用户名: 密码: 验证码:
铅基合金阳极在锌电积过程中的成膜特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代锌电积工业中Pb-Ag(0.5wt.%-1.0wt.%)和Pb-Ag(0.2wt%-0.3wt%)-Ca(0.06wt%-0.1wt%)合金阳极被大规模使用。阳极在使用过程中表面形成氧化层,而氧化层的物相、微观结构、导电性、孔隙率、附着力、析氧活性等与阳极的析氧过电位和耐腐蚀性紧密相关。为了探讨铅基合金阳极在锌电积过程中氧化膜的形成特性,本论文设计了评估阳极氧化层变化的实验体系。通过循环伏安曲线,阳极极化曲线,交流阻抗谱,扫描电子显微镜,X射线衍射,能谱分析等方法获得阳极氧化层实时状态数据。通过分析氧化还原反应的峰值电位、峰值电流、析氧过电位、表观交换电流密度、电荷传递电阻、表面粗糙度、微观形貌和腐蚀物相等参数评估阳极氧化层的变化特性。最终对阳极氧化层形成、变化和稳定,实现定量或半定量评估。
     论文选取锌电积工业中常用Pb-0.8%Ag和Pb-0.3%Ag-0.06%Ca轧制合金阳极,以及实验室研制的Pb-0.3%Ag-0.6%Sb新型轧制合金阳极作为研究对象,并将阳极电化学预镀膜处理,得到六种阳极实验试样(镀膜前后)。所得到的试样分别在四种不同的溶液体系内进行连续15天的极化。在不同的极化时间节点(0天,1天,2天,3天,6天,9天,12天,15天)取样测试了氧化层的电化学行为,微观结构和物相等方面的特性。纵向分析了阳极试样随极化时间的延长成膜特性的变化。横向对比了阳极类型和预镀膜处理对阳极成膜特性的影响。所得到的主要研究成果如下:
     (1)50g-L-1Zn2+;150g·L-1H2SO4溶液体系。不同的阳极试样成膜特性差异很大,阳极类型和镀膜处理均有明显的影响。随着极化时间的延长,析氧过电位整体呈现降低的趋势。
     未镀膜Pb-0.8%Ag合金在极化过程中,氧化膜微观颗粒尺寸先增大后减小,主体物相由α-PbO2向β-PbO2转变。极化结束后氧化膜均匀致密,由大量的呈四方晶系的细小颗粒组成,无孔洞。极化结束后析氧过电位780mV(500A·m-2)。
     镀膜Pb-0.8%Ag合金在极化过程中,氧化膜主体物相为α-PbO2,衍射峰强逐渐增强。极化结束后的氧化膜中既有锰的氧化物,也有裸露的铅的氧化物。锰的氧化物包裹在铅的氧化物外侧。极化结束时析氧过电位784mV(500A·m-2)。
     未镀膜Pb-0.3%Ag-0.06%Ca合金在极化过程中,氧化膜微观颗粒尺寸逐渐增大,腐蚀孔洞数量先增多后减少。极化结束后,微观形貌呈“菜花状”大颗粒。极化过程中氧化膜主体物相由PbSO4向α-PbO2转变。极化结束时析氧过电位771mV(500A·m-2)。
     镀膜Pb-0.3%Ag-0.06%Ca合金试样在极化过程中,氧化膜主体物相由α-PbO2向β-PbO2转变。极化结束时锰的氧化物包裹在铅的氧化物外侧。锰的氧化物呈片状,尺寸较大。铅的氧化物颗粒呈四方晶系,密集细小。极化结束时析氧过电位764mV(500A·m-2)。
     未镀膜Pb-0.3%Ag-0.6%Sb合金极化3天后氧化膜微观结构基本达到稳定状态。主要由“菜花状”大颗粒组成,布满腐蚀的孔洞,呈现了严重的腐蚀形貌。主体物相为α-PbO2,衍射峰随极化时间逐渐增强。极化结束时析氧过电位779mV(500A·m-2)。
     镀膜Pb-0.3%Ag-0.6%Sb合金试样在极化过程中,氧化膜主体物相变化趋势如下:PbSO→α-PbO2→β-PbO2。极化结束时氧化膜基本上没有锰氧化物的包裹。呈四方晶系的密集细小的铅的氧化物颗粒堆簇在一起。极化结束时析氧过电位768mV(500A·m-2)。
     (2)50g·L-1Zn2+;150g·L-1H2SO4;600mg·L-1Cl-溶液体系。六种阳极试样极化6天之后氧化膜形貌与物相基本达到稳定状态,主体物相均为α-PbO2。氧化膜微观形貌平整均匀,但是棱角清晰的颗粒均未出现。极化结束后析氧过电位差别很小,波动范围:712-730mV(500A·m-2)。在高浓度氯离子溶液体系内,溶液中的氯离子是合金阳极氧化膜形成过程的决定因素。阳极类型与镀膜处理对氧化膜性能的影响很小。
     (3)50g·L-1Zn2+;150g·L1H2SO4;5g·L-1Mn2+溶液体系。
     Pb-0.8%Ag合金阳极无论是否预镀膜处理,极化结束后氧化膜中既有锰的氧化物也有铅的氧化物,物相交错,颗粒粗大。未镀膜处理Pb-0.8%Ag主体物相为β-PbO2,析氧过电位653mV(500A·m-2)。镀膜处理后主体物相为α-PbO2,析氧过电位674mV(500A·m-2)。
     Pb-0.3%Ag-0.06%Ca和Pb-0.3%Ag-0.6%Sb合金阳极无论是否预镀膜,极化结束后氧化膜中既有锰的氧化物也有铅的氧化物,上下分布,界限清晰,锰的氧化物位于外层,尺寸大,结晶趋向不明显。铅的氧化物颗粒细碎位于内层,铅的氧化物中存在腐蚀腔和腐蚀孔洞。其中未镀膜Pb-0.3%Ag-0.06%Ca和镀膜Pb-0.3%Ag-0.6%Sb氧化膜主体物相为β-PbO2。极化结束后镀膜Pb-0.3%Ag-0.6%Sb合金析氧过电位最高701mV (500A·m-2)。未镀膜Pb-0.8%Ag和Pb-0.3%Ag-0.06%Ca合金析氧过电位最低653mV(500A·m-2)。
     (4)50g·L-1Zn2+;150g·L-1H2SO4;600mg·L-1Cl-;5g·L-1Mn2+溶液体系。三种阳极试样无论是否镀膜,极化结束时氧化膜结构相似,均匀平整、孔洞较少。物相差别较大,其中未镀膜Pb-0.8%Ag主体物相为PbSO4。镀膜Pb-0.8%Ag主体物相为α-Pb02。 Pb-0.3%Ag-0.06%Ca无论是否镀膜主体物相均为α-Pb02。镀膜Pb-0.3%Ag-0.6%Sb合金阳极主体物相为PbS04。未镀膜Pb-0.3%Ag-0.6%Sb合金阳极极主体物相为β-Pb02。
     极化结束后阳极试样析氧过电位差别较大,在50mV左右,其中镀膜Pb-0.3%Ag-0.06%Ca合金析氧过电位最低633mV(500A·m-2)。镀膜Pb-0.8%Ag合金析氧过680mV(500A·m-2)。
     总之,铅基合金阳极在锌电积过程中的成膜特性主要受三方面因素的支配:铅基合金类型,是否预镀膜处理,电积溶液组分。在纯酸性硫酸锌溶液中,不同的阳极试样成膜特性差异很大,阳极类型和镀膜处理均有明显的影响。在含高氯离子体系内,溶液中的氯离子是合金阳极氧化膜形成过程的决定因素。阳极类型与镀膜处理对氧化膜性能的影响很小。在含锰离子溶液体系内,阳极类型和镀膜处理均有明显的影响。在同含氯锰的溶液体系内,极化结束时阳极试样氧化膜结构相似,物相差别较大。体现了阳极类型,镀膜处理及溶液离子的多重影响。
In the modern zinc-electrowinning industry, the Pb-Ag(0.5wt%to1.0wt%) and Pb-Ag(0.2wt%to0.3wt%)-Ca(0.06wt%to0.1wt%) anode is widely used. The oxide layer will form on the surface of anode during polarization. The phase, microstructure, conductivity, porosity, adhesive force, and oxygen evolution activity of anodic oxide films are of considerable importance to the oxygen evolution overpotential and the work-durability of anodes during zinc electroextraction. To explore the formative characteristic of lead-base alloy anode during zinc electroextraction, the experimental systems for assessment of anodic oxidation layer were designed. The real time data of anodic oxide films is obtained by anodic polarization curves, quasi-stationary polarization (Tafel), electrochemical impedance spectroscopy techniques, SEM, XRD, and EDXS. The real-time status of anodic oxide films is evaluated using the parameters of peak potential, peak current, oxygen evolution overpotential, surface (exchange) current density, charge transfer resistance, roughness, phase and microstructure. The (semi-)quantitative evaluation of the formation, change and stability of anodic oxide films is achieved.
     Pb-0.8%Ag and Pb-0.3%Ag-0.06%Ca rolled aolly anode that is widely used in the zinc-electrowinning industry is selected for research subjects as well as Pb-0.3%Ag-0.6%Sb aolly that is developed in the laboratory room. Three kinds of the anode were deal with pre-film-plating. Then six experiments samples ware obtained. The six experiments samples is electrolyzed in four solution system for15days'continue polarization. The real time data of electrochemistry, phase and microstructure is tested upon reaching specific polarization time points (0,1,2,3,6,9,12, and15days). The formative characteristic of anodic oxide films with increasing polarization time is longitudinally analyzed. The impact of types and pre-film-plating on formative characteristic of anodic oxide films is transversely compared. The major research results are drawn as follows:
     (1)50g·L-1Zn2+;150g·L-1H2SO4. The formative characteristic of anodic oxide films changes with anode types and pre-film-plating. With increasing polarization time, the overpotential of oxygen evolution of six experiments samples mainly presented a declining trend.
     With increasing polarization time, the size of microscopic particles of Pb-0.8%Ag anodic oxide films first increased and then decreased. The main phase is transformed from α-PbO2to β-PbO2. After15days of polarization, the microstructure was mainly composed of tetragonal crystalline grains with very few cavities. The uniform, well-defined crystal grains and regularity is obtained. The overpotential of oxygen evolution is780mV(500A·m-2).
     With increasing polarization time, the main phase of coating Pb-0.8%Ag is α-PbO2. The intensity of diffraction peak gradually increased. Both manganese oxide and leady oxide are observed on the anodic oxide films after15days polarization. The leady oxide was wrapped in manganese oxide. The overpotential of oxygen evolution is784mV(500A-m-2).
     With increasing polarization time, the size of microscopic particles of Pb-0.3%Ag-0.06%Ca anodic oxide films increased. The quantity of corrosion holes first increased and then decreased. The main phase is transformed from PbSO4to α-PbO2. The anodic oxide consisted mainly of a large cauliflower-like crystal grains. The overpotential of oxygen evolution is771mV(500A·m-2).
     With increasing polarization time, the main phase of coating Pb-0.3%Ag-0.06%Ca anode is transformed from α-PbO2to β-PbO2. Both manganese oxide and leady oxide are observed on the anodic oxide films after15days polarization. The leady oxide was wrapped in manganese oxide. The manganese oxide is plate shaped with large size. The leady oxide was mainly composed of fine tetragonal crystalline grains. The overpotential of oxygen evolution is764mV(500A·m-2).
     The composition of Pb-0.3%Ag-0.6%Sb anodic oxide layer reaches a stable state after3d of polarization. The anodic oxide consisted mainly of a large cauliflower-like crystal grains with many deeper holes.The main phase is α-PbO2. The intensity of diffraction peak gradually increased. The overpotential of oxygen evolution is779mV(500A·m-2).
     With increasing polarization time, the main phase of coating Pb-0.3%Ag-0.6%Sb anode is changed as PbSO4→α-PbO2→β-PbO2. The manganese oxide is disappeared after15days polarization. The leady oxide was mainly composed of fine tetragonal crystalline grains. The overpotential of oxygen evolution is768mV(500A·m-2).
     (2)50g·L-1Zn2+;150g·L-1H2SO4;600mg·L-1Cl-。The composition of six anode sample reaches a stable state after6d of polarization. The major phase of the oxide layer is α-PbO2no matter type of lead-based alloy and pre-film-plating. The oxide film is uniform. The uniform, well-defined crystal grains are disappeared. The oxygen evolution overpotential sway a little (712-730mV). It is demonstrated that high content Cl-decides the formation of anodic oxide films in acid zinc sulfate electrolyte system.
     (3)50g·L-1Zn2+;150g·L-1H2SO4;5g·L-1Mn2+。Both manganese oxide and leady oxide are observed no matter if pre-film-plating for Pb-0.8%Ag anode after15days polarization. Coarse grains and alternating phase are also observed. For Pb-0.8%Ag anode, the major phase of the oxide layer is β-PbO2and oxygen evolution overpotential is653mV (500A-m-2). For coating Pb-0.8%Ag anode, the major phase of the oxide layer is α-PbO2and oxygen evolution overpotential is674mV (500A·m-2).
     Both manganese oxide and leady oxide are observed no matter if pre-film-plating for Pb-0.3%Ag-0.06%Ca and Pb-0.3%Ag-0.6%Sb anode after15days polarization. The manganese oxide is outside. The leady oxide is inside. The distribution with clear layers is observed with many corrosion holes. For Pb-0.3%Ag-0.06%Ca and coating Pb-0.3%Ag-0.6%Sb anode, the major phase of the oxide layer is β-PbO2and oxygen evolution overpotential is674mV (500A·m-2). The oxygen evolution overpotential of coating Pb-0.3%Ag-0.6%Sb is highest (0.701V at500A·m-2). The oxygen evolution overpotential of Pb-0.8%Ag and Pb-0.3%Ag-0.06%Ca anode is lowest (0.653V at500A·m-2).
     (4)50g·L-1Zn2+;150g·L-1H2SO4;600mg·L-1Cl-;5g·L-1Mn2+.
     The oxide layers are almost the same with uniform microstructure and less corrosion holes for three anode sample no matter if pre-film-plating. But the major phase of the oxide layer is different. The major phase are PbSO4for Pb-0.8%Ag and coating Pb-0.3%Ag-0.6%Sb. The major phase is α-PbO2for Pb-0.3%Ag-0.06%Ca and coating Pb-0.8%Ag. The major phase are β-PbO2for Pb-0.3%Ag-0.6%Sb.
     The oxygen evolution overpotential of Pb-0.3%Ag-0.6%Sb is lowest (633mV at500A·m-2). The oxygen evolution overpotential of Pb-0.8%Ag anode is highest (0.680V at500A·m-2).
     In summary, the formative characteristic of lead-base alloy anode during zinc electroextraction is controlled by the following three aspects:type of lead-based alloy; pre-film-plating process; the composition of electrolyte. The formative characteristic of anodic oxide films changes with anode types and pre-film-plating in pure acid zinc sulfate electrolyte system. The formative characteristic of anodic oxide films is decided by high content Cl-in acid zinc sulfate electrolyte system containing high Cl-. The effect of anode types and pre-film-plating is poor. The formative characteristic of anodic oxide films changes with anode types and pre-film-plating in acid zinc sulfate electrolyte system containing Mn2+. The oxide layers are almost the same with uniform microstructure and less corrosion holes for three anode sample no matter if pre-film-plating in acid zinc sulfate electrolyte system containing Cl-and Mn2+. But the major phase of the oxide layer is different. The formative characteristic is controlled by the three aspects:type of lead-based alloy, pre-film-plating process, the composition of electrolyte.
引文
[1]陈国发,重金属冶金学[M].北京:冶金工业出版社,2007.
    [2]华一新,有色冶金概论[M].北京:冶金工业出版社,2009.
    [3]Tjandrawan V. The role of manganese in the electrowinning of copper and zinc[D]. Perth: Murdoch University,2010:1-2.
    [4]高保军.锌冶炼技术现状及发展探讨[J].中国有色冶金,2008,(3):12-16.
    [5]梅光贵,湿法炼锌学[M].长沙:中南大学出版社,2001.
    [6]衷水平.锌电积用铅基多孔节能阳极的制备、表征与工程化实验[D].长沙:中南大学,2009.
    [7]傅崇说.有色冶金原理[M].北京:冶金工业出版社,2008.
    [8]孙德垄.国内外锌冶炼技术的新进展[J].中国有色冶金,2004,6(3):1-4.
    [9]吕少祥,戴曦.降低锌电积直流电耗生产实践.有色金属:冶炼部分,2001,(6):13-15.
    [10]Cachet C, Rerolle C, Wiart R. Kinetics of Pb and Pb-Ag anodes for zinc electrowinning[J]. Electrochemical Acta,1996,41(1):83-90.
    [11]王钧扬.锌电积的节电探讨[J].湖南冶金,2003,31(2):45-48.
    [12]王彦军,谢刚,杨大锦,等.降低电积锌直流电耗的现状分析[J].湿法冶金,2005,24(4):208-211.
    [13]Gurmen S, Emre M. A laboratory-scale investigation of alkaline zinc electrowinning[J]. Minerals Engineering,2003,16(6):559-562.
    [14]Petrova M, Noncheva Z, Dobrev Ts, Rashkov St, Kounchev N, Petrov D, Vlaev St, Mihnev V, Zarev S, Georgieva L, Buttinelli D. Investigation of the processes of obtaining plastic treatment and electrochemical behaviour of lead alloys in their capacity as anodes during the electro-extraction of zinc. I. Behaviour of Pb-Ag, Pb-Ca and PB-Ag-Ca alloys[J]. Hydrometallurgy,1996,40(3):293-318.
    [15]Felder A, Prengaman R D. Lead alloys for permanent anodes in the nonferrous metals industry[J]. JOM,2006,58(10):28-31.
    [16]Zhang W, Houlachi G. Electrochemical studies of the performance of different Pb-Ag anodes during and after zinc electrowinning[J]. Hydrometallurgy,2010,104(2):129-35.
    [17]Ivanov I, Stefanov Y, Noncheva Z, Petrova M, Dobrev Ts, Mirkova L, Vermeersch R, Demaerel J.-P. Insoluble anodes used in hydrometallurgy Part I. Anodic behaviour of lead and lead-alloy anodes[J]. Hydrometallurgy,2000,57:109-124.
    [18]Bagshaw NE. Lead alloys:Past, present and future[J]. J. Power Sources,1995,53:25-30.
    [19]Li W S, Chen H Y, Long X M, Wu F H, Wu Y M, Yan J H, Zhang C R. Oxygen evolution reaction on lead-bismuth alloys in sulphuric acid solution[J]. J. Power Sources,2006,158: 902-907.
    [20]Prengaman R D.1984a. The metallurgy of lead alloys for electrowinning anodes[A]. Proceedings of the AIME Annual Meeting[C]. Pennsylvania:Los Angeles, CA, USA,1984: pp.49-57.
    [21]Li A, Cheni Y, Chen H, Shu D, Li W, Wang H, Dou C, Zhang W, Chen S. Electrochemical behaviour and application of lead-lanthanum alloys for positive grids of lead-acid batteries[J]. J. Power Sources,2009,189 (2):1204-1211.
    [22]Ivanov I, Stefanov Y, Noncheva Z, Petrova M, Dobrev Ts, Mirkova L, Vermeersch R, Demaerel J.-P. Insoluble anodes used in hydrometallurgy Part II-Anodic behaviour of lead and lead-alloy anodes[J]. Hydrometallurgy,2000,57:125-139.
    [23]Prengaman RD. The metallurgy and performance of cast and rolled lead alloys for battery grid[J]. J. Power Sources,1997,67:267-278.
    [24]Chen HY, Li S, Li AJ, Shu D, Li WS, Dou CL, Wang Q, Xiao GM, Peng SG, Chen S, Zhang W, Wang H. Lead-samarium alloys for positive grids of valve regulated lead-acid batteries[J]. J. Power Source,2007,168(1):79-89.
    [25]Guo WX, Shu D, Chen HY, Li AJ, Wang H, Xiao GM, Dou CL, Peng SG, Wei WW, Zhang W, Zhou HW, Chen S. Study on the structure and property of lead-tellurium alloy as the positive grid of lead-acid batteries[J]. J. Alloys Compd.2009,475 (1-2):102-109.
    [26]Stefanov Y, Dobrev T. Developing and studying the properties of Pb-TiO2 alloy coated lead composite anodes for zinc electrowinning[J]. Trans. Inst. Met. Finish.2005,83(6):291-295.
    [27]Cifuentes L, Montes A, Crisostomo G. Corrosion behaviour and catalytic effectiveness of Pb-Ca-Sn, RuO2-IrO2/Ti and IrO2-Ta2O5/Ti for copper electrowinning [J]. Corros. Eng. Sci. Technol.2011,46 (6):737-744.
    [28]Casson P, Hampson N A. Fundamental studies of lead-acid cell reactions Part V:The oxidation of porous PbSO4/PbO2 on a pure lead base in sulphuric acid[J]. J. Electroanal. Chem,1978b,92:191-201.
    [29]Prengaman R D. Lead-acid technology:A look to possible future achievements[J]. J. Power Sources,1999,78:123-129.
    [30]Barker M H, Hyvarinen O, Osara K. Method for Forming an Electrocatalytic Surface on an Electrode[P]. US Patent Application:12/090638,2008.
    [31]Zhong S P, Lai Y Q, Jiang L X, Tian Z L, Li J, Liu YX.2008a. Electrochemical behaviour of Pb-Ag-Bi alloys as anodes in zinc electro winning [A]. EPD Congress 2008, Proceedings of TMS Annual Meeting[C]. New Orleans:LA, United States,2008:95-101.
    [32]Lai Y Q, Zhong S P, Jiang L X, Lu X J, Chen P R, Li J, Liu Y X. Effect of doping Bi on oxygen evolution potential and corrosion behaviour of Pb-based anode in zinc electrowinning[J]. J. Cent. S. Univ. Technol.2009,16 (2):236-241.
    [33]Azim A A, El-Sobki K M, Khedr A A. The effect of some alloying elements on the corrosion resistance of lead-antimony alloys:Part I-Cadmium[J]. Corros. Sci.1976,16: 209-218.
    [34]Bialacki J A, Hampson N A, Pearson E J. The impedance of porous PbO2 supported on lead alloy bases in sulfuric-acid[J]. Surf. Technol.1984,23 (3):201-206.
    [35]Prengaman R D. US Patent:7704452B2,2010.
    [36]Shervedani R K, Isfahani A Z, Khodavisy R, Hatefi-Mehrjardi A. Electrochemical investigation of the anodic corrosion of Pb-Ca-Sn-Li grid alloy in H2SO4 solution[J]. J. Power Sources,2007,164 (2):890-895.
    [37]Bray J L, Morral FR. Insoluble anodes in the polarization of zinc sulfate containing chlorine in solution[J]. Trans. Electrochem. Soc.1941,80 (1):55-61.
    [38]Zhong S P, Lai Y Q, Jiang L X, Tian Z L, Li J, Liu Y X. Anodization behaviour on Pb-Ag-Ca-Sr alloy during zinc electrowinning[J]. Chin. J. Nonferrous Met.2008b,18 (7): 1342-1346.
    [39]Canagaratna S G, Casson P, Hampson N A, Peters K. Fundamental studies of lead-acid cell reactions Part II:Oxidation of lead sulphate (discharged β-lead dioxide) on a lead dioxide base[J]. J. Electroanal. Chem.1977b,79 (2):281-286.
    [40]Yu N F, Gao L J. Electrodeposited PbO2 thin film on Ti electrode for application in hybrid supercapacitor[J]. Electrochem. Commu.2009,11:220-222.
    [41]Hu J M, Zhang J Q, Cao C N. Oxygen evolution reaction on IrO2-based DSA type electrodes:kinetics analysis of Tafel lines and EIS[J]. Int. J. Hydrogen. Energ.2004,29: 791-797.
    [42]Dobrev T, Valchanova I, Stefanov Y, Magaeva S. Investigations of new anodic materials for zinc electrowinning[J]. T. I. Met. Finish.2009,87:136-140.
    [43]Stefanov Y, Dobrev T. Developing and studying the properties of Pb-TiO2 alloy coated lead composite anodes for zinc electrowinning[J]. T. I. Met. Finish.2005; 83 (6):291-295.
    [44]Yang H T, Chen B M, Guo Z C, Liu H R, Zhang Y C, Xu R D. Effects of manganese nitrate concentration on the performance of an Al substrate β-PbO2-MnO2-WC-ZrO2 composite electrode material[J]. Internationtional Journal of Hydrogen Energy,2014,39(7):3087-3099.
    [45]陈步明.一种新型节能阳极材料的制备与电化学性能研究[D].昆明:昆明理工大学,2009:137-151.
    [46]Chen B M, Guo Z C, Huang H, Yang X W, Cao Y D. Effect of the current density on electrodepositing alpha-lead dioxide coating on aluminum substrate[J]. Acta Metall. Sin. (Engl. Lett.) 2009,22(5):373-382.
    [47]Chen B M, Guo Z C, Yang X W, Cao Y D. Morphology of alpha-lead dioxide electrodeposited on aluminum substrate electrode[J]. T. Nonferr. Metal. Soc.2010,20(1): 97-103.
    [48]Chen B M, Guo Z C, Xu R D. Electrosynthesis and physicochemical properties of α-PbO2-CeO2-TiO2 composite electrodes[J]. T. Nonferr. Metal. Soc.2013,23(4): 1191-1198.
    [49]Song Y H, Wei G, Xiong R C. Structure and properties of PbO2-CeO2 anodes on stainless steel[J]. Electrochim. Acta 2007,52:7022-7027.
    [50]Shi F B, Chen B M, Guo Z C, Duan S Q, Hou Y L. Preparation and characterization of β-PbO2-TiO2-Co3O4 composite coating on stainless steel[J]. Chinese journal of applied chemistry 2012; 29(6):0691-0696.
    [51]Lai Y Q, Li Y, Jiang L X, Xu W, Lv X J, Li J, Liu Y X. Electrochemical behaviors of co-deposited Pb/Pb-MnO2 composite anode in sulfuric acid solution-Tafel and EIS investigations [J]. J. Electroanal. Chem.2012,671:16-23.
    [52]Li Y, Jiang L X, Lv X J, Lai Y Q, Zhang H L, Li J, Liu Y X. Oxygen evolution and corrosion behaviors of co-deposited Pb/Pb-MnO2 composite anode for electrowinning of nonferrous metals. Hydrometallurgy 2011,109(3):252-257.
    [53]汪文兵,龙晋明,郭忠诚.钛基金属氧化物涂层电极的研究进展[J].电镀与涂饰,2006,25(7):46-48.
    [54]Beer H B. The invention and industrial development of metal anodes[J]. J Electrochem Soc, 1980,127(8):303c-307c.
    [55]梁镇海,孙彦平.钛基二氧化锰电催化剂的制备及性能研究[J].燃料化学学报,2001,29:18-21.
    [56]Shi Y H, Meng H M, Sun D B, Ni Y L, Chen D. Effect of SbOx+SnO2 intermediate layer on the properties of Ti-based MnO2 anode[J]. Acta Phys.-Chim. Sin.2007,23(10): 1553-1559.
    [57]Morita M, Iwakura C, Tamura H. The anodic characteristics of manganese dioxide electrodes prepared by thermal decomposition of manganese nitrate[J]. Electrochim. Acta, 1977,22(4):325-328.
    [58]Tamura H, Oda T, Nagayama M, Furuichi, R. Acid-base dissociation of surface hydroxyl groups on manganese dioxide in aqueous solutions[J]. Journal of The Electrochem. Soc. 1989; 136(10):2782-2786.
    [59]Ardizzone S, Trasatti S. Interfacial properties of oxides with technological impact in electrochemistry[J]. Adv. Colloid Interface.1996,64:173-251.
    [60]Rethinaraj J P, Visvanathan S. Anodes for the preparation of EMD and application of manganese dioxide coated anodes for electrochemicals[J]. Mater. Chem. Phys.1991; 27(4): 337-349.
    [61]Schmachtel S, Toiminen M, Kontturi K, Forsen O, Barker M H. New oxygen evolution anodes for metal electro winning:MnO2 composite electrodes[J]. Journal of The Electrochem. Soc.2009,39(10):1835-1848.
    [62]Kalinovskii E, Shustov V, Chaikoskaya V, Prusskaya O. Stable anodes for matrix-type cells. 3. Porous titanium-menganese dioxide anodes[J]. Soviet Electrochemistry 1976,12(10): 1434-1436.
    [63]Carr J-P, Hampson N A. The lead dioxide electrode[J]. Chemical reviews,1972,72(6): 679-703.
    [64]王晶,赵芳.钛基二氧化铅电极的制备及其应用[J].化学工程师,2009,23(5):45-47.
    [65]乔庆东,李琪.钛基二氧化铅电极的制备及其应用[J].应用化学,2000,17(5):45-47.
    [66]王峰,俞斌.一种新型PbO2电极的研制[J].应用化学,2002,1(2):193-195.
    [67]常志文,郭忠诚,潘君益等.Al/Pb-WC-ZrO2-Ag 和 Al/Pb-WC-ZrO2-CeO2复合电极材料的性能研究[J].昆明理工大学学报,2007,32(3):13-17.
    [68]潘君益.锌电积用铝基Pb-WC-ZrO2复合电极材料的研究[D].昆明:昆明理工大学,2005:42-49.
    [69]曹梅.Al基SnO2+Sb2O3、SnO2+Sb2O3+MnO2涂层二氧化铅阳极的制备及其应用[D].昆明:昆明理工大学,2005:73-78.
    [70]曹建春,郭忠诚,潘君益等.新型不锈钢基PbO2/PbO2-CeO2复合电极材料的研制[J]. 昆明理工大学学报,2004,29(5):38-41.
    [71]李渊,蒋良兴,倪恒发等.锌电积用Pb/Pb-MnO2复合电催化阳极的制备及性能[J].中国有色金属学报,2010,20(12):2357-2365.
    [72]Lai Y Q, Jiang L, Li J, Zhong S, Lii X J, Peng H J, Liu Y X. A novel porous Pb-Ag anode for energy-saving in zinc electro-winning:Part I:Laboratory preparation and properties [J]. Hydrometallurgy,2010,102(1):73-80.
    [73]Lai Y Q, Jiang L X, Li J, Zhong S P, Lti X J, Peng H J, Liu Y X. A novel porous Pb-Ag anode for energy-saving in zinc electrowinning:Part II:Preparation and pilot plant tests of large size anode[J]. Hydrometallurgy,2010,102(1):81-86.
    [74]黄惠.导电聚苯胺和聚苯胺复合阳极材料的制备及电化学性能研究[D].昆明:昆明理工大学,2010:35-46.
    [75]Huang H. Guo Z C. Conductive composite of polyaniline and tungsten carbide[J]. Polymer Science Series B,2011,53(1-2):31-34.
    [76]Huang H, Zhou J Y, Chen B M, Guo Z C. Polyaniline anode for zinc electrowinning from sulfate electrolytes [J]. Transactions of Nonferrous Metals Society of China,2010,20: s288-s292.
    [77]Xu R D, Huang L P, Zhou J F, Zhan P, Guan Y Y, Kong Y. Effects of tungsten carbide on electrochemical properties and microstructural features of Al/Pb-PANI-WC composite inert anodes used in zinc electrowinning [J]. Hydrometallurgy,2012,125:8-15.
    [78]杨海涛,刘焕荣,张永春,陈步明,郭忠诚,徐瑞东.轧制Pb-Sb—Ag-Ca合金阳极Sb含量对其显微硬度和耐腐蚀性的影响.材料保护,2013,46(7):66-68.
    [79]Dodson, V.H.,1961. The composition and performance of positive plate material in the lead-acid battery[J]. J. Electrochem. Soc.108(5),406-12.
    [80]Mindt, W.,1969. Electrical properties of electrodeposited PbO2 films[J]. J. Electrochem. Soc.116(8),1076-80.
    [81]Ellis, S.R., Hampson, N.A., Ball, M.C., Wilkinson, F.,1986. The lead dioxide electrode[J]. Journal of applied electrochemistry 16(2),159-67.
    [82]Rashkov S T, Stefanov Y, Noncheva Z, Petrova M, Dobrev T S, Kunchev N, Petrov D, Vlaev S T, Mihnev V, Zarev S, Georgieva L, Buttinelli D. Investigation of the processes of obtaining plastictreatment and electrochemical behaviour of leadalloys in their capacity as anodes during the electro-extraction of zinc. Ⅱ. Electrochemical formation of phase layers on binary Pb-Ag and Pb-Ca, and ternary Pb-Ag-Ca alloys in a sulphuric-acid electrolyte for zinc electro-extraction[J]. Hydrometallurgy,1996,40(3):319-334.
    [83]邹学付,毛祖永.锌电积铅阳极板腐蚀的原因与对策探讨[J].中国金属通报,2010,27:38-39.
    [84]Ivanov I, Stefanov Y. Electroextraction of zinc from sulphate electrolytes containing antimony ions and hydroxyethylated-butyne-2-diol-1,4:Part 3. The influence of manganese ions and a divided cell[J]. Hydrometallurgy,2002,64(3):181-186.
    [85]Zhang Q B, Hua Y X. Effect of Mn2+ ions on the electrodeposition of zinc from acidic sulphate solutions[J]. Hydrometallurgy,2009,99(3):249-254
    [86]Pecherskaya A G, Stender V V. Influence of impurities in the electrodeposition of zinc from sulfate solutions[J]. J. Applied Chem.USSR.1950,23 (9):920-935.
    [87]Kiryakov G Z, Baynietova F K, Vakhidov R S.1958. Role of manganese in the electrolytic deposition of zinc[J]. Tr. Inst. Khim. Akad. Nauk. S.S.R.1958,3:72-81.
    [88]MacKinnon D J, Brannen J M.1991. Effect of manganese, magnesium, sodium and potassiumsulphates on zinc electro winning fromsynthetic acid sulphate electrolytes [J]. Hydrometallurgy,1991,27:99-111.
    [89]MacKinnon D J. The effects of foaming agents and their interaction with antimony, manganese and magnesium on zinc electrowinning from synthetic acid sulphate electrolyte[J]. Hydrometallurgy,1994,35:11-26.
    [90]Ramachandran P, Naganathan K, Balakrishnan K, Srinivasan R.1980. Effect of pre-treatment on the anodic behaviour of lead alloys for use in electrowinning operations. I [J]. Journal of Applied Electrochemistry,1998,10 (5):623-626.
    [91]Gonzalez J A.2001. Zinc electrowinning:Anode conditioning and current distribution studies[A]. Electrometallurgy in proceedings of annual hydrometallurgy meeting[C]. Toronto, Canada,2001:147-162.
    [92]Newnham R H.1992. Corrosion rates of lead based anodes for zinc electrowinning at high current densities. Journal of Applied Electrochemistry 22(2):116-124.
    [93]Rodrigues J, Garbers D, Meyer E.H.O.2001. Recent developments in the Zincor cell house. Canadian Metallurgy Quarterly,2001,40 (4):441-449.
    [94]Jin S, Ghali E, Houlachi G, St-Amant G. Effect of sandblasting and shot-peening on the corrosion behavior of Pg-Ag alloy anodes in acid zinc sulfate electrolyte at 38℃[J]. International symposium on environmental degradation of materials and corrosion control in metals,2003,24-27:459-470.
    [95]Yang H T, Liu H R, Guo Z C, Chen B M, Zhang Y C, Huang H, Li X L, Fu R C, Xu R D. Electrochemical behavior of rolled Pb-0.8%Ag anodes[J]. Hydrometallurgy,2013,140, 144-150.
    [96]Cifuentes G, Cifuentes L, Crisostomo G. A lead-acid battery analogue to in situ anode degradation in copper electrometallurgy[J]. Corrosion Science,1998,40 (2/3):225-234.
    [97]Mahato B K. The cyclic corrosion of the lead-acid battery positive [J]. Journal of the Electrochemical Society:Electrochemical Science and Technology,1979,126 (3):365-374.
    [98]Sharpe T F. Low-rate cathodic linear sweep voltammetry (LSV) studies on anodized lead[J]. Journal of the Electrochemical Society,1975 122 (7):845-851.
    [99]Yamamoto Y, Fumino K, Ueda T, Nambu M. A potentiodynamic study of the lead electrode in sulphuric acid solution[J]. Electrochimica Acta,1972,37 (2):199-203.
    [100]张启波.咪唑基离子液体在锌电积中的作用机理研究[D].昆明:昆明理工大学,2009:188-192.
    [101]Da Silva L M, Boodts J F C, De Faria L A. Oxygen evolution at RuO2(x)+Co3O4(1-x) electrodes from acid solution[J]. ElectrochimActa,2001,46(9):1369-1375.
    [102]Trasatti S, Lodi G. Electrodes of conductive metallic oxides[M]. Amsterdam:Elsevier, 1981:521-626.
    [103]Aromaa J, Foesen O. Evaluation of the electrochemical activity of a Ti-RuO2-TiO2 permanent anode[J]. Electrochem. Acta,2006,51:6104-6110.
    [104]Conway B E, Ping G, Battisti A De, Barbieri A, Battaglin G Behaviour of the adsorbed Cl" intermediate in anodic Cl2 evolution at thin-film RuO2 surfaces. J. Mater. Chem.1991,1: 725-734.
    [105]Franco D V, Da Silva L M, Jardim W F. Influence of the electrolyte composition on the kinetics of the oxygen evolution reaction and ozone production processes [J]. J. Braz. Chem. Soc.2006,17:746-757.
    [106]Da Silva L M, de Faria L A, Boodts J.F.C. Electrochemical ozone production:influence of the supporting electrolyte on kinetics and current efficiency [J]. Electrochim. Acta,2003, 48(6):699-709.
    [107]Martelli G N, Ornelas R, Faita G Deactivation mechanism of oxygen evolving anodes at high current density. Electrochim. Acta,1994,39(11):1551-1558.
    [108]Piela B, Wrona P K. Capacitance of the gold electrode in 0.5M H2SO4 solution:a.c. impedance studies[J]. J. Appl. Electrochem,1995,388(1):69-79.
    [109]Choquette Y, Brossard L, Lasia A, Menard, H. Study of the kinetics of hydrogen evolution reaction on raney nickel composite-coated electrode by AC impedance technique. J. Electrochem. Soc.1990; 137(6):1723-1730.
    [110]Palmas S, Polcaro AM, Ferrara F, Ruiz JR., Delogu F. Bonatto-Minella C, Mulas G. Electrochemical performance of mechanically treated SnO2 powders for OER in acid solution. J. Appl. Electrochem.2008; 38(7):907-913.
    [111]Rammelt U, Reinhard G. On the applicability of a constant phase element (CPE) to the estimation of roughness of solid metal electrodes. Electrochim. Acta.1990; 35: 1045-1049.
    [112]Okido M, Depo JK, Capuano GA. The mechanism of hydrogen evolution reaction on a modified raney nickel composite-coated electrode by AC impedance. J. Electrochem. Soc. 1993; 140(1):127-133.
    [113]Spataru N, Le Helloco JG, Durand R. A study of RuO2 as an electrocatalyst for hydrogen evolution in alkaline solution. J. Appl. Electrochem.1996; 26(4):397-402.
    [114]Alves VA, Da Silva LA, Boodts JFC. Surface characterisation of IrO2/TiO2/CeO2 oxide electrodes and Faradaic impedance investigation of the oxygen evolution reaction from alkaline solution. Electrochim. Acta.1998; 44(8-9):1525-1534.
    [115]Levie, D R. On porous electrodes in electrolyte solutions:I. Capacitance effects. Electrochimica Acta,1963,8(10):751-780.
    [116]Casellato U, Cattarin S, Musiani M. Preparation of porous PbO2 electrodes by electrochemical deposition of composites. Electrochimica acta,2000,48(27):3991-3998.
    [117]Yang H T, Liu H R, Zhang Y C, Chen B M, Guo Z C, Xu R D. Electrochemical behaviors of Pb-0.8%Ag rolled alloy anode during and after zinc electrowinning-----CV investigations[J]. Advanced Materials Research,2013,746:256-61.
    [118]Ilkhchi M O, Yoozbashizadeh H, Safarzadeh M S. (2007). The effect of additives on anode passivation in electrorefining of copper [J]. Chemical Engineering and Processing:Process Intensification,2007,46(8):757-763.
    [119]Cachet C, Rerolle C, Wiart R. (1996). Kinetics of Pb and Pb-Ag anodes for zinc electrowinning—Ⅱ. Oxygen evolution at high polarization [J]. Electrochimica acta,1991, 41(1):83-90.
    [120]Rerolle C, Wiart R. (1996). Kinetics of oxygen evolution on Pb and Pb-Ag anodes during zinc electrowinning [J]. Electrochimica acta,1996,41(7):1063-1069.
    [121]衷水平,赖延清,蒋良兴,田忠良,李劫,刘业翔.锌电积用Pb-Ag-Ca-Sr四元合金的阳极极化行为[J].中国有色金属学报,2008,18(7):42-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700