用户名: 密码: 验证码:
土壤中有机氯农药DDT原位降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选取砂粒和粘粒比例适中、兼有砂质土和粘质土的优点、透气透水性好、耕性好、保水保肥及供水供肥能力强的壤质土作为供试土壤,以在上个世纪60-80年代曾经作为杀虫剂广泛施用过的DDT作为有代表性的有机氯农药,进行了有机氯农药在土壤中的降解研究。根据有机氯农药在土壤中的环境行为,分别研究了土壤对光催化剂TiO_2的吸附性能、光催化降解土壤及土壤渗出液中的DDT的效果、特异性植物对光催化降解DDT的诱导作用,特异性植物与专性微生物共同作用降解土壤中的DDT,光催化、植物、微生物几种方式联用共同修复土壤中的DDT等几个方面,并通过改变降水量、降水强度、光照强度、时间,反应温度、湿度、酸碱度、降解菌种类、修复用植物种类、采取农耕措施等环境条件实现有机氯农药DDT降解反应的优化。本文还将有机肥中所含的溶解性有机质、无机肥料中所含的过渡金属元素与DDT的降解研究结合起来,探讨了这两类物质在土壤中DDT的各种降解过程中的作用。
     主要研究内容和结果如下:
     1.土壤对纳米TiO_2吸附性能的影响因素研究。选取壤质土作为代表性的土壤,利用玻璃管进行土柱实验,模拟自然降水过程,研究淋溶水量和淋溶水强度对土壤中纳米TiO_2的吸持量的影响情况;研究比较用DOM,膨润土,麦秸这三种外源物质作为吸附剂时,土壤纳米TiO_2的吸附效果的影响。研究结果表明,随着淋溶水量的增加,TiO_2在土层中出现含量最高峰的土壤深度也增加,两者呈正相关关系。在淋溶量保持不变的前提下,淋溶强度越大,TiO_2在土层中出现含量最高峰的土壤深度越小,两者呈负相关关系;加入合适的吸附剂可以不同程度地提高土壤对纳米TiO_2的吸附能力。DOM是一种性能良好的吸附剂,膨润土次之,小麦秸秆不适合作为吸附剂对土壤改性。土壤吸附性能的提高与加入吸附剂的量成正比;通过加入适量的吸附剂,可以将纳米TiO_2有效地吸附在表土层中。
     2.纳米TiO_2与过渡金属协同作用光催化降解土壤渗出液中DDT的研究。将通常作为微量元素肥料的过渡金属铜、锌、铁、锰、钼及非金属元素硼与光催化剂纳米TiO_2共同掺杂,对土壤渗出液中的有机氯农药DDT进行了光催化氧化降解的实验研究。研究结果表明,在不同的实验条件下,试样中DDT的降解总趋势是相同的,随光照时间的增加DDT的残留量逐渐降低。光照时间与土壤渗出液中DDT的降解呈正相关。在光照最初的4个小时内,二者呈现出良好的线性关系,DDT的残留率随光照时间的增加而迅速降低,直至降低到15%左右。4小时以后,随着光照时间的增长,DDT的分解速度明显缓慢下来,其含量基本不再随时间变化。在土壤渗滤液组成的反应体系中,TiO_2无法通过简单添加过渡金属元素进行改性的方法来提高光催化氧化的效果。
     3.光催化降解表土层中DDT的影响因素研究。选用添加适量DDT的棕壤土,以紫外灯为光源进行了光催化降解实验,研究土壤的水分含量、溶解性有机质(DOM)含量、pH值、投加不同的外源物质以及翻动土壤等各因素对土壤中DDT光催化降解效果的影响,优化光催化降解DDT的条件。实验结果表明,随着土壤水分含量的增加,DDT的降解率呈逐渐增大的趋势;当水分含量达50%时,DDT降解率最高达到65.97%;当水分含量超过50%后,DDT降解率呈缓慢下降趋势。在一定范围内,土壤中DDT的光催化降解率随溶解性有机质含量的增加而增加,当溶解性有机质的含量达到1.2%时,DDT的去除率达到最大值;溶解性有机质含量再继续增加时,DDT的降解率反而降低;和中性条件相比,DDT在酸性和碱性土壤条件下具有更高的光催化降解率;投加铁粉和TiO_2有助于提高土壤中DDT的降解速率;投加Fe_2O_3和全量元素肥料混合物对土壤中DDT的光催化降解效果略有提高,而单独加入全量元素肥料几乎对DDT的降解率没有影响;DDT的光催化降解率随着土层深度的增加而降低;定期翻动土壤可以有效地提高DDT的光催化降解率。
     4.特异性作物对土壤中DDT降解的诱导作用研究。对比研究了喜氯的特异性植物芹菜和一般作物油菜对有机氯农药DDT污染土壤的修复作用。通过50天的温室盆栽试验,观察到土壤中DDT的含量均随着时间的增加逐渐减少。土壤自身具有修复农药污染的自然能力,种植作物具有强化土壤修复DDT污染的作用,种植不同类型的作物能不同程度地提高对土壤中DDT的降解率。空白试验中,经过50天的降解,土壤中DDT的残留率为79.21%;种植作物后,土壤中的大分子有机物逐渐转变为H_2O、CO_2及有机小分子,有效地降低了有机物的污染。种植油菜的盆栽中,在不施肥料、仅施无机肥料、仅施有机肥和施用有机无机复混肥料这四种处理情况下,土壤中DDT的残留率分别为73.47%、66.96%、62.55%和53.29%;种植芹菜的盆栽中,在不施肥料、仅施无机肥料、仅施有机肥和施用有机无机复混肥料这四种处理情况下,土壤中DDT的残留率分别达67.96%、58.39%、50.57%和34.37%。同样施用有机无机复混肥料的情况下,种植芹菜的土壤中DDT的浓度降低幅度更显著,降解率比种植油菜要高出18.92%。通过选择喜氯的特异性的作物,可以通过作物对氯离子的吸收促进DDT的降解,提高修复DDT污染土壤的能力。
     5.土壤中DDT的微生物修复过程研究。通过从土壤中分离培养土著微生物的办法,筛选出耐受DDT的菌株,对其进行培养放大,再投入到土壤中对DDT进行降解。同时对外源微生物白腐真菌进行培养放大,比较它们对DDT的降解效果。经初步鉴定,DB01为假单胞杆菌属细菌(Pseudomonas sp.),DB02为鞘氨醇杆菌属细菌(Sphingobacterium sp.)。真菌菌株DF01、DF02的鉴定工作还有待进一步的深入研究。这几个菌株经过培养放大,在提供有机质作为共代谢底物的条件下,均可以有效地降解土壤中的DDT。从土壤中分离出的两种真菌FB01、FB02和假单胞杆菌属细菌(Pseudomonas sp.)DB01,在对DDT的降解过程中,加入有机质作为共代谢底物,可以使它们的降解效果大幅提高,而鞘氨醇杆菌属细菌(Sphingobacterium sp.)DB02,即使不加入有机质作为共代谢底物,仍有较好的对DDT的降解效果。与从土壤中分离出的土著微生物相比较,白腐真菌对土壤中的DDT有更加显著的降解效果。溶解性有机质是一种性能和效果良好的共代谢底物。
     本文的研究内容,符合当前我国发展绿色农业、生态农业的要求,符合生态保护和人类社会可持续发展的需要。这对于节约能源,充分利用自然资源,避免对土壤环境造成二次污染,从根本上有效地治理具有持久性有机污染特性的有机氯类农药对整个地球造成的污染问题,提供了一种新的思路。
In this paper, loam soil was selected by the moderate proportion of sandy and clay, which has both the advantages of sandy soil and clay soil. It has good gas permeability, and cultivated good, water security and supply manure for fertilizer and strong loamy soil as a test for soil. Selected representative of organochlorine pesticides DDT widely applied as insecticides in the 1960s and 1980s of last century, the degradation of ganochlorine pesticides in the soil was studied.
     According to the environmental acts of organic chlorine pesticides in the soil, the adsorption capability of loam soil for nano-TiO_2 was studied, photocatalytic degradation of soil leachate in the DDT and photocatalytic degradation of plant-specific, the joint effect of the specificity of plant and specifically microorganisms in the soil degradation of DDT, photocatalysis, plants, micro-organisms, even in conjunction with this ways repair DDT in the soil. By changed precipitation, precipitation intensity, light intensity, time, reaction temperature, humidity, pH, type of degradation of bacteria, repair, used of plant species, to take measures such as environmental conditions, optimization of degration of an organic chlorine pesticide DDT. In this paper, organic fertilizer contained dissolved organic matter, inorganic fertilizer contained transition metal elements and the degradation of DDT was studied too, the combination of these two types of substances in a variety of DDT degradation process in soil was studied.
     The major synopsis and results were summarized as the following:
     1. Effects of adsorption capability of soil for nano-TiO_2. The adsorption capability of loam soil for nano-TiO_2 affected by amount and intensity of leached water has been investigated by simulating the natural rainfall process under the leaching condition. The results showed that the amount and the intensity of leached water were two important factors affecting the adsorption capability of loam soil for nano-TiO_2. The results indicated that the depth of the loam soil containing a maximal amount of nano-TiO_2 was proportional to the amount of leached water, while it was inversely proportional to the intensity of leached water, at a constant amount of the leached water. It was also found that the adsorption capability of soils for nano-TiO_2, can be improved by adding other materials, such as dissolved organic matter (DOM), bentonite and straw. It was found that DOM was the best sorbent for improving the adsorption capability of the loam soil for nono-TiO2, followed by bentonite, while straw was not suitable for the modification of the loam soil. The improvement of adsorption capability of the loam soil depended on the amount of these additives. Nano-TiO_2 can effectively adsorb on the surface layer of loam soil containing appropriate amount of the additions.
     2. Study of photocatalyic degradation of DDT in leached solutions of soil by nano-TiO2. Trace elements of transition metal, such as copper, zinc, iron, manganese, molybdenum and non-metallic as element boron fertilizer, co-doped with nano-TiO_2 photocatalyst combined exudates on soil organochlorine pesticides DDT for photocatalytic oxidative degradation experiment. The experimental results showed that the specimen in the general trend of the degradation of DDT were the same under different experimental conditions, with the illumination time to increase gradually to reduce residues
     Illumination time and soil effusions degradation of DDT was a direct correlations. In light of the initial four hours, they showed a good linear relationship, the level of DDT in soil was declining rapidly until the content was 15%. After four hours, with the growth of illumination time, the decomposition rate of DDTs was obviously slow down and its content was no longer change with time. In the reaction system of leachate in the soil, TiO_2 can not be easy to add the transition metal element method, which cannot improve the effectiveness of photocatalytic oxidation.
     3. Effects of various factors on the photocatalyic degradation of DDT on surface layer of soil. In order to got the optimum conditions for photodegradation experiment, the effects of various factors, including soil pH, dissolved organic matter (DOM), water content, soil depth, exogenous components and husbandry on the degradation performance of DDT were studied by choosing the brown soil samples spiked with DDT and exposed to the UV-light irradiation. The results indicated that the degradation rate increased with the increasing of the water content of the soil, but when it exceeded over 50%, the degradation rate decreased. The photocatalytic degradation rate of DDT increased with the rising of the concentration of DOM, however, when the concentration of DOM exceeded over 1.2%, the degradation rate reduced slightly. Acidic or alkaline environment was more effective for the photodegradation than the neutral environment. Fe and TiO_2 greatly accelerated the photodegradation of DDT in soil, DOM, Fe_2O_3 and all element fertilizer+DOM slightly positively influenced the photodegradation, while the all element fertilizer scarcely provode contributions. The degradation rate of DDT decreased with the rising of the soil depth; regular husbandry can enhance the degradation capacity of DDT effectively.
     4. Inducing effect of specific plants for remediation of DDT polluted soil. Both celery, a fond chlorine specific plant, and cole, an ordinary plant, have been employed to be contrastively investigated for the remendation of soil which was contaminated by dichloro-diphenyl-trichloroethane (DDT), an organic chlorine pesticide. By had been carrying out the glasshouse potted plant experiment in 50 days, the results have revealed that the content of DDT contained in the soil decreased with time increasing. Except for the instinct remendiation of soil by soil itself, crop growing strengthened the remendiation function of soil which contaminated by DDT. In addition, the degradation rate of DDT in soil will be increased by different crop planting. The result of the blank test has shown that the residual ratio of DDT in soil was 79.21% after 50 days degrading, owing to the larger molecular organics being degraded into smaller molecular weight organics. Therefore, the contamination of soil has been effectively decreased. The residual ratio of DDT in soil were 73.47%、66.96%、62.55%, and 53.29% in the potted cole and were 67.96%、58.39%、50.57%和34.37% in the potted celery treated with no fertilizer, inorganic fertilizer, organic fertilizer and organic-inorganic mixed fertilizer, respectively. However, the residual quantity of DDT in soil treated with growing celery, a fond chlorine specific plant, was remarkably decreased under the organic-inorganic mixed fertilizer conditions. The degradation ratio of DDT in this kind of soil was more 18.92% than that of growing cole at the same fertilizer conditions.
     5. The research on the process of microbial remediation of DDT in soil. By the means of isolating and cultivating indigenous micro-organisms, the strains that can tolerate DDT were screen and amplify. Then, the strains were placed into soil to degrade DDT. Meanwhile, did Phanerochaete sp., and compared the degradation effect of DDT with them. After initial identification, DB01 was Pseudomonas sp. bacteria; DB02 was Sphingobacterium sp. bacteria. The identification of fungal strains DF01, DF02 have to be further in-depth studied.
     After cultivating and amplifying these strains, the DDT in soil all can be degraded under the condition of organic matter provided as co-metabolism substrate. Adding organic matter as the co-metabolism substrate, FB01, FB02 and Pseudomonas sp. bacteria can degrade DDT much more effectively. However, Sphingobacterium sp.bacteria DB02, even if organic matter was not added as the co-metabolism substrate, still had a better effect on the degradation of DDT. Compared with the indigenous micro-organisms isolated from the soil, Phanerochaete sp.had a more significant degradation effect on DDT. Soluble organic matter was a co-metabolism substrate with good performance and effect.
     This study would be consistent with development of green agriculture, ecological agriculture , Ecological environment protection and the sustainable development of ecological economy. This was to save energy, mad full use of natural resources, avoided secondary pollution, which fundamentally to efficiently deal with this kind of organochlorine pesticide DDT and other persistent organic pollutants on the entire earth caused by a wide range of general pollution.This work provided a new method.
引文
[1]郝亚琦,王益权.土壤污染现状及修复对策[J].水土保持研究,2007,14(3):249-253.
    [2]余刚,牛军峰,黄俊等.持久性有机污染物[M].北京:科学出版社,2005.77.
    [3]孙铁珩,李培军,周启星,等.土壤污染形成机理与修复技术[M].北京:科学出版社,2005.
    [4]高翔云,汤志云,李建和,等.国内土壤环境污染现状与防治措施[J].2006,2:50-53.
    [5]李法云,曲向荣,吴龙华,等.污染土壤生物修复理论基础与技术[M].北京:化学工业出版社,2006.
    [6]牟一萍.持久性有机污染物(POPs)全球环境污染问题[J].中国标准化,2003,1:69-70.
    [7]宣昊,滕彦国,王金生.土壤污染对人体健康的影响[J].国土资源科技管理,2005,5(22):92-98.
    [8]陈耀华,葛成军,林伟.有机氯农药污染土壤的修复研究进展[J].华南热带农业大学学报,2006,12(4):54-58.
    [9]陈建军,谢正苗,吴卫红,等.DDT的环境生物地球化学过程与污染修复[J].2006年中国农学会学术年会,2006,516-518.
    [10]赵华博,邱璟旻,王春浩,等.DDT的应用与危害[J].科技成果纵横,2004,2:72-75.
    [11]刘长江,门万杰,刘彦军,等.农药对土壤的污染及污染土壤的生物修复[J].农业系统科学与综合研究,2002,18(4):295-297.
    [12]谭成侠,沈德隆,翁建全,等.有机污染物在土壤环境中的物理化学转化机制[J].浙江化工,2004,35(3):6-8.
    [13]周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004.
    [14]李培军,刘宛,孙铁珩,等.我国污染土壤修复研究现状与展望[J].生态学杂志,2006,25(12):1544-1548.
    [15]陈刚才,甘露,万国江.土壤有机污染及其治理技术[J].重庆环境科学,2000,22(2):45-62.
    [16]Joshi M M,Lee S.Optimization of surfactant-aided remediation of industrially contaminated soil[J].Energy Sources,1996,18(3):291-301.
    [17]Dadkhah A A,Akgerman,A.Hot water extraction with in situ wet oxidation:PAHs removal from soil[J].Journal of Hazardous Materials.2002,93(3):307-321.
    [18]Sun S;Inskeep W P,Boyd S A.Sorption of nonionic organic compounds in soil-water systems ontaining a micelle-forming surfactants[J].Environ Sci rechnol,1995,29:903-913.
    [19]张永,廖柏寒,曾敏,等.表面活性剂在污染土壤修复中的作用[J].湖南农业大学学报(自然科学版),2007,33(3):348-352.
    [20]Lee D H,Cody R Y D,Kim D J.Surfactant recycling by solvent extraction in surfactant-aided remediation[J].Separation and Purification Technology,2002,27(1):77-82.
    [21]Lee D H,Cody R Y D,Kim D J,et al.Effect of soil texture on surfactant-based remediation of hydrophobiorganic contaminated soil[J].Environ International,2002,27(8):681-688.
    [22]Roy.D.K,Kommalapati R.Soil washing potential of a natural surfactant[J].Environ Sci Technol,1997,31(3):610-613.
    [23]Mata-Sandocal J C,Karns J,Torretns A.Influence of Rhamnolipids and triton X-100 on the desorption of pestcides from soil[J].Environ Sci Technol,2002,36(21):4669-675.
    [24]Kim J Y,Cohen C,Shusler M L.Use of amphiphilic polymer particles for in-situ extraction of sorbed phenanthrene from a contaminated aquifer materials[J].Environ Sci Technol,2000,34(19):4133-4139.
    [25]Lagader A J M,Miller D J,Lilke A V.Pilot-scale subcritical water remediation of polycyclic aromatic hydrocarbon and pesticide contaminated soil[J].Environ Sci Tehnol,2000,34(8):1542-1548.
    [26]夏星辉.土壤重金属污染治理方法研究进展[J].环境科学,1997,18(3):72.
    [27]梁莹,朱琨,卢晓岩,等.腐植酸钠对柴油污染土壤的增溶解吸作用研究[J].兰州交通大学学报(自然科学版),2005,24(1):62-65.
    [28]赵保卫,朱利中.表面活性剂增效修复土壤有机污染研究进展[J].环境污染治理技术与设备,2006,7(3):30-35.
    [29]朱利中.土壤及地下水有机污染的化学与生物修复[J].环境科学进展,1999,7(2):65-70.
    [30]Sable,R.K,Demessie E Sorption and desorption of atrazine by sludge am ended soil[J].Environ progress,1996,15(3):173.
    [31]Kawala Z,Atamanczuk T.Microwave-enhanced thermal decontamination of soil[J].Environ Sci Technol,1998,32(17):2602-2607.
    [32]Carrigan C R,Nitao J J.Predictive and diagnostic simulation of In-situ electrical heating in contaminated,low-permeablity soils[J].Environ Sci Technol,2000,34(22):4835-4841.
    [33]Alonso E,Cantero F J,Garcia J,et al.Scale-up for a porous of supercritical extraction with adsorption of solute onto activated carbon.Application to soil remediation[J].The Journal of Supercritical Fluids,2002,24(2):123-135.
    [34]Watts R J,Stanton P C,Howsawkeng J,et al.Mineralization of a sorbed polycyclic aromatic hydrocarbon in two soils using catalyzed hydrogen peroxide[J].Water Res,2002,36(7):4283-4292.
    [35]Singh J,Comfort S D,Shea P J.Iron-mediated remediation of RDX-contaminated water and soil under controlled Eh/pH[J].Environ Sci Technol,1999,33(9):1488-1494.
    [36]Johnston C D,Rayner J L,Briegel D.Effectiveness of in-situ air sparging for removing NAPL gasoline from a sandy acquifernear Perth,Western Austrilian[J].J of Contaminant Hydrology,2002,59(1-2):87-111.
    [37]梁重山,党志.超临界二氧化碳流体萃取土壤中有机污染物的研究进展[J].重庆环境科学,2002,22(1):48-50.
    [38]Tarek.M.F.,Michacl E.P.Modifier effects in the supercritical fluid extraction of solutes from clay and plant materials[J].Anal.Chem,1993,65(10):1462-1469.
    [39]hbramoritchR A,Huang B,Abramsritch D A,et al.In-situ decomposition of PCBs in soil using microwave energy[J].Chemosphere,1999,38(10):2227-2236.
    [40]Destaillates H,Alderson Ⅱ T W,Haffman M R.Application of ultrasound in NAPL remediation.Sonochemical degradation of TCE in aqueous surfactant solution[J].Environ Sci Technol,2001,35(14):3019-3024.
    [41]Bogan B W,Trbovic V,Paterek J R.Inclusion of vegetable oils in Fenton' s chemistry for remediation of PAH-contaminated soils[J].Chemosphere,2003,50(1):15-21.
    [42]John,Krukowski.Field and numerical analysis of in-situ air sparging:a case study[J].Pollution Engineering,1994,26(8):48.
    [43]Michael C Marley.Multi- phase flow modeling of air sparging[J].Ground Water Monitoring Revview,1992,(2):137.
    [44]Kawala,Z.et al.Microwave-enhanced Thermal Decontamination of Soil[J].Environ.Sci.and Technol,1998,32(17):2602-2607.
    [45]William L.Troxler,Steven K.Goh and Lynton W.R.Dicks.Treatment of Pestcide-contamination Soils With Thermal Desportion Technologies[J].Air.Wast.Manag.Assoc.,1993,43(12):610-1619.
    [46]胡春华,邓先珍,汪茜.土壤污染修复技术研究综述[J].湖北林业科技,2005,5:44-47.
    [47]Pelizzetti E,Minero C,Ccrlin V,et al.Photocatalytic soil decontamination[J].Chemosphere,1992,25(3):343-351.
    [48]Pascual J A,Garcia P C,Herndez T,et al.Soil microbial activity as a biomarker of degradation and remediation processes[J].Soil Biology & Biochemistry,2000,32:1877-1882.
    [49]Higarashi M M,Jardim W F.Remediation of pesticides contaminated soil using TiO_2 mediated by solar light[J].Catalysis Today,2002,76(2-4):201- 207.
    [50]Aguer J P,Richard C.Transformation of fenuron induced by photochemical excitation of humic acids[J].Pestic Sci,1996,46:151-155.
    [51]夏星辉,张曦,杨志,等.黄河水体颗粒物对3种多环芳烃光化学降解的影响[J].环境科学,2006,21(1):115-120.
    [52]周霞萍.腐植酸应用中的化学基础[M].北京:化学工业出版社,2007.
    [53]Aguer J P,Boule P,Bonnemoy F,et al.Photo transformation of napropamide[N,N-iethyl-2-(l-naphthyloxy) Propionamide]in aqueous solution:influence of the toxicity of solutions[J].Pestic Sci,1998,54:253-257.
    [54]魏刚,黄海燕,熊荣春.纳米二氧化钛的光催化性能及其在有机污染物降解中的应用[J].现代化工,2003,1:20-23.
    [55]Okouchi S,Nojima O,Arai T.[J].Water Sci Technol,1992,26:2053-2056.
    [56]徐泉,黄星发,程炯佳,等.电动力学及其联用技术降解污染土壤中持久性有机污染物的研究进展[J].环境科学,2006(27):2363-2368.
    [57]Yang G C C,Liu C Y.Remediation of TCE contaminated soils by in situ EK-Fenton process[J].Hazard.Mater.,2001,B85:317-331.
    [58]Kim S S,Kim J H,Han S J.Application of the electrokinetic Fenton process for the remediation of kaolinite contaminated with phenanthrene[J].Hazard.Mater.,2005,B118:121-131.
    [59] Kim S S, Kim J H, Han S J. Application of the electrokinetic Fenton process for the remediation of kaolinite contaminated with phenanthrene[J]. Hazard. Mater., 2005, B118: 121- 131.
    [60] Wick L Y, Mattle P A, Wattiau P, et al. Electrokinetic transport of PAH-degrading bacteria in model aquifers and soil[J]. Environ. Sci. Technol., 2004, 38(17): 4596-4602.
    [61] Kim S J, Park J Y, Lee Y J, et al. Application of a new electrolyte circulation method for the ex situ electrokinetic bioremediation of a Iaboratory2prepared pentadecane contaminated kaolinite[J]. Hazard. Mater., 2005, B118(l-3): 171- 176.
    [62] Reddy K R, Chinthamreddy S, Saichek R E, et al. Nutrient amendment for the bioremediation of a chromium-contaminated soil by lectrokinetics[J].. Energ. Sources, 2003, 25(9): 931-943.
    [63] Maini G, Sharman A K, Sunderland G, et al. An integrated method incorporating sulfur-oxidizing bacteria and electrokinetics to enhance removal of copper from contaminated soil[J]. Environ. Sci. Technol., 2000, 34(6): 1081- 1087.
    [64] Rabbi M F, Clark B, Gale R J, et al. In situ TCE bioremedia-Tion study using electrokinetic cometabolite injection[J]. Waste Management, 2000, 20: 279- 286.
    [65] Jackman S A, Maini G, Sharman A K, et al. Electrokinetic movement and biodegradation of 2, 4-dichlorophenoxyacetic acid in silt soil[J]. Biotechnol. Bioeng. , 2001, 74(1):40- 48.
    [66] Thevanayagam S., Rishindran T. Injection of nutrients and Teas in clayey soils using electrokinetics[J]. Geotech. Geoenviron. Eng., 1998, 124 (4): 330- 338.
    [67] Matsumoto N, Nakasono S, Ohmura N, et al. Extension of logarithmic growth of Thiobacill us f errooxi dans by potential controlled electrochemical reduction of Fe(III) [J]. Biotechnol. Bioeng.,1999,64(6):716-721.
    [68]Reddy K R,Chinthamreddy S,Saichek R E,et al.Nutrientamendment for the bioremediation of a chromium-contaminated soil by electrokinetics[J].Energ.Sources,2003,25(9):931-943.
    [69]Ho S V,Athmer C,Sheridan P W,et al.The Lasagna technology for in situ soil remediation small field test[J].Environ.Sci.Technol.,1999,33(7):1086-1091.
    [70]Chung H I,Kamon M.Ultrasonically enhanced electrokinetic remediation for removal of Pb and phenanthrene in contaminated soil[J].Eng.Geol.,2005,77(324):233-242.
    [71]Kim,Young Uk.Effect of sonication on removal of petroleum hydrocarbon from contaminated soils by soil flushing method[D].The Pennsylvania State University:Department of Civil and Environmental Engineering,2000.
    [72]Jones D A,Lelyveld T P,Mavrofidis S D,et al.Microwave eating application in environmental engineering-a review[J].Resources,onservation and Recycles,2002,34(2):75-90.
    [73]Rudolph A A,Huang B,Mark D,et al.Decomposition of PCBs and other polychlorinated aromatics in soil using microwave energy[J].Chemosphere,1998,37(8):1427-1436.
    [74]于颖,周启星.污染土壤化学修复技术研究与进展[J].环境污染治理技术与设备,2005,6(7):1-7.
    [75]崔英杰,杨世迎,王萍,等.Fenton原位化学氧化法修复有机污染土壤和地下水研究[J].化学进展,2008,20(8):1196-1201.
    [76]GatesD.D.,Siegrist R.L.,Cline S.R.Chemical oxidation of volatile and semi-volatile organic compounds in soil[J].In:Proceedings of the 88th AnnualAir and Waste Management Association Conference,San Antonio,Texas,June 1995
    [77]West O.R.,Cline S.R.,Holden W.L.,et al.A full scale demonstration of in situ chemical oxidation through recirculation at the X-701B site: Field operations and TCE degradation[J]. ORNL /TM-13556. Oak Ridge, Tennessee, 1997.
    [78] 张德莉, 黄应平,罗光富. [J]. 环境化学, 2006,25 (2): 121-127.
    [79] Gates D. D., Siegrist R. L. In situ chemical oxidation of trichloroethylene using hydrogen peroxide [J]. Environ. Eng., 1995, 121: 639- 644.
    [80] Watts R J, Udell M D, Rauch P A, Leung S W. Hazard. [J]. Waste Hazard. Mater., 1990, 7 (4): 335- 345.
    [81] Miller C M, Valentine R L, Roehl M E, Alvarez P J. [J]. Wat Res., 1996, 30 (11):2579- 2586.
    [82] Li Z M, Shea P J, Comfort S D. Environ. [J].Eng. Sci., 1997, 14(1): 55-66.
    [83] Bier E L, Singh J, Li Z, et al. [J]. Environ. Toxicol. Chem., 1999,18 (6): 1078 - 1084.
    [84] Kao C M, Wu M J. [J]. Hazard. Mater., 2000, 74(3): 197-211.
    [85] Arienzo M. [J]. Chemosphere, 2000, 40(4): 441-448.
    [86] Kong S H, Watts R J, Choi J H. [J]. Chemosphere, 1998,37(8): 1473-1482.
    [87] Teel A L, Warberg C R, Atkinson D A, et al. [J]. Wat. Res., 2001, 35 (4): 977 - 984 .
    [88] Chen C T, Tafuri A N, RahmanM, et al. [J]. Environ. Sci. Health, 1998, 33(6): 987- 1008.
    [89] Nam K, Rodriguez W, Kudor J[J]. Chemosphere, 2001, 45 (1): 11-20.
    [90] Day J. E. The effect of moisture on the ozonation of pyrene in soil[J]. Masters thesis, Michigan State University, M I. 1994
    [91] Masten S. J., Davies S. H. R. Effects of in situ ozonation for the remediation of PAH contaminated soil[J]. Contam. Hydrol, 1997, 28: 327-335.
    [92]Pitiman Jr C H,He J.Dechlorination of PCBs,PAHs,herbicides and pesticides net and in soils at using Na/NH3[J].J of Harzadous Materials,2002,92(1):51-62.
    [93]郭彦威,王立新,林瑞华.污染土壤的植物修复技术研究进展[J].安全与环境工程,2007,14(3):25-28.
    [94]董社琴,李冰雯,周健.植物修复有机污染土壤机理的分析[J].科技情报开发与经济,2004,14(3):189-190.
    [95]王志伟.浅谈土壤污染的植物修复技术的研究[J].农业与技术,2007,27(2):86-87.
    [96]张超兰,汪小勇,姜文,等.有机氯农药六六六污染土壤的植物修复研究[J].生态环境,2007,16(5):1436-1440.
    [97]Gao J,Garrison A W,Hoehamer C,et al.Uptake and Phytotransformation of o,p' - DDT and p' - DDT by Axenicallv Cultivated Aquatic Plants[J].Agric Food Chem,2000,48:6121-6127.
    [98]Garrison A W,Nzengung V A,Avants J K,et al.Phytodegradation of p,p' - DDT.DT andLhc Enantiomers of o,p' - DDT[J].Environ.Sci.Technol,2000,34:1663- 1670.
    [99]安凤春,莫汉宏,郑明辉,等.DDT污染土壤的植物修复技术[J].环境污染治理技术与设备,2002,3(7):39-44.
    [100]Jordahl J L,Foster L,Schnoor J L.Effect of hybrid polar trees on microbial populations important to harzardous waste bioremediation[J].Environ Tox Chem,1997,16(6):318-321.
    [101]Newman L A,Wang X,Muiznieks I A,et al.Remediation of trichloroethylene in an artified aquifer with trees:A controlled fiels study[J].Environ Sci Technol,1999,33(13):2257-2265.
    [102]Krugerel,Anhaltc,Sorensond.Atrazine degradation in pesticide Contamindted soils Phytoremediation of Soil and Water Contaminants[J].WashingtonDC:American Chemical Society,1997.
    [103]Arthur E L,Perkovich B S,Anderson T A.Degradation of an atrazine and metolachlor herbicide mixture in pesticide-contaminated soils from two agrochemical dealershipsn IOWA[J].Water,Air and Soil Pollution,2000,119:75-90.
    [104]Shermata I W,Hawart J.Cyclodextrins for desorption and solubilization of 2,6-trinitrotoluene and its metabolitites from soil[J].Environ Sci rechnol,2000,34:3462-3468.
    [105]Lin Q,Mendelsson I A.The combined effects of phytoremediation and biostimulation in enhancing habitat restoration and oil degradation of petroleum contaminated wetlands[J].Ecological Engineering,1998,10:263-274.
    [106]王文凤,顾立锋,送任祥.化学农药污染土壤微生物的原位修复[J].安徽农业科学,2005,33(7):1350-1351.
    [107]陈晓东,常文越,邵春岩.土壤污染生物修复技术研究进展[J].环境与生态,2001,27(107):23-25.
    [108]尤民生,刘新.农药污染的生物降解与生物修复[J].生态学杂志,2004,23(1):73-77.
    [109]Ding Keqiang,Luo Yongming,Sun Tieheng,et al.Bioremediation of soil contaminated with petroleum Using forced-aeration composting[J].Pedosphere,2002,12(2):145-150.
    [110]方玲.降解有机氯农药的微生物菌株分离筛选及应用效果[J].应用生态学报,2000,11(2):249-252.
    [111]王玉军,赵晓松,孙安娜,等.五氯硝基苯降解菌生长特性及降解活性[J].吉林农业大学学报,2002,24(6):62-64.
    [112]王国惠.有机氯农药高效降解菌的筛选及其降解能力的研究[J].工程与技术,2004,8:12-14.
    [113]Ruiz Aguilar G M L,Fernandez Sanchez J M,Rodriguez Vazquez R et al.[J].Adv Environ Res,2002,6(4):559-568.
    [114]张国顺,洪青,马爱芝,等.富集液中六六六(γ-BHC)脱氯基因 的克隆、表达及降解试验[J].微生物学报,2005,45(1):44-47.
    [115]宋玉芳,宋雪英,张薇,等.污染土壤生物修复中存在问题的探讨[J].环境科学,2004,25(2):129-133.
    [116]胡枭,樊耀波,王敏健.影响有机污染物在土壤中的迁移、转化行为的因素[J].环境科学进展,1999,7(5):14-22.
    [117]杨小红,李俊,葛诚,等.微生物降解农药的研究新进展[J].微生物学通报,2003,30(6):93-96.
    [118]和文祥,蒋新,朱茂旭,等.酶修复土壤农药污染的研究进展[J].生态学杂志,2001,20(3):47-51.
    [119]Nawab A,Aleem A,Malik A.Determination of organochlotine pesticides in agricultural soil with special reference to y-HCH degradation by Pseudomonas strains[J].Bioresource rechnol,2003,88(1):41-46.
    [120]Rousseaux S,Soulas G.Harimann A.Plasmid localization of atrazine - degrading genes in newly described Chelato-Lacter and Arthrobacter strains[J].Fems Microbinl.Ecol.,2002,41(1):69-75.
    [121]Wenk M,Baumgartner T,Dobovsek J.et al.Rapid atrazine mineralization in soil slurry and moist soil by inoculation of an atrazine - degrading Pseudomonas sp.strain[J].Appl Microbiol.Biotechnol.,1998,49(5):624-630.
    [122]虞云龙,陈鹤鑫,樊德方,等.Alcaligenes sp.YF11菌对杀灭菊的降解机理[J].环境污染与防治,1998,20(6):5-7.
    [123]谢文明,韩大永,孟凡贵,等.蚯蚓对土壤中有机氯农药的生物富集作用研究[J].吉林农业大学学报,2005,27(4):420-423.
    [124]张宝贵,李贵桐,申天寿.威廉环毛蚯蚓对土壤微生物量及活性的影响[J].生态学报,2000,20(1):168-172.
    [125]Luepromchai E,Singer A C,Yang C H,et al.Interactions of earth-Worms with indigenous and bioaugmented PCB degrading bacteria[J].FEMS Microbiology Ecology,2002,41(3):191-197.
    [126] Singer A C, Jury W, Luepromchaia E, et al. Contributionof earth - orms to PCB bioremediation[J]. Soil Biology and Biochemistry, 2001, 33(6): 765- 776.
    [127] 庄绪亮. 土壤复合污染的联合修复技术研究进展[J]. 生态学报, 2007, 27 (11) : 4871- 4876.
    [128] Jiang X H, Yu W X, J iang J H, et al. Physical/ chemical remediation of contaminated soil[J]. Environmental Pollution and Control, 2006, .28(3): 210- 214.
    [129] Dadkhah D A, Akgerman A. Hotwater extraction with in situ wet oxidation: PAHs removal from soil[J]. Journal of Hazardous Materials, 2002, B93: 307- 320.
    [130] Flores R, Blass G, Dominguez V. Soil remediation by an advanced oxidative method assisted with ultrasonic energy[J]. Journal of Hazardous Materials, 2006, 10. 1016.
    [131] Millioli V S, Freire D D C, Cammarota M C. Petroleum oxidation using Fentonps reagent over beach sand following a spill[J]. Journal of Hazardous Materials, 2003, 103: 79- 91.
    [132] Goi A, Kulik N, Trapido M. Combined chemical and biological treatment of oil contaminated soil[J]. Chemosphere, 2006, 63: 1754-1763.
    [133] Schippers C, Geβner K, Mueller T, et al. Microbial degradation of phenanthrene by addition of a sophorolipid mixture[J]. Journal of Biotechnology, 2000, 83: 189- 198.
    [134] Pazos M, Sanroman M A, Cameselle C. Improvement in electrokinetic remediation of heavy metal spiked kaolin with the polarity exchange technique[J]. Chemosphere, 2006, 62: 817- 822.
    [135] Virkutytea J, Sillanpaa M, Latostenmaa P. Electrokinetic soil remediation-critical overview[J]. The Science of Total Environment, 2002, 289: 97- 121.
    [136]Macek T,Mackova M,Kas J.Exploitation of Plants for the Removal of Organics in Environmental Remediation[J].Biotechnology Anvances,2000,18(1):23-24.
    [137]朱雪梅,陶澍,林健枝.根际土壤中DDTs的残留与转化[J].环境化学,2004,23(2):157-162.
    [138]Wu S C,Cheung K C,Luo Y M,et al.Effects of inoculation of plant growth-promoting rhizobacteria on metal up take by Brassica juncea[J].Environmental Pollution,2006,140:124-135.
    [139]Narasimhan K,Basheer C,Bajic V B,et al.Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls[J].Plant Physiology,2003,132:146-153.
    [140]Robinson S L,Novak J T,Widdowson M A,et al.Field and laboratory evaluation of the impact of tall fescue on polyaromatic hydrocarbon degradation in an aged crestote-contaminated surface soil[J].Journal of Environmental Engineering-Asce,2003,129(3):232-240.
    [141]Chaineau C H,Morel J L,Oudot J.Biodegradation of fuel oil hydrocarbons in the rhizosphere of maize[J].J.Environ.Qual.,2000,29(2):569-578.
    [142]Liste H H,Felgentreu D,Crop growth,culturable bacteria,and degradation of petrolhydrocarbons(PCHs) in a long-term contaminated field soil[J].Applied Soil Ecology,2006,31:43- 52.
    [143]Xu S Y,Chen Y X,Wu W X,et al.Enhanced dissipation of phenenthrene and pyrene in spiked soils by combined plants cultivation[J].Science of the Total Environment,2006,363:206-215.
    [144]Huang X D,Ei-Alawi Y,Penrose D M,et al.A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils[J].Environmental Pollution,2004,130(3):465- 476.
    [145]Downie A.Fixing a symbiotic circle[J].Nature,1997,387:352-353.
    [146]Walton B T,Anderson T A.Microbial degradation of trichloroethylene in the rhizosphere:potential application to biological remediation of waste sites[J].Applied and Environmental Microbiology,1990,56:1012-1016.
    [147]Katayama A,Matsumura F.Degradation of organochlorine pesticides,particularly endosulfun,by Trichoderma harzianum[J].Environ.Toxical Chem,1993,12:1059-1065.
    [148]安凤春,莫汉宏,郑明辉,等.DDT及其主要降解产物污染土壤的植物修复[J].环境化学,2003,22(1):19-24.
    [149]Andersion TA,Guthrie EA,Walton BT.Bioremediation in the rhizosphere[J].Environ.Sci.technol.,1993,27(13),2630-2636.
    [150]Siciliano S D,et al.Plant- bacterial combinations to Phytoremediatc soil contaminated with high concentrations of 2,4,6trinitrotoluene[J].Environ Qual,2000,29(1):311.
    [151]马溪平,付保荣,李法云,等.植物-微生物联合修复污染土壤的研究[J].中国公共卫生,2005,21(5):572-573.
    [152]魏树和,周启星,王新,等.杂草中具重金属超积累特征植物的筛选[J].自然科学进展,2003,13(12):1259-1264.
    [153]林先贵,郝文英,施亚琴.三种除草剂对VA菌根真菌的侵染和植物生长的影响[J].环境科学学报,1991,11(4):439-444.
    [154]Menendez A,Martinez A,Chiocchio V,Venedikian N,Ocampoy JA,Godeas A.Influence of the insecticide dimethoate on arbuscular mycorrhizal colonization and growth in soybean plants[J].Int.Microbiol.,1999,2:43-45.
    [155]Schreiner PR,Bethlenfalvay GJ.Plant and soil response to single and mixed species of arbuscular mycorrhizal fungiunder fungicide stress[J].Appl.Soil Ecol.,1997,7(1):93-102.
    [156]杜森,高祥照.土壤分析技术规范[M].北京:中国农业出版社.2006.
    [157]孙曦等.植物营养与肥料[M].北京:中国农业出版社,2002.
    [158]Almquist,C.B.,Biswas,P.Appl.Cata.[J].A:General 2001,214-259.
    [159]Wang K H,Hsieh Y H.[J].Environ.Int.,1998,24:267-274.
    [160]Sivalingam G,Nagaveni K,Hegde M S,et al.[J].Appl.Catal.B:Environ,2003,45:237 38.
    [161]Ikeda,M.,Koide,N.,Hart,L.,et al.[J].Phys.Chem.C.,2008,112:6961-6967.
    [162]Huo,Y.,Bian,Z,Zhang,X.,et al.[J].Phys.Chem.C.,2008,112:6546-6550.
    [163]Su,W.,Zhang,Y.,Li,Z.,et al.[J].Langmuir,2008,24:3422-3428.
    [164]Wen S,Zhao J,Sheng G[J].Chemosphere,2002,46:871-877.
    [165]Zhao J,Wu K,Hidaka H[J].Chem.Soc.,Faraday Trans.,1998,94:673.
    [166]Garcia J C,Takashima K[J].Photochemistry and Photobiology A:Chemistry,2003,155:215-222.
    [167]Almquist,C.B.,Biswas,P.Appl[J].Catal.A:General 2001,214-259.
    [168]Cho S M,Choi W Y[J].Photochem.Photobiol.A:Chem.,2001,143:221-228.
    [169]Shang J,Chai M,Zhu Y F[J].Solid State Chem.,2003,174:104-110.
    [170]Zan L,Fa WJ,Wang S L.[J].Environ.Sci.Technol.,2006,40:1681-1685.
    [171]成绍鑫.腐植酸类物质概论[M].北京:化学工业出版社,2007.
    [172]Zhou,X.P.Chemical basis of Appliation of Humic acid[M]. 2007.
    [173]Cheng S X.Humic acid Materials General Intruduction[M].2007.
    [174]Jing Jia qian,Zeng Zhi qiang.[J].Chemosphere,2003,53:53-62.
    [175]Al-Qunaibit M H,Mekhemer W K.[J].Journal of Colloid and Interface Science,2005,283:316-321.
    [176]C.E.C.Souza,R.S.V.Nascimento[J].Therm.Anal.Cal.,2008.
    [177]Z.Fang.H.Shi.A.Gu Y.Feng[J].Mater Sci.2007,42:4603-4608.
    [178]Chen L,Tan X.,Ma H.[J].Mordern Chemical Industry.2002,22:88-91.
    [179]连海兰:周定国:尤纪雪.麦秸秆成分剖析及其胶合性能的研究[J].林产化学与工业,2005,25(01):69-72.
    [180]孙京敏,田在峰.光催化氧化法处理有机污染物的应用[J].河北环境科学,2001,2:45-47.
    [181]李光壁,陈文东.纳米二氧化钛悬乳体系光催化降解愈创木酚机理的研究[J].应用化工,2008,37(1):17-21.
    [182]席红安,方能虎,李中凯,等.SBA-15的TiO_2改性及其光催化降解对氯苯酚[J].化学学报,2002,60(12):2124-2128.
    [183]阎鹏飞,王建强,江欣,等.掺铁TiO_2纳米晶的制备及光催化性能研究[J].材料科学与工艺,2002,10(1):28-31.
    [184]魏刚,黄海燕,熊蓉春.纳米二氧化钛的光催化性能及其在有机污染物降解中的应用[J].现代化工,2003,23(1):20-23.
    [185]刘荣杰,胡宝林,卫志贤.超微细TiO_2粉光催化酸性粒子元青降解动力学研究[J].西北大学学报(自然科学版),2002,32(6):637-640.
    [186]黄琮,王良焱,徐悦华,等.TiO_2光催化氧化有机物的研究现状及展望[J].化学世界,2002,9:494-497.
    [187]Faust B C,Hoffmann M R.Photoinduced reductive dissolution of α-Fe_2O_3by bisulfite[J].Environ Sci Technol;1986,20(9):943-948.
    [188]Lelang J K,Bard A J.Photochemistry of colloidal semiconducting iron oxid polymorphys[J].Phys Chem.,1987,91(19):5076-5083.
    [189]李爱梅,朱亦仁,于昕,等.Fe_2O_3/UV/H_2O_2光催化法降解造纸废水的研究[J].安全与环境学报,2007,7(5):39-42.
    [190]王君,韩建涛,赵迪,等.Fe_2O_3掺杂TiO_2催化超声降解甲基橙溶液的研究[J].应用基础与工程科学学报,2003,11(4):345-351.
    [191]刘海鸥,肖举强,王建军.光催化降解二苯胺的研究[J].广东化工.2006,33(162):15-19.
    [192]赵春禄,王培霞,张鹏.光催化降解模拟室内挥发性有机污染物研究[J].环境工程学报,2008,2(2):249-252.
    [193]方靖淮,邵旭萍,袁莉,等.敏化光催化降解曙红Y染料的研究[J].南通大学学报(自然科学版).2006,5(2):4-6.
    [194]尚静,朱永法,徐自力,等.用TiO_2,ZnO及Fe_2O_3纳米离子光催化氧化庚烷的反应[J].催化学报,2003,24(5):369-373.
    [195]Hotchandani S,Kamat P V.Charge-transfer processes incoupled semiconductor systems,photochemistry andphotoelectrochemistry of the colloidal cadmium sulfide - zinc oxide system[J].Phys.Chem.,1992,96:6834-6839.
    [196]Schlautman MA,Morgan JJ.Effects of aqueous chemistry on the binding of polycyclic aromatic hydrocarbons by dissolved humic materials[J].Environ Sci Technol,1993,27:961-969.
    [197]陈耀华,葛成军,林伟.有机氯农药污染土壤的修复研究进展[J].华南热带农业大学学报,2006,12(4):54-58.
    [198]刘文通,张洪芹.太阳能在处理水、大气及土壤中有机污染物方面的应用[J].海岸工程,1995,14(3):13-18.
    [199]Romero E,Dios G,Mingorance M D,et al.Photodegradation of mecoprop and dichloprop on dry,moist and amended soil surfaces exposed to sunlight[J].ChemospHere,1998,37(3):577-589.
    [200]张利红,李培军,李雪梅,等.有机污染物在表层土壤中光降解的研究进展[J].生态学杂志,2006,25(3):318-322.
    [201]Zhang Lihong,Li Peijun,Gong Zongqiang,et al.Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO_2 under UV light[]].Journal of Hazardous Materials,2008(126):345-354.
    [202]Fan X.Z.,Lu B.Gong.Dynamics of solar light photodegradation behavior of atrazine on soil surface[J].Hazard.Mater,2005(117):75-79.
    [203]Zhao Xu,Quan Xie,Chen Shuo,et al.Photocatalytic remediation of γ-hexachlorocyclohexane contaminated soils using TiO_2 and montmorillonite composite photocatalyst[J].Journal of Environmental Sciences,2007(19):358-361.
    [204]Quan Xie,Niu Junfeng,Chen Shuo,et al.Effects of Fe_2O_3,organic matter and carbonate on photocatalytic degradation of lindane in the sediment from the Liao River[]]'.China Chemosphere,2003,52:1749-1755.
    [205]牛军峰,全燮,陈景文,等.低有机碳含量表层土中Fe_2O_3 对γ-666光解的催化作用[J].环境科学,2002,23(2):92-95.
    [206]许中坚,刘广深,刘维屏.土壤中溶解性有机质的环境特性与行为[J].环境化学,2003,22(5):427-431.
    [207]胡春华,邓先珍,汪茜.土壤污染修复技术研究综述[J].湖北林业科技,2005,544-547.
    [208]凌婉婷,徐建民,高彦征,等.溶解性有机质对土壤中有机污染物环境行为的影响[J].应用生态学报,2004,15(2):326-330.
    [209]Zhang Li hong,Li Pei jun,Gong qiang.Photochemical behavior of benzo[a]pyrene on soil surfaces under UV lightirradiation[J].Journal of Environmental Sciences,2006,18(6):1226-1232.
    [210]Wiltse C C,Rooney W L,Chen Z,et al.Greenhouse evaluation of agronomic and crude oil phytoremediation potential among alfalfa genotypes[J].Environ.Qual,1998,27:169-173.
    [211]Banks M K,Lee E,Schwab A P.[J].Environ.Qual,1999,28:294-298.
    [212]Binet P,Soil Bio.Biochem.[J].2000,32:2011-2017.
    [213]丁克强,骆永明,刘世亮,等.黑麦草对菲污染土壤修复的初步研究[J].土壤,2002,4:233-236.
    [214]Ryan Kmiya,Mary K Firestone.Phenanthrene degrader community dynamics in rhizosphere soil from a common annual grass[J].Environ.Qual,2000,29:584-592.
    [215]李睿华,管运涛,何苗,等.用美人蕉、香根草、荆三棱植物带处理受污染河水[J].清华大学学报,2006,46(3):366-370.
    [216]丁晓章,TRAPP Stefanl.汽油添加剂甲基叔丁基醚(MIBE)污染的植物修复[J].生态科学,2003,22(2):125-129.
    [217]高彦征.土壤多环芳烃污染植物修复及强化的新技术原理研究[D].杭州:浙江大学,2004.
    [218]E.L.Kruger,J.C.Anhalt,D.Sorenson,et al.Atrazine degradation in pesticide-contaminated soils[J].Phytoremediation of soil and water contaminants,American Chemical Society,Washington DC,1997.54-64.
    [219]Sung K,Corapcioglu M Y,Drew M C,et al.Plant contamination by organic pollutants in phytoremediation[J].Environ.Qual,2001,30:2081-2090.
    [220]曹恭,梁鸣早.氯—平衡栽培体系中植物必需的微量元素[J].土壤肥料,2004,4:25-29.
    [221]王鹏.含氯化肥的科学施用[J].农业与技术,2004,24(1):87-88.
    [222]浙江农业大学主编.植物营养与肥料[M].北京:中国农业出版社, 2002.
    [223]Elabd H,Jury WA,Cliath MM,Spatial variability of pesticide absorption parameters.Environ Sci Technol,1986,20:256-260.
    [224]巩宗强,李培军,王新.芘在土壤中的共代谢降解研究[J].应用生态学报,2001,12(3):447-450.
    [225]李顺鹏,蒋建东.农药污染土壤的微生物修复研究进展.土壤,2004,36(6):577-583.
    [226]张纪忠等.微生物分类学[M].上海:复旦大学出版社,1990.
    [227]东秀珠,蔡妙英,等.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [228]刘国生,等.微生物学实验技术[M].北京:科学出版社,2007.
    [229]陈晓东,常文越,邵春岩.土壤污染生物修复技术研究进展.环境保护科学,2001,27(107):23-25.
    [230]Arcangeli,Jean-Pierre,Arvin Erik.Biodegradation rates of aromatic contaminants in biofilm reactors.Water Scierce and Technology,1995,31:117-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700