用户名: 密码: 验证码:
局部带电球体沙粒电磁散射及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙尘环境下电磁波信号的准确传输是无线电通讯、沙尘暴遥感系统以及太空探测等通信技术应用中的一个关键问题,其中沙粒以及沙尘暴对入射电磁波的衰减和去极化效应直接影响对电磁波信号传输过程的准确分析,需要对由此产生的散射场开展准确计算。
     本学位论文针对局部带电球形沙粒对入射电磁波的散射和吸收问题,基于Rayleigh近似和Mie散射理论,导出了局部带电球形沙粒对入射电磁波的散射场;计算出沙粒表面电荷密度、电荷分布角对沙粒散射场强度、微分散射截面的影响。进而发现:沙粒表面电荷对入射电磁波散射场强度、微分散射截面均有不同程度的影响,其影响程度不仅与沙粒带电量、电荷分布角以及沙粒尺寸有关,还与入射波频率有关。
     在推导出局部带电球形沙粒的散射截面、吸收截面、消光效率后,计算了不同频率电磁波通过沙粒时的散射场分布、不同频率电磁波通过沙尘暴的衰减系数、以及线极化和圆极化毫米波在沙尘暴内传播过程中的交叉去极化程度。发现:带电沙尘粒子对频率大于100GHz电磁波的衰减几乎没有影响,在达到光频时其影响甚至可以忽略,但是,对频率低于100GHz的电磁波,带电沙尘粒子的影响尤为显著,其衰减系数随沙粒带电量(荷质比)的增加而增大。同时,局部带电的球形沙粒将导致入射电磁波的交叉去极化现象,由此产生的影响随荷质比和入射电磁波频率的增加而增强,随能见度的增加而减弱。局部带电球体粒子对电磁波的去极化影响是本学位论文首次给出的。
     在考虑沙粒带电以及沙粒间多次散射导出局部带电球形沙粒系统的消光率后,计算了不同频率入射波通过不同带电量两沙粒系统以及沙尘暴的消光率。结果表明:对于较低频率的入射电磁波通过带电沙粒系统时,沙粒表面电荷对需要考虑颗粒间多次散射的临界距离有显著影响,且多次散射与单次散射结果的差别随沙粒带电量的增加而增大,随入射电磁波频率的增加而减小;相同条件下,考虑多次散射效应比单次散射近似得到的衰减系数大,但是即使是特强沙尘暴其中沙尘颗粒间距也很小,因此计算沙尘暴对电磁波的衰减率时可以忽略沙粒间的多次散射影响。另外,沙粒带电会显著增加雷达后向散射系数。对于球形沙粒,由此导致的对测量结果的影响将随着带电量的增加更加显著。这些也是本学位论文首次给出的。
     这些结果可能有助于有关沙粒起电机制、沙粒表面电荷分布区确定的理论研究,并可能还会有助于沙尘暴环境下卫星通讯天线的合理设计和沙尘暴遥感测量结果的有效修正。
Electromagnetic signal attenuation in sandstorms is a key problem in the application of wireless communications, the remote sensing of sandstorms and the detection of outer space, the effects of electromagnetic wave attenuation and depolarization from the sand particles and the dust storms have a direct influence on the accuracy of electromagnetic signal reception. To accurately calculate the scattering field is an important precondition.
     Based on the Rayleigh Approximation and the Mie model, this dissertation is devoted to dealing with the problem concerning the scattering and absorption effects of electromagnetic wave (signed as EM wave in short) by the charged spherical sand particles in sandstorms, the scattering field of a partially charged spherical particles is derived and the effects of surface charge density and charge distribution angle on the spatial distribution of the scattering field intensity and these ones on the differential scattering across section are calculated. Then we found that the surface charge on the particles have different degrees of impact on the scattering field intensity and the differential scattering across section, and it is related to not only charge quality, distributed angle and the particle radius but also the frequency.
     After derived the expressions of scattering cross section, absorption cross section and extinction efficiency for the partially charged spherical sand, we discussed the attenuation efficiency of different frequency EM wave illuminate on the charged sand, the attenuation coefficient of different frequency EM wave propagating on the sandstorms, and the cross depolarization degrees for the linear/circular polarization wave transmitting in the dust storms. We found that the electric charges on the sand surface almost didn't affect the higher frequency EM waves'extinction, but it have a significant effect on the attenuation of the lower frequency EM waves, especially for the EM wave whose frequency lower than 100GHz, and the attenuation coefficients increase with the magnitude of charges carried by the dust characterized by the charge-to-mass ratio). In addition the partially charged spherical particles can make the incident microwave depolarized, and this effect increased with the increasing of particles'charge-to-mass ratio and the incident wave'frequency, but decreased with the increase of visibility. It is the first time to report the depolarization influence of partially charged spherical sand particles on the microwave.
     After considering the effect of multiple scattering and the charge on particle surface, we derived the T-matrix for the partially charged particles to compute the extinction efficiency for different frequency EM waves illumination on the partially charged two-sphere systems and propagating in the sandstorms with different visibility. The results showed that in a same condition, the results obtained from multiple scattering theory is larger than the one from single scattering hypothesis. This difference between multiple scattering and single scattering increased with the increasing of charge quantity, but decreased with the frequency increasing. However, even for a strong dust storm,the volume fraction of dust particles is still very small, so we can ignore the multiple scattering effects when we calculate the attenuation rate of electromagnetic wave propagation in the sandstorm.
     Moreover the charge on particle surface can largely enhance the radar back scattering cross section,for spherical grains, the influence on radar measurement results increased with the surface charge density increasing. These results in the thesis are firstly given.
     These results are helpful for the theoretical study to verify the sands' electrification mechanism and to confirm the charge distribution zone on the particle surface; moreover, they are particularly useful for the design of satellite communication channel and the effective correction of the results of sandstorms' remote sensing monitoring.
引文
1.Shao, Y.P., Physics and modeling of wind erosion.2007, Springer.
    2.Zheng, X.J., Mechanics of wind-blown sand movements.2009, Springer.
    3.Redmond, H.E., K.D. Dial, and J.E. Thompson, Light scattering and absorption by wind blown dust:Theory, measurement, and recent data. Aeolian Research,2010.2(1):p.5-26.
    4.何琴淑,沙尘暴的沙粒带电对电磁波传播的影响研究.2005,兰州大学博十学位论文:兰州.
    5.薄天利,沙丘场时空演化跨尺度动力学模型及其仿真研究.2010,兰州大学博十学位论文:兰州.
    6.Bagnold, R.A., The physics of blown sand and desert dunes, ed. Methuen.1941, London.
    7.董治宝,中国风沙物理研究五十年.中国沙漠,2005.25(3):p.293-305.
    8.Owen, P.R., The saltation of uniform sand in air. Journal of Fluid Mechanics,1964.20:p. 225-242.
    9.Ungar, J.E. and p.K. Haff, Steady state saltation in air. Sedimentology,1987.34:p. 289-299.
    10.Anderson, R.S. and P.K. Haff, Simulation of eolian saltation. Science,1988.241:p. 820-823.
    11.Huang, N., et al., Simulation of wind-blown sand movement and probability density function of liftoff velocities of sand particles. Journal of Geophysical Resarch,2006. 111: p. D20201.
    12.Schmidt, D.S. and R.S. Schmidt, Electrostatic force on saltating sand. Journal of Geophysical Resarch,1998.103:p.8997-9001.
    13.Yue, G.W. and X.J. Zheng, Electric field in wind-blown sand flux with thermal diffusion. Journal of Geophysical Resarch,2006.111(9):p. D16106.
    14.Zheng, X.J., L. Xie, and X.Y. Zou, Theoretical prediction of liftoff angular velocity distributions of sand particles in windblown sand flux. Journal of Geophysical Resarch, 2006. 111:p. D11109.
    15.岳高伟and郑晓静,热扩散和电场对风沙流发展过程的影响.应用数学和力学,2007.28(2):p.165-175.
    16.Kok, J.F. and N.O. Renno, Electrostatics in wind-blown sand. Physical Review Letters, 2008.100:p.014501.
    17.Zheng, X.J., N. Huang, and Y.H. Zhou, Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement. Journal of Geophysical Research-Atmospheres,2003.108(D10):p.
    18.Shinbrot, T. and H.J. Herrmann, Granular matter:static in motion. Nature,2008.451:p. 773-774.
    19.Xie, L., Y.Q. Ling, and X.J. Zheng, Laboratory measurement of saltating sand particles' angular velocities and simulation of its effect on saltation trajectory. Journal of Geophysical Resarch,2007.112:p. D12116.
    20.Zheng, X.J., N. Cheng, and L. Xie, A three-dimensional analysis on lift-off velocities of sand grains in wind-blown sand flux. Earth Surface Process Landform,2008.33:p. 1824-1838.
    21.Zheng, X.J., L. Xie, and Y.H. Zhou, Exploration of probability distribution of velocities of saltating sand particles based on the stochastic particle-bed collisions. Physics Letters A 2005.341:p.107-118.
    22.Wang, Z.T. and X.J. Zheng, A simple model for calculating measurements of straw checkerboard barriers(in Chinese). Journal of Desert Research,2002.22:p.229-230.
    23.郑晓静,薄天利,and谢莉,风成沙波纹的离散粒子追踪法模拟.中国科学G辑物理学力学天文学,2007.37(4):p.1-8.
    24.Bo, T.L., L. Xie, and X.J. Zheng, Numerical approach to wind ripple in desert. International Journal of Nonlinear Science & Numerical Simulation,2007.8(2):p. 223-228.
    25.Zheng, X.J., T.L. Bo, and W. Zhu, A Scale-Coupled Method for Simulation of the Formation and Evolution of Aeolian Dune Field. International Journal of Nonlinear Science & Numerical Simulation,2009.10(3):p.387-395.
    26.黄宁,et a1.,沙尘暴对无线电波的影响的研究.中国沙漠,1998.18(4):p.350-353.
    27.Phillips, C.E.S., Electrical and Other Properties of Sand. Nature,1910.84(2130): p. 255-261.
    28.黄宁and郑晓静,风沙流中沙粒带电现象的实验测试.科学通报,2000.45(20):p.2232-2235.
    29.李芳and屈建军,风沙电研究现状及展望.地球科学进展,2002.17(4):p.572-575.
    30.Farrell, W.M., et al., A simple electrodynamic model of a dust devil. Geophysical Research Letters,2003.30(20):p.2050.
    31.Zheng, X.J., N. Huang, and Y.H. Zhou, Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement. Journal of Geophysical Research-Space Physics,2003.108: p.4322.
    32.郑晓静,黄宁,and周又和,风沙运动的沙粒带电机理及其影响的研究进展.力学进展,2004.34(1):p.77-86.
    33.张鸿发, et al.,沙尘暴电效应的实验观测研究.地球物理学报,2004.47(1):p.47-54.
    34.屈建军,et al.,沙尘暴起电的风洞模拟实验研究.中国科学D辑,2005.33(6):p.593-601.
    35.Jackson, T.J. and W.M. Farrell, Electrostatic fields in dust devils an analog to Mars. IEEE transactions on Geoscience and Remote Sensing,2006.44(10):p.2942-2949.
    36.Zhou, Y.H., Q.S. He, and X.J. Zheng, Attenuation of electromagnetic wave propagation in sandstorms incorporating charged sand particles. Eur. Phys. J. E,2005.17:p.181-187.
    37.Bohren, C.F. and A.J. Hunt, Scattering of electromagnetic waves by a charged sphere. Canadian Journal of Physics,1977.55:p.1930-1935.
    38.Klacka, J. and M. Kocifaj, Scattering of electromagnetic waves by charged spheres and some physical consequences. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007.106(1-3):p.170-183.
    39.Zhou, J. and L. Xie, Effect of net surface charge on particle sizing and material recongnition by using phase doppler anemometry. Applied Optics,2011.50(3):p. 379-386.
    40.Rudge, W.A.D., On the electrification produced during the raising of a cloud of dust. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character,1914.90(618):p.256-272.
    41.Rudge, W.A.D., Atmospheric Electrification during South African Dust Storms. Nature, 1913.91(2263):p.31-32.
    42.Whitman V.E., Studies in the electrification of dust clouds. Physical Review,1926.28:p. 1287-1300.
    43.Shaw, P.E., The electrical charges from like solids. Nature,1926.118(2975):p.659-660.
    44.Shaw P E, J.N.C., Tribo-electricity and friction IV-Electricity due to air-blown particles. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character,1929.122:p.48-53.
    45.Debeau, D.E., The effect of absorbed gases on contact electrification. Physical Review A, 1944.66:p.9-16.
    46.Gill, E.W., Frictional electrification of sand. Nature,1948.4119:p.568-569.
    47.Gill, E.W. and G.F. Aifrey, Frictional Electrification. Nature,1949.163:p.172.
    48.Peterson, J.W., The influence of piezo-electrification on Tribo-electrification. physical Review 1949.76(12):p.1882-1883.
    49.Kunkel, W.B., The static electrification of dust particles on dispersion into a cloud. Journal of Applied Physics,1950.21:p.820-832.
    50.R., GR.L., A preliminary assessment of the effects of electrostatics on Aeolian process. In:Rep Planet Geol Program,1977-1978,NASATM 79729,1978:p.236-237.
    51.KanagyII, S.P. and C.J. Mann, Electrical properties of eaolian sand and silt. Earth-Science Review,1994.36:p.181-204.
    52.Yair, Y., Charge generation and separation process. Space Science Reviews,2008.137:p. 119-131.
    53.Freier, G.D., The electric field of a large dust devil. Journal of Geophysical Research,1960. 65:p.3504.
    54.Kamra, A.K., Measurements of the electrical properties of dust storms. Journal of Geophysical Research,1972.77:p.5856-5869.
    55.Zheng, X.J., L.H. He, and Y.H. Zhou, Theoretical model of the electric field produced by charged particles in windblown sand flux. Journal of Geophysical Resarch,2004.109:p. D15208.
    56.Peter, M.I., Contact charge accumulation and separation discharge. Journal of electrostatics, 2009.67:p.462-467.
    57.Ireland, P.M., The role of changing contact in sliding triboelectrification. Journal of Physics D:Applied Physics,2008.41(2):p.025305.
    58.Chul Hyun Park, J.K.P., Ho Seok Jeon,Byoung Chul Chun, Triboelectric series and charging properties of plastics using the designed vertical-reciprocation charger. Journal of electrostatics,2008.
    59.Duff, N. and D.J. Lacks, Particle dynamics simulations of triboelectric charging in granular insulator systems. Journal of electrostatics,2008.66(1-2):p.51-57.
    60.Lacks, D., N. Duff, and S. Kumar, Nonequilibrium Accumulation of Surface Species and Triboelectric Charging in Single Component Particulate Systems. Physical Review Letters, 2008.100(18).
    61.Kok, J.F. and D.J. Lacks, Electrification of granular systems of identical insulators. Physical Review E,2009.79:p.051304.
    62.鲁录义,et al.,一种风沙运动的颗粒动力学静电起电模型.物理学报,2008.57(11):p.6939-6945.
    63.Forward, K.M., D.J. Lacks, and R. Mohan Sankaran, Methodology for studying particle-particle triboelectrification in granular materials. Journal of electrostatics,2009. 67(2-3):p.178-183.
    64.Keith M. Forward, D.J.L., R.Mohan Sankaran, Charge segregation depends on particle size in triboelectrically charged granular materials. Physical Review Letters,2009.102:p. 028001.
    65.Ryde, J.W., Echo intensities and attenuation due to clouds, rain, hail, sand and dust storms at centimetre wavelengths. Rep.7831,General Electric company research Laboratories,Wembley,England,October 1941,1941.
    66.Gary, C., The Impact of Dust and Foliage on Signal Attenuation in the Millimeter Wave Regime. Proc. SPIE Vol. p.81-94, Atmospheric Propagation and Remote Sensing II, Anton Kohnle; Walter B. Miller; Eds.,1968.
    67.Goldhirsh, J., A parameter review and assessment of attenuation and backscatter properties associated with dust storms over desert regions in the frequency range of a to lOGHz. IEEE transactions on antennas and propagation,1982. AP-30(6):p.1121-1127.
    68.Ali, A.A., Millimeter wave propagation in arid land:the effect of rain and sand storms. International Journal of Infrared and millimeter waves,1986.7(4):p.583-598.
    69.Ali, A., M. Hassan, and M. Alhaider, Experimental studies of terrestrial mm-wave links-a review part 1:Attenuation due to atmospheric particles. Journal of King Saud University-Engineering Science,1986.12(2):p.197-212.
    70. Williams, K., Laboratory and field measurements of the modification of radar backscatter by sand. Remote sensing of environment,2004.89(1):p.29-40.
    71.A1-Hafid, H.T., S.C. Gupta, and M. Ibrahim, Propagation of microwave under adverse sand storm conditions of Iraq. In:Proc North American Radio Science Meeting, URSI F.5 AP-S 1980,1980.
    72.A1-Hafid, H.T., et al., Study of microwave propagation under adverse dust storm conditions.3rd World Telecommunication Policy Forum,2.3.7.1-2.3.7.3,1979.
    73.A1-Hafid, H.T., S.C. Gupta, and K. Buni, Effect of adverse sand-storm media on microwave propagation. Proc. National Radio Science Meeting, URSI F.8,1979.256.
    74.陈祥占,从海湾战争看沙暴对无线电通信的影响.电波与天线,1991.6:p.2.
    75.Mohammed, A.A., Radio wave propagation into sandstorms system design based on the-years visibility data in Riyadh, Saudi Arabia. International Journal of Infrared and millimeter waves,1986.7(9):p.1339-1359.
    76.Chu, T.S., Effect of sandstorms on microwave propagation. Bell System Technical Journal, 1979.58:p.549-555.
    77.Haddad, S., M.J.H. Salman, and R K. Jha, Effects of dust/sand storms on some aspects of microwave propagation. In:Proc. Ursi Commission F Symposium. Louvain-la-Neuve, Belgium:ESA publication SP-194,1983:p.153-161.
    78.Rafuse, R.P., Effects of Sandstorms and Explosion-Generated Atmospheric Dust on Radio Propagation. Technical Report Number DCA-16, Massachusetts Institute of Technology Lincoln Laboratory,1981.
    79.Ali, A.A., Effect of particle size distribution on millimeter wave propagation into sandstorms. International Journal of Infrared and millimeter waves,1986.7(6):p.857-868.
    8O.Ahmed, A.S., Role of particle-size distributions on millimeter-wave propagation in sand/dust storms. IEE proceedings 1987.134(1):p.55-59.
    81.Abdulla, S.A.A., M.A.-R. Hussain, and M.C. Mona, Particle size distribution of Iraqi sand and dust storms and their influence on microwave communication systems. IEEE transactions on antennas and propagation,1988.36(1):p.114-126.
    82.Ahmed, L.Y., Microwave propagation through sand and dust storms. PHD, university of Newcastle Upon Tyne, UK,1976.
    83.Ghobrial, S.I., Effects of sandstorms on microwave propagation. In:IEEE National Telecomms Conf., Houston, Texas, (IEEE,1980),,1980:p.4351-4354.
    84.Ansari, A.J. and B.G. Evans, Microwave propagation in sand and dust storms. IEE Proceedings, Part F-Communications, Radar and Signal Processing,1982.129 pt.F(5): p.315-322.
    85.Sharif, S.M. and S.I. Ghobrial, X-Band Measurements of Dust Dielectric Constant. Proc. IRSI Commission F, Symp., Belgium,1983:p.143-14.
    86.Bader, S.J.A. and M.M. Dawoud, Measurements of the complex refractive index of soils and air-borne particles. Proc. URSI Commission F 1983 symposium, Louvain, Belgium, 1983:p.149-152.
    87.Yan, Y, Multiple scattering solution of millimeter wave propagation in strong sandstorm. International Journal of Infrared and Millimeter Waves,2001.22(2):p.361-371.
    88.吴振森,由金光,and杨瑞科,激光在沙尘暴中的衰减特性研究.中国激光,2004.31(9):p.1075-1080.
    89.杨瑞科,et al.,沙尘暴多重散射对毫米波衰减影响研究.电波科学学报,2008.23(3):p.530-534.
    90.Gao, Z.W., Y.H. Zhou, and X.J. Zheng, Monte Carlo simulation of the electromagnetic wave propagation in the duststorm. Science in China Series G:Physics, Mechanics & Astronomy,2008.51(8):p.1001-1009.
    91.Tsang, L., C.E. Mandt, and K.H. Ding, Monte Carlo simulations of the extinction rate of dense media with randomly distributed dielectric spheres based on solution of maxwell's equations. Optics Letters,1993.17(5):p.314-316.
    92.Elabdin, Z., et al., Mathematical model for the prediction of microwave signal attenuation due to dust storm. Progress In Electromagnetics Research M,2009.6:p.139-153.
    93.Ali, A.A. and M.A. Alhaider, Millimeter wave propagation in Ari Land-a field study in Riyah. IEEE transactions on antennas and propagation,1992.40(5):p.492-499.
    94.董庆生,赵振维,and丛洪军,沙尘引起的毫米波衰减.电波科学学报,1996.11(2):p.29-32.
    95.杨德保,et al.,沙尘暴.2009,气象出版社.
    96.Ge, J., et al., Effects of dust storms on microwave radiation based on satellite observation and model simulation over the Taklamakan desert. Atmospheric Chemistry and Physics, 2008.8:p.4903-4909.
    97.A.石丸,随机介质中波的传播和散射.1986,科学出版社.
    98.Bohren, C.F. and D.R. Huffman, eds. Absorption and Scattering of Light by Small Particles.1983, John Wiley & Sons Inc.82-103.
    99.Lorenz, L., Lysbevagelsen I og uden for en haf plane lysbolger belyst Kulge. Vidensk.Selk.Ske.,1890.6:p.1-62.
    100. Mie, G., Beitrage zur optik trober Medien,speziell Kolloidaler Metallosungen. An-nalen der Physik,1908.25:p.377-452.
    101. Gouesbet, G. and G. Grehan, Generalized Lorenz-Mie theory for assemblies of spheres and aggregates. Journal of Optics A: Pure and Applied Optics,1999.1:p.706-712.
    102.T.Pahtz, H.J.Herrmann, and T.Shinbrot, Why do particle clouds generate electric charge? Nature Physics,2010.6: p.364-368.
    103. McEwan, N.J. and S.O. Bashir, Microwave propagation in sand and dust storms:The theoretical basis of particle alignment. Proc of ICPA,1983,Norwich,1983:p.40-44.
    104. Ghobrial, S.I., Microwave attenuation and cross polarization in dust storms. IEEE transactions on antennas and propagation,1987. AP-35(4):p.418-425.
    105. Asano, S. and G. Yamamoto, Light scattering by a spheroidal particle. Applied Optics, 1975.14:p.29-49.
    106. Asano, S. and G. Yamamoto, Light scattering properties of spheroidal particles. Applied Optics,1979.18:p.712-723.
    107. Asano, S. and G. Yamamoto, Light scattering by randomly oriented spheroidal particles. Applied Optics,1980.19:p.962-974.
    108. Waterman, P.C., Matrix formulation of electromagnetic scattering. Proceedings of the IEEE,1965.53(8):p.805-812.
    109. Waterman, P.C., New formulation of acoustic scattering. The Journal of the Acoustical Society of America,1969.45(6):p.1417-1429.
    110. Waterman, P.C., Symmetry, unitarity and geometry in electromagnetic scattering. Physical Review D,1971.3:p.825-839.
    111. Mishchenko, M.I., Light scattering by randomly oriented axially symmetric particles. Journal of the Optical Society of America A,1991.8: p.871-882.
    112. Mishchenko, M.I., L.D. Travis, and A.A. Lacis, Scattering, absorption, and emission of light by small particles.2004.
    113. Mishchenko, M.I., et al., Comprehensive T-matrix reference database:A 2007-2009 update. Journal of Quantitative Spectroscopy and Radiative Transfer,2010.111(4):p. 650-658.
    114. Doicu, A. and T. Wriedt, Extended boundary condition method with multipole sources located in the complex plane. Optics Communications,1997.139:p.85-91.
    115. Wriedt, T. and A. Doicu, Light scattering from a particle on or near a surface. Optics Communications,1998.152:p.376-384.
    116. Wriedt, T., A review of elastic light scattering theories. Particle & Particle Systems Characterization,1998.15:p.67-74.
    117. Thomas, W., Generalized multipole techniques for electromagnetic and light scattering. 1999, Elsevier Science Ltd.
    118. Doicu, A. and T. Wriedt, Null-field method with discrete sources to electromagnetic scattering from layered scatterers. Computer Physics Communications,2001.2001:p. 136-141.
    119. Doicu, a. and T. Wriedt, T-matrix method for electromagnetic scattering from scatterers with complex structure. Journal of Quantitative Spectroscopy& Radiation Transfer,2001. 70:p.662-673.
    120. Thomas, W., Using the T-Matrix method for light scattering computations by Non-axisymmetric Particles:Supperellipsoids and Realistically Shaped Particles. Particle & Particle Systems Characterization,2002.19:p.256-268.
    121. Wriedt, T., Review of the null-field method with discrete sources. Journal of Quantitative Spectroscopy and Radiative Transfer,2007.106(1-3):p.535-545.
    122. Hong, G, et al., Microwave scattering properties of sand particles: Application to the simulation of microwave radiances over sandstorms. Journal of Quantitative spectroscopy & Radiative Transfer,2008.109:p.684-702.
    123. Yee, K.S., Numerical solution of initial boundary value problems incolving Maxwell's equations in isotropic media. IEEE transactions on antennasand propagation,1966.14:p. 302-307.
    124. Schneider, B.B., Tex FDTD database (http://www.fdtd.org).
    125.Shlager, K.L. and J.B. Schneider, A selective survey of the finite-difference time domain literature. IEEE antennas & propagation Magnzine 1995.37:p.39-57.
    126. Ataflove, Advancesin FDTD techniques and applications in photoni, In:photonics.2007.
    127. Volakis, J.L., A. Chatterjee, and L.C. Kempel, Review of the finite element method for three dimensional electromagnetic scattering. Journal of the optical society of America A, 1994.11:p.1422-1433.
    128.Ludwig, A.C., The generalized multipole technique. Computer Physics Communications, 1991.68(1-3):p.306-314.
    129.Purcell, E.M. and C.R. Pennypacker, Scattering and absorption of light by nonspherical dielectric grains. Astrophysical Journal,1973.186:p.705-714.
    130. Draine, B.T. and P.J. Flatau, Discrete-dipole approximation for scattering calculations. Journal of the Optical Society of America A,1994.11:p.1491-1499
    131. Yurkin, M. and A. Hoekstra, The discrete dipole approximation:An overview and recent developments. Journal of Quantitative Spectroscopy and Radiative Transfer,2007. 106(1-3):p.558-589.
    132. K.Lumme and J.Rahola, Light scattering by porous dust particles in the discrete-dipole approximation. The Astrophysical journal,1994.425:p.653-667.
    133.Lakhtakia, A. and G.M. Mulholland, On two numerical techniques for light-scattering by dielectric agglomerated structures. Journal of Research of the National Institute of standards and technology,1993.98:p.699-716.
    134.Mishchenko, M.I., Electromagnetic scattering by nonspherical particles: A tutorial review. Journal of Quantitative Spectroscopy and Radiative Transfer,2009.110(11):p.808-832.
    135.何琴淑and周又和,带电椭球粒子对电磁波的散射.兰州大学学报,2004.40(2):p.25-30.
    136.杨儒贵,高等电磁理论.2008:高等教育出版社.
    137.熊皓,无线电波传播.2000:电子工业出版社.
    138. Louis, J.I., Depolarization on earth-space paths, in propagation effects handbook for satellite systems design.1989, NASA reference publication.
    139. Ariel, C., N. Jehuda, and L. William, An experimental determination of the depolarization of scattered laser light by atmospheric air Journal of applied meteorology, 1969.8:p.952-954.
    140. Kenneth, S., Depolarization of laser light backscattered by artificial clouds. Journal of applied meteorology,1974.13:p.923-933.
    141.Taur, R.R., Rain depolarization measurement on a satellite-earth propagation path at 4GHz. IEEE transactions on antennas and propagation,1975.23(6):p.854-858.
    142. Dilworth, I.J. and B.G. Evans, Preliminary results of linear/Circular polarisation on a 18km.11.6GHz Rdio link. Electronics Letters,1976.12(23):p.618-620.
    143.Maher, B.O., P.J. Murphy, and M.C. Sexton, A theoretical model of the effect of wind-gusting on rain-induced cross-polarization. Annals of Telecommnications,1977. 32(11-12):p.404-408.
    144. Evans B.G., N.K.U., A.R.Holt, Two new approaches to the calculation of rain induced attenuation and cross polarization. Ann. telecommunic,1977.32(11-12):p.398-403.
    145.Uzunoglu, N.K., B.G. Evan, and A.R. Holt, Scattering of electromagnetic radiation by precipitation particles and propagation characteristics of terrestrial and space communication systems. Proc. IEE Institution of Electrical Engineers,1977.124(5):p. 417-424.
    146. Cesar, A., Separation of rain and ice contributions to depolarization on slant path links. ISAPE 2000:international symposium on antennas, propagation and EM theory No5, Beijing, CHINE (15/08/2000) 2000:p.29-32.
    147. Hendry, A. and G.C. Mccormick, radar observations of the alignment of precipitation particles by electrostatic fields in thunderstorms. Journal of Geophysical Resarch,1976. 81(30):p.5353-5357.
    148. Watson, P.A., D.P. Haworth, and N.J. Mewan, relationship between atmospheric electricity and microwave radio propagation, nature 1977.266:p.21.
    149.Bashir, S.O., A.W. Dissanayake, and N.J. McEwan, Prediction of forward scattering and cros-polarization due to dry and moist haboob and sandstorms in Sudan in the 9.4GHz band. Telecommunicaiton Journal 1980.47:p.462-467.
    150.Ghobrial, S.I., Crosspolarization and attenuation in earth-satellite links due to dust storms. IEEE Antennas and Propagation,1984.2(Ch2043-8/84/0000-0633):p.633-636.
    151.Ghobrial, A.I. and S.M. Sharief, Microwave attenuation and cross polarization in dust storms. IEEE transactions on antennas and propagation,1987. AP-35(4):p.418-425.
    152.尹文言and肖景明,毫米波在沙尘暴中传播的交叉去极化效应.西北工业大学学 报,1991.8(2):p.226-233.
    153. Erdenekhuu, N., Microwave attenuation due to dust and sand storm in earth-satellite link. IEEE Strategic Technology,2007. IFOST 2007. International Forum on 2007(3-6 Oct.2007):p.599-601
    154. Bruce, A.A., Aerosols, Cloud Microphysics, and Fractional Cloudiness. Science,1989. 245(4923):p.1227-1230.
    155.Breon, F.-M., D. Tanre, and S. Generoso, Aerosol Effect on Cloud Droplet Size Monitored from Satellite. Science,2002.295(5556):p.834-838.
    156. Sassen, K., et al., Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results. Geophys. Res. Lett.,2003.30(12):p.1633,.
    157. DeMott, P.J., et al., African dust aerosols as atmospheric ice nuclei. Geophysical Research Letters,2003.30(14):p.1732.
    158. Twomey, S., Aerosols, clouds and radiation. Atmospheric Environment, Part A. General Topics,1991.25(11):p.2435-2442.
    159. Ackerman, S.A., Remote sensing aerosols using satellite infrared observation. Journal of Geophysical Research-Space Physics,1997.102(D14):p.17069-17080.
    160.Jianping Huang, J.G., Fuzhong Weng, Detection of Asia dust storms using multisensory satellite measurements. Remote sensing of environment,2007.110:p.186-191.
    161.Legrand, M.P.-f., A.,&N'Doume, Satellite detection of dust using the IR imagery of meteosat,1. infrared difference dust index. Journal of Geophysical Research-Space Physics,2001.106:p.18251-18274.
    162. Parata, A.J., Observations of volcanic ash clouds in the 10-12 micrometer window usoing AVHRR/2 DATA. International Journal of Remote Sensing,1989.10:p.751-761.
    163. Parata, A.J. and I.F. Grant, Retrieval of microphysical and morphological properties of volcanic ash plumes from satellite data application to Mt. Ruapehu,New Zealand. Quarterly Journal of the Royal Meteorological Society,2001.127:p.2153-2179.
    164.曾亮and金亚秋,随机介质中的矢量辐射方程.物理学进展,1990.10(1):p.57-99.
    165.Schuster, A., Radiation Through a Foggy Atmosphere. Astrophysical Journal,1905.21:p. 1.
    166. Jing, Y.Q. and J.A. Kong, Passive and active remote sensing of atmospheric precipitation. Applied Optics,1983 22:p.2535-2545.
    167. Jing, Y.Q., Information of Electromagnetic Scattering and Radiative Transfer in Natural Media.2000, Beijing:Science Press.
    168. Jin, Y.Q., ed. Wave Propagation, Scattering and Emission in Complex Media.2004, China Science Press.
    169.Tsang, L. and J.A. Kong, Theory for thermal microwave emission from a bounded medium containing spherical scatters. Journal of Applied Physics,1977.48(8):p. 3593-3598.
    170. Michael, D.K., et al., aerosol size distributions obtained by inversion of spectral optical depth measurements. Journal of the Atmospheric Sciences,1978.35:p.2153-2167.
    171. Reagan, J.A., et al., Determination of the Complex Refractive Index and size distribution of Atmospheric particulates from bistatic-Monostatic Lidar and solar Radiometer Measurements. Journal of Geophysical Research-Space Physics,1980.85(c3):p. 1591-1599.
    172. D., K.J., Stable analytical inversion solution for processing lidar returns. Applied optics, 1981.20(2):p.211-220.
    173.Albert, A., R. Maren, and W. Claus, Measurement of atmospheric aerosol extinction profiles with a raman lidar. Optics Letters,1990.15(13):p.746-748.
    174. Pandithurai, G., et al., Aerosol size distribution and refractive index from Bistatic lidar angular scattering measurements in the surface layer. Remote Sensing of Environment, 1996.56:p.87-96.
    175.Christophe Verhaege, V.S., Pascal Personne, Retrieval of complex refractive index and size distribution of spherical particles from Dual-Polarization Polar Nephelometer data. Journal of Quantitative Spectroscopy and Radiative Transfer,2009.110(14-16):p. 1690-1697.
    176.Weng, F.Z., A multi-layer discrete-ordinate method for vector radiative transfer in a vertical-inhomogeneous,emitting and scattering atmosphere,I theory. Journal of Quantitative Spectroscopy and Radiative Transfer 1992.47:p.19-33.
    177. Weng, F.Z., A multi-layer discrete-ordinate method for vector radiative transfer in a vertical-inhomogeneous,emitting and scattering atmosphere,Ⅱ Applied. Journal of Quantitative Spectroscopy and Radiative Transfer 1992.47:p.35-42.
    178.田彦伟and崔晓娜,三维拉普拉斯方程的求解.安阳师范学院学报,2007.5:p.3-5.
    179.金亚秋,电磁散射和热辐射的遥感理论.1998:科学出版社.
    180. David, L., NRL Plasma Formulary. Naval Research Laboratory,1978.
    181.田贻丽,谢利利,and徐如瑜,粉尘浓度测量的研究.重庆大学学报,2003.26(6):p.30-31.
    182. Hong, G., et al., Microwave scattering properties of sand particles:Application to the simulation of microwave radiances over sandstorms. Journal of Quantitative Spectroscopy and Radiative Transfer,2008.109(4):p.684-702.
    183. He, Q.S., Y.H. Zhou, and X.J. Zheng, Effects of charged sand on electromagnetic wave propagation and its scattering field. Science in China:Series G Physics, Mechanics & Astronomy,2006.49(1):p.77-87.
    184. Xu, Y.L., Electromagnetic scattering by an aggregate of spheres. Applied Optics,1995. 34(21):p.4573-4588.
    185.Xu, Y.L., Calculation of the Addition Coefficients in electromagnetic Multisphere scattering theory. Journal of Computational physics,1996.127:p.285-298.
    186. Xu, Y.L. and B. A.S.Gustafson, An analytical solution to electromagnetic multisphere-scattering-the scattering formulation used in codes gmmOlf.f and gmmOls.f.
    187.Tsang, L., et al., Scattering of electromagnetic waves:Numerical Simulations.2001, Wiley-Interscience.
    188. Chern, R.-L., X.-X. Liu, and C.-C. Chang, Particle plasmons of metal nanospheres: Application of multiple scattering approach. Physical Review E,2007.76(1).
    189.Liu, C. and A.J. Bard, Electrostatic electrochemistry at insulators. Nature Materials,2008. 7(6):p.505-509.
    190. Liu, C.Y. and A.J. Bard, Electrons on dielectrics and contact electrification. Chemical Physics Letters,2009.480(4-6):p.145-156.
    191. Liu, C.-y. and A.J. Bard, Electrostatic electrochemistry:Nylon and polyethylene systems. Chemical Physics Letters,2010.485(1-3):p.231-234.
    192. Kong, J.A., Electromagnetic wave theory.2003:Wiley-Interscience.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700