on variation in spatial and temporal regulation of transgene expression. Plant Molecular Biology 47, 543-554.
    Vaucheret, H., Beclin, C., and Fagard, M. (2001). Post-transcriptional gene silencing in plants. Journal of Cell Science 114, 3083-3091.
    Verheijen, R., van Venrooij, W., and Ramaekers, F. (1988). The nuclear matrix: structure and composition. Journal of Cell Science 90 ( Pt 1), 11-36.
    Vernis, L., Poljak, L., Chasles, M., Uchida, K., Casaregola, S., Kas, E., Matsuoka, M., Gaillardin, C., and Fournier, P. (2001). Only centromeres can supply the partition system required for ARS function in the yeast Yarrowia lipolytica. Journal of Molecular Biology 305, 203-217.
    von Kries, J.P., Buhrmester, H., and Stratling, W.H. (1991). A matrix/scaffold attachment region binding protein: identification, purification, and mode of binding. Cell 64, 123-135.
    Waki, K., Shibuya, K., Yoshioka, T., Hashiba, T., and Satoh, S. (2001). Cloning of a cDNA encoding EIN3-like protein (DC-EIL1) and decrease in its mRNA level during senescence in carnation flower tissues. Journal of Experimental Botany 52, 377-379.
    Weiler, K.S., and Wakimoto, B.T. (1995). Heterochromatin and gene expression in Drosophila. Annual Review of Genetics 29, 577-605.
    Weitzel, J.M., Buhrmester, H., and Stratling, W.H. (1997). Chicken MAR-binding protein ARBP is homologous to rat methyl-CpG-binding protein MeCP2. Molecular and Cellular Biology 17, 5656-5666.
    Wu, Q., Zhang, W., Pwee, K.H., and Kumar, P.P. (2003). Rice HMGB1 protein recognizes DNA structures and bends DNA efficiently. Architecture Biochemistry Biophysiology 411, 105-111.
    Xin, L., Liu, D.P., and Ling, C.C. (2003). A hypothesis for chromatin domain opening. Bioessays 25, 507-514.
    Xu, L., Deng, H.X., Xia, J.H., Yang, Y., Fan, C.H., Hung, W.Y., and Siddque, T. (1997). Assignment of SATB1 to human chromosome band 3p23 by in situ hybridization. Cytogenetics and Cell Genetics 77, 205-206.
    Xue, H., Yang, Y.T., Wu, C.A., Yang, G.D., Zhang, M.M., and Zheng, C.C. (2005). TM2, a novel strong matrix attachment region isolated from tobacco, increases transgene expression in transgenic rice calli and plants. Theorapy Appllication Genetic 110,620-627.
    Yajima, M., Kiyomoto, M., and Akasaka, K. (2007). Ars insulator protects transgenes from long-term silencing in sea urchin larva. Development Genes and Evolution 217, 331-336.
    Yamanaka, S., Katayama, E., Yoshioka, K., Nagaki, S., Yoshida, M., and Teraoka, H. (2002). Nucleosome linker proteins HMGB1 and histone H1 differentially enhance DNA ligation reactions. Biochemical and Biophysical Research Communications 292, 268-273.
    Yamasaki, K., Akiba, T., Yamasaki, T., and Harata, K. (2007). Structural basis for recognition of the matrix attachment region of DNA by transcription factor SATB1. Nucleic Acids Research 35, 5073-5084.
    Yang, Y., Yang, G., Liu, S., Guo, X., and Zheng, C. (2003). Isolation and functional analysis of a strong specific promoter in photosynthetic tissues. Science in China 46, 651-660.
    Yasui, D., Miyano, M., Cai, S., Varga-Weisz, P., and Kohwi-Shigematsu, T. (2002). SATB1 targets chromatin remodelling to regulate genes over long distances. Nature 419, 641-645.
    Youn, B.S., Lim, C.L., Shin, M.K., Hill, J.M., and Kwon, B.S. (2002). An intronic silencer of the mouse perforin gene. Molecules and Cells 13, 61-68.
    Zhang, J., Lu, L., Ji, L., Yang, G., and Zheng, C. (2008). Functional characterization of a tobacco matrix attachment region-mediated enhancement of transgene expression. Transgenic Research 23, 616-628.
    Zhang, K.W., Wang, J.M., and Zheng, C.C. (2004). [The potential role of nuclear matrix attachment regions (MARs) in regulation of gene expression]. Sheng Wu Gong Cheng Xue Bao = Chinese Journal of Biotechnology 20, 6-9.
    Zhang, M.M., Ji, L.S., Xue, H., Yang, Y.T., Wu, C.A., and Zheng, C.C. (2007). High transformation frequency of tobacco and rice via Agrobacteriu-mediated gene transfer by flanking a tobacco matrix attachment region. Physiologia Plantrum 129, 644-651.
    Zhao, J., and Grafi, G. (2000). The high mobility group I/Y protein is hypophosphorylated in endoreduplicating maize endosperm cells and is involved in alleviating histone H1-mediated transcriptional repression. Journal of Biology Chemistry 275, 27494-27499.
    Zhao, K., Kas, E., Gonzalez, E., and Laemmli, U.K. (1993). SAR-dependent mobilization of histone H1 by HMG-I/Y in vitro: HMG-I/Y is enriched in H1-depleted chromatin. The European Molecular Biology Organization Journalournal 12, 3237-3247.
    Zheng, C.C., Porat, R., Lu, P., and O'Neill, S.D. (1998). PNZIP is a novel mesophyll-specific cDNA that is regulated by phytochrome and the circadian rhythm and encodes a protein with a leucine zipper motif. Plant Physiology 116, 27-35.
    Zlatanova, J., and van Holde, K. (1998). Linker histones versus HMG1/2: a struggle for dominance? Bioessays 20, 584-588.
    Zlatanova, J., Caiafa, P., and Van Holde, K. (2000). Linker histone binding and displacement: versatile mechanism for transcriptional regulation. The Federation of American Societies for Experimental Biology Journal 14, 1697-1704.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700