用户名: 密码: 验证码:
多芳基环戊二烯C-C键选择性断裂反应及产物发光性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
C-C键断裂是有机合成反应的重要途径之一。实现C-C键的选择性断裂,无论是对于定向合成有机中间体,还是开发新的有机合成方法都具有重要意义。本论文以环戊二烯化合物为研究对象,以合成有机光电功能化合物为研究目标,在合成一系列多芳基环戊二烯的基础上,研究了不同氧化剂、催化剂和取代基的影响下环戊二烯环C-C键的选择性断裂反应;开拓了利用多芳基取代环戊二烯分别合成多烯酮化合物、萘衍生物以及四氯合铁吡喃盐化合物的简便方法,并对三类化合物的光电性能进行了表征。合成反应实现了环戊二烯环C-C键的选择性断裂和原料化合物有效的光电功能化,拓展了环烯烃化合物在有机合成和光电材料领域的应用。论文主要的研究内容包括以下部分:
     1多芳基取代环戊二烯的合成及其荧光性能表征。合成了10种多芳基取代的环戊二烯原料化合物,并对这类化合物的单晶结构进行了表征;研究了化合物的荧光性能,结果显示多芳基环戊二烯具有聚集诱导荧光发射增强效应(AIEE)和溶剂诱导荧光发射性质,表明这类化合物在光电材料领域具有潜在的应用价值。
     2基于多芳基取代环戊二烯环Csp2-Csp3,键断裂反应和金属还原反应制备多烯酮化合物的研究。利用酸催化的环戊二烯环Csp2-Csp3键断裂反应合成了系列α-活性吡喃盐,在此基础上开发了金属还原吡喃盐的α-位二聚反应;研究结果显示,非活性吡喃盐的二聚产物结构因取代基的位置不同而不同,但α-活性吡喃盐均可通过6,6'-儿聚吡喃中间体的Claisen重排反应生成癸四烯-1,10-二酮化合物,从而获得了一条由环戊二烯化合物经吡喃盐中间体到多烯酮化合物的有效合成途径;对合成的三种产物进行了发光性能表征,结果显示多苯基取代癸四烯二酮化合物具有结晶诱导发光性质(CIE);紫外吸收实验和分子单晶结构分析表明,聚集态分子内的弱作用(C-H…π和π-π)限制了多烯酮分子的构象变化,是引起多烯酮化合物在晶态荧光发射增强的原因。
     3多芳基环戊二烯环Csp2-Csp2键的H+加成及偶合反应研究。研究了H+对多芳基取代环戊二烯Csp2-Csp2键的氧化加成反应,合成了三种室温下稳定的环戊烯高氯酸盐化合物;对比了不同取代基的环戊二烯化合物与质子酸之间的反应,证明甲氧基对环戊烯盐化合物的合成具有导向作用和结构稳定作用;稳定性研究显示,环戊烯盐化合物除了在溶剂中会发生分解反应生成原料环戊二烯化合物外,在乙腈溶剂中环戊烯盐化合物还会进一步发生偶合反应,生成多芳基萘化合物;研究了多芳基萘化合物的电致发光性能,显示多芳基萘化合物是良好的蓝色电致发光材料。
     4三氯化铁催化氧化多芳基环戊二烯环Csp2-Csp2键断裂合成四氯合铁吡喃盐荧光化合物。研究了三氯化铁催化氧化环戊二烯环Csp2-Csp2键的断裂反应,探讨了可能的反应机理,合成了五种四氯合铁吡喃盐化合物,并通过X-射线单晶衍射技术确定了产物结构;性能表征显示,四氯合铁吡喃盐具有水溶性,并且在水溶液中具有良好的荧光发射;同时,四氯合铁抗衡阴离子的水解能力使四氯合铁吡喃盐具有一定的抗碱解性质,从而使吡喃阳离子的稳定性得到提高;利用四氯合铁毗喃盐的水溶液,成功地实现了对Hela细胞的荧光染色标识。
Selective cleaving C-C bond is one of the most important reactions in organic synthesis, and thus becomes hot topics both in the fields of target-oriented organic synthesis and methodology development. In current research, organic photo-electric functional compounds were designed based on selective C-C bond cleavage of cyclopentadiene compounds, and various influence factors including oxidants, catalysts and substituents were considered. Three synthetic routes originated from cyclopentadiene compounds were developed in term with three different luminescent compounds:polyketenes, pyrylium tetraferrichlorate and naphthalene derivates. The products with conjugated structure perform good luminescence property, such as aggregation induced emission (AIE) and electroluminescence emission (EL). The study centered the selective C-C bonds cleavage of cyclopentadiene rings consists of four parts as below:
     1Synthesis and aggregation induced emission enhancement (AIEE) property of poly-aryl substituted cyclopentadienes. A series of poly-aryl substituted cyclopentadienes were synthesized and carefully characterized. The AIEE property of these materials were investigated and discussed in term with molecular configuration. It is proposed that the C-H-…π intereaction fixed nonplanar molecular structure account for their AIEE performance.
     2Synthesis of polyketene derivates via Csp2-Csp3bonds cleavage of cyclopentadiene derivates and metal reduction of pyrylium. Metal reduction of a-free pyrylium which were prepared by perchlorates catalyzed Csp2-Csp3bonds cleavage reaction of cyclopentadiene derivates, a series of polyketene compounds were obtained via Claisen rearrangement of dimerization intermediates6,6'-bipyran. However, metal reduction of unfree pyrylium lead to different dimmers determined by substituents. The X-ray single crystal analysis indicates intramolecular interactions (C-H…π, π-π) play the key role on crystallization induced emission (CIE) property of the products. This result was demonstrated by their variational UV absorption spectra.
     3Addition of H+on Csp2-Csp2bonds of p-methoxyphenyl substituted cyclopentadiene compounds led to cyclopentaenyl carbeniums togethering with their solvent-induced-degeneration reactions. A series of room-temperature stable cyclopentaenyl carbenium were produced by H+addition Csp2-Csp2bonds of cyclopentadiene rings. The p-methoxyphenyl substituent was supposed to guide the reaction and stabilized the carbocations. The planar five-member ring determined by X-ray single crystal analysis defined them as the carbeniums. These carbeniums degenerated in diverse approaches while dissolving in different polarity solvents. It is notable that in acetonitrile they converted to naphthalene derivates. which have delivered superb blue EL emission.
     4Hexahydrated ferric chloride catalyzed Csp2-Csp2bonds cleavage of poly-aryl substituted cyclopentadienes to synthesize pyrylium tetrachloroferrates. By oxygen insertion of Csp2-Csp2bonds, the cyclopentadiene rings expanded to pyrylium salts. Hexahydrated ferric chloride plays multiple roles in reaction, including catalyst, oxidant and reactant. Owing to the counter anion of tetrachloroferrate, the fluorescent pyrylium salts are water-soluble and stability-enhanced, which can endure alkali erosion. The cell-staining experiments of the pyrylium salts were successfully preceded on Hela cell.
引文
[1]张桂华.国内外双环戊二烯的应用及市场分析[J].产业市场,2008(16):16-20.
    [2]辛炳炜,陈玉琴,张秀玲.环戊二烯的应用与开发[J].化学上程师,2000(77):58-59.
    [3]周劲松,冯渐超,张志勇.环戊二烯合成巡航导弹用高密度烃燃料[J].化学推进剂与高分子材料,2003(1):17-21.
    [4]上磊,邹吉军,孔京,等.高密度燃料三环戊二烯加氢反应历程[J].化工学报,2009(60):912-917.
    [5]李振铎.乙叉降冰片烯合成条件优化[J].吉林石油化上,1996(1):14-17.
    [6]尹荣望,唐功勋,谢宝汉.以环戊二烯为原料合成高级酯[J].兰州大学学报(自然科学版),1987(23):78-81.
    [7]Kostjuk S V, Radchnko A V, Ganachaud F O. Controlled Cationic Polymerization of Cyclopentadiene ith B(C6F5)3 as a Coinitiator in the Presence of Water[J]. Journal of Polymer Science:Part A:Polymer Chemistry,2008,46:4734-4747.
    [8]林宗基.结构加成水解法合成二聚环戊二烯改性不饱和聚酯[J].福州大学学报:自然科学版,2000,28(4):99-102.
    [9]刘德挥,铁宏.用环戊二烯合成涂料用树脂[J].现代涂料与涂装,1996(3):14-19.
    [10]赵孝友,鲍俊如.环戊二烯及其在涂料/胶粘剂中的应用[J].化学与粘合,1997(4):233-236.
    [11]尹荣望.环戊二烯综合利用之五—双环戊二烯与醇类合成系列醚类的研究[J].精细石油化工1989(2):31-32.
    [12]黄致喜.环戊二烯及其二聚体在合成香料中应用[J].上海化工,1986:43-45.
    [13]刘莉.基J:六氯环戊二烯的氯代化合物的合成及表征[D].陕西:陕西师范大学.2007.
    [14]Oconnor J M. Ring Slippage Chemistry of Transition-Metal Cyclopentadienyl and Indenyl Complexes[J]. Chem. Rev.,1987,87:307-318.
    [15]Field L D, Lindall C M, Masters A F. Penta-Arylcyclopentadienyl Complexes[J]. Coor. Chem. Rev., 2011,255:1733-1790.
    [16]Mamedova E G, Klabunovskii E I. Asymmetric Diels-Alder Reactions of Cyclopentadiene in the Synthesis of Chiral Norbornene Derivatives[J]. Russ. J. Org. Chem.,2008,44:1097-1120.
    [17]单继红.高氯酸银存在下多苯基环戊二烯碳-碳键断裂反应的研究[D].大连:大连理工大学化工学院,2002.
    [18]李新成.过渡金属盐均相氧化多取代环戊二烯反应研究[D].大连:大连理上大学化工学院,2006.
    [19]贡卫涛.氧气液相氧化取代环戊二烯合成吡喃盐的研究[D].大连:大连理工大学化工学院,2006.
    [20]Alparone A. Ab Initio and DFT Anharmonic Spectroscopic Investigation of 1,3-Cyclopentadiene[J]. Chem. Phys.,2006,327:127-136.
    [21]Gonzales J M, Barden C J, Brown S T, et al. Cyclopentadiene Annulated Polycyclic Aromatic Hydrocarbons:Investigations of Electron Affinities[J]. J. Am. Chem. Soc.,2003,125:1064-1071.
    [22]Shelton G R, Hrovat D A, Borden W T. Tunneling in the 1,5-Hydrogen Shift Reactions of 1,3-Cyclopentadiene and 5-Methyl-1,3-Cyclopentadiene[J]. J. Am. Chem. Soc.,2007,129:164-168.
    [23]Jensen J O, Jensen J L. Vibrational Frequencies and Structural Determination of Hexachloro-Cyclopentadiene[J]. Vibr. Spec.,2003,33:3-13.
    [24]Watts J D, Gwaltney S R. Bartlett R J. Coupled-Cluster Calculations of the Excitation Energies of Ethylene, Butadiene, and Cyclopentadiene[J]. J. Chem. Phys.,1996,105:6979-6988.
    [25]Ci X P, Kohler B E, Shaler T A. The Lowest Excited Singlet State of 1,4-Dipheny 1-1,3-Cyclopentadiene[J]. J. Phys. Chem.,1993,97:1515-1520.
    [26]McDiarmid R, Sabljit A. Analysis of the Absorption Spectrum of the 195 nm Region of Cyciopentadiene[J]. J. Phys. Chem.,1991,95:6455-6462.
    [27]Catoire L, Swihart T, Gail S, et al. Anharmonic Thermochemistry of Cyclopentadiene Derivatives[J]. Inter. J. Chem. Kin.,2003,35:453-463.
    [28]Ferdous S, Lagowski J B. Comparison of Ground and Excited State Polarizabilities of Thiophene, Cyclopentadiene, and Fulvene Oligomers and Their Cyano Substituted Derivatives-Ab Initio Study[J]. J. Poly. Sci. B:Poly. Phys.,2007,45:1983-1995.
    [29]Najafian K, Schleyer P R, Tidwell T T. Aromaticity and Antiaromaticity in Fulvenes, Ketocyclopolyenes, Fulvenones, and Diazocyclopolyenes[J]. Org. Biomol. Chem.,2003,1:3410-3417.
    [30]Stanger A. Can Substituted Cyclopentadiene Become Aromatic or Antiaromatic[J]. Chem. Eur. J., 2006,12:2745-2751.
    [31]Allen A D, Tidwell T T. A Doubly Destabilized Antiaromatic Cyclopentadienyl Cation:Solvolysis of a 5-Trifluoroacetoxy-5-Heptafluoropropyl 1,3-Cyclopentadiene[J]. J. Org. Chem.,2001,66:7696-7699.
    [32]Alonso M, Herradon B. Substituent Effects on the Aromaticity of Carbocyclic Five-Membered Rings[J]. Chem. Phys.,2010,12:1305-1317.
    [33]Vianello R, Liebman J F, Maksic Z B. In Search of Ultrastrong Bransted Neutral Organic Superacids: A DFT Study on Some Cyclopentadiene Derivatives[J]. Chem. Eur. J.,2004,10:5751-5760.
    [34]Zhou H, Gao L. Substituent Effects on the Gas Phase Acidity of Cyclopentsiene Derivates:A DFT and ab initia Study[J]. Comp. Appl. Chem.,2007.24:807-814.
    [35]Vianello R, Maksic Z B. Strong Acidity of Some Polycyclic Aromatic Compounds Annulated to a Cyclopentadiene Moiety and Their Cyano Derivatives-A Density Functional B3LYP Study[J]. Eur. J. Org. Chem.,2005:3571-3580.
    [36]Jones W D. On the Nature of Carbon-Hydrogen Bond Activation at Rhodium and Related Reactions[J]. Inorg. Chem.,2005,44:4475-4484.
    [37]Berlin A, Zotti G, Zecchin S, et al. Thiophene/Cyclopentadiene Regular Copolymers from Electrochemical Oxidation of Dithienylcyclopentadienes[J]. Chem. Phys.,2002,203:1228-1237.
    [38]Santiago G, Dorian P, Sanjiv P, et al. Synthesis, Characterization and Catalytic Behaviour of Ansa-Zirconocene Complexes Containing Tetraphenylcyclopentadienyl Rings[J]. J. Organometallic Chem., 2008,693:601-610.
    [39]Evans W J, Giarikos D G, Ziller J W. Synthesis and reactivity of a tethered diene cyclopentadiene[J]. J. Organometallic Chem.,2003,688:200-205.
    [40]Erden L, Xu F P, Sadoun A, et al. Scope and Limitations of Fulvene Syntheses Preparation of 6-Vinyl-Substituted and Functionalized Fulvenes. First Examples of Nucleophilic Substitution on a 6-(Chloromethyl)fulven[J]. J. Org. Chem.,1995,60:813-816
    [41]Huang H, Drueckhammer D G. A Computer-Designed Macrocyclic Zinc Receptor[J]. Chem. Commun.,2005:5196-5198.
    [42]Cary D R, Green J C, O'Hare D. Synthetic, Structural, and Bonding Studies of Indacene Dianions[J]. Angew. Chem. Int. Ed.,1997,36:2618-2620.
    [43]Bell W L. Curtis C J, Jr C W E, et al. Synthesis and Characterization of as- and s-Indacene Bridging Ligands and Their Trimethyltin and Manganese Tricarbonyl Derivatives[J]. Organometallics,1987,6: 266-270.
    [44]Xia A B, Heeg M J, Winter C H. Intramolecular and Intermolecular N-H...C5H5- Hydrogen Bonding in Magnesocene Adducts of Alkylamines. Implications for Chemical Vapor Deposition Using Cyclopentadienyl Source Compounds[J]. J. Am. Chem. Soc.,2002,124:11264-11265.
    [45]Dahrouch M R, Jara P, Mendez L. et al. An Effective and Selective Route to 1,5-Dihydropolyalkylated 5-Indacenes:Characterization of Their Mono- and Dianions by Silylation. Structure of trans-1,5-Bis(trimethylsilyl)-2,6-Diethyl-4,8-Dimethyl-s-Indacene[J]. Organometallics,2001,20: 5591-5595.
    [46]Starr J T, Baudat A, Carreira E M. Nucleophilic Additions to a Spiro[2,4]hepta-4,6-Diene 4-Nitrile: Synthesis of 1,2-Disubstituted Cyclopentenes[J]. Tetra. Lett.,1998,39:5675-5678.
    [47]Gotoh H, Masui R, Ogino H. et al. Enantioselective Ene Reaction of Cyclopentadiene and a,b-Enals Catalyzed by a Diphenylprolinol Silyl Ether[J]. Angew. Chem. Int. Ed.,2006,45:6853-6856.
    [48]Ende D J. Whritenour D C, Coe J W. Cyclopentadiene:The Impact of Storage Conditions on Thermal StabilityfJ]. Org. Pro. Res.& Dev.,2007,11:1141-1146.
    [49]刘芳.环戊二烯与(甲基)丙烯酸酯进行Diels-Alder反应的立体选择性研究[D].江西:江西师范大学化工学院,2007.
    [50]Mamedova E G, Klabunovskii E I. Asymmetric Diels-Alder Reactions of Cyclopentadiene in the Synthesis of Chiral Norbornene Derivatives[J]. Russ. J. Org. Chem.,2008,44:1097-1120.
    [51]Chiappe C, Malvaldi M, Pomelli C S. The Solvent Effect on the Diels-Alder Reaction in Ionic Liquids: Multiparameter Linear Solvation Energy Relationships and Theoretical Analysis[J]. Green Chem.,2010,12: 1330-1339.
    [52]Osuna S, Morera J, Cases M, et al. Diels-Alder Reaction between Cyclopentadiene and C60:An Analysis of the Performance of the ONIOM Method for the Study of Chemical Reactivity in Fullerenes and Nanotubes[J]. J. Phys. Chem. A.2009,113:9721-9726.
    [53]Maeda Y, Miyashita J, Hasegawa T, et al. Reversible and Regioselective Reaction of La@C82 with Cyclopentadiene[J]. J. Am. Chem. Soc.2005,127:12190-12191.
    [54]李家星.[60]富勒烯的亲核环加成反应研究[D].合肥:中国科学技术大学,2008.
    [55]Ussing B R, Hang C, Singleton D A. Dynamic Effects on the Periselectivity, Rate, Isotope Effects, and Mechanism of Cycloadditions of Ketenes with Cyclopentadiene[J]. J. Am. Chem. Soc.,2006,128: 7594-7607.
    [56]Zymanski S, Chapuis C, Jurczak J, Diastereoselectivity in the Hetero [4+2] Cycloaddition of Cyclopentadiene to N-Benzyliminoacetyl Derivatives of (2R)-Bornane-10,2-Sultam and other Chiral Secondary Alcohols[J]. Tetra. Asym.,2001,12:1939-1945.
    [57]Huang W Q, Miller M J. Concise Syntheses of Enantiomerically Pure Protected 4-Hydroxypyroglutamic Acid and 4-Hydroxyproline from a Nitroso-Cyclopentadiene Cycloadduct[J]. Tetra. Asym.,2008,19:2835-2838.
    [58]Evans D A, Barnes D M, Johnson J S, et al. Bis(oxazoline) and Bis(oxazolinyl)pyridine Copper Complexes as Enantioselective Diels-Alder Catalysts:Reaction Scope and Synthetic Applications[J]. J. Am. Chem. Soc.,1999,121:7582-7594.
    [59]Namyslo J C, Storsberg J, Klinge J, et al. The Hydroarylation Reaction-Scope and Limitations[J]. Mol., 2010,15:3402-3410.
    [60]Quadrelli P, Scrocchi R, Caramella P, et al. From Cyclopentadiene to Isoxazoline-Carbocyclic Nucleosides:A Rapid Access to Biological Molecules Through Nitrosocarbonyl Chemistry[J]. Tetrahedron, 2004,60:3643-3651.
    [61]Moriarty R M, Enache L A, Gilardi R, et al. Michael Addition to a.b-Unsaturated Arene Ruthenium(ii) Cyclopentadiene Complexes:Endo Nucleophilic Addition[J]. Chem. Commun.,1998:1155-1156.
    [62]吴志猛.联烯的自由基反应和缺电子联烯的亲核加成反应[D].浙江:浙江大学理学院.2005.
    [63]Skumov M Y, Brailovskii S M, Temkin O N. New Approaches to Syntheses of Diethers and Haloethers from Cyclopentadiene[J]. Russ. Chem. Bull.,2002,51:616-624.
    [64]Skumov M Y, Brailovskii S M, Temkin O N. Oxidative Transformation of 1,3-Cyclopentadiene in a System CuBr2-Ethylene Glycol[J]. Russ. J. Org. Chem.,2003,39:176-179.
    [65]Olah G A, Prakash G K. S, Rawdah T N, et al. 13C NMR Spectroscopic Study of Potential Tris- and Bishomocyclopropenyl Cations[J]. J. Am. Chem. Soc.,1979,101:3935-3939.
    [66]Miyazaki J, Yamada Y. Photochemistry of Cyclopentadiene Isolated in Low-Temperature Argon Matrices[J]. J. Mol. Stru.,2004,692:145-153.
    [67]Fuβ W, Schmid W E, Trushin S A. Ultrafast Photochemistry of Cyclopentadiene:Competing Hydrogen Migration and Electrocyclic Ring Closure[J]. Chem. Phys.,2005,316:225-234.
    [68]Gerdes R, Bartels O, Schneider G. et al. Photooxidation of Sulde, Thiol, Phenols, and Cyclopentadiene by Articial Light and Solar Light Irradiation[J]. Int. J. Photo.,1999,1:1-7.
    [69]Hoops M D, Ault B S. Matrix Isolation Study of the Early Intermediates in the Ozonolysis of Cyclopentene and Cyclopentadiene:Observation of Two Criegee Intermediates[J]. J. Am. Chem. Soc.2009, 131:2853-2863.
    [70]Jahnisch K. Photochemische Erzeugung und [4+2]-Cycloaddition von Singulettsauerstoff im Mikrofallfilmereaktor[J]. Chem. Ing. Tech.,2004,76:630-632.
    [71]Ellis J M, King S B. Ring-Opening Cross Metathesis of 1,3-Cyclopentadiene Heterodienophile Cycloadducts to Produce Cyclic Hydrazines and Hydroxylamines[J]. Tetra. Lett.,2002,43:5833-5835.
    [72]Calderon N, Chen H Y, Seott K W. Olefin Metatgesis-A Noval Reaction for Skeletal Transformations of Unsaturated Hydrocarbons[J]. Tetra. Lett.,1967:3327-3329.
    [73]Schrock R R, Recent Advances in the Chemistry and Applications of High Oxidation-State Alkylidene Complexes[J]. Pure Appl. Chem.,1994,66:1447-1454.
    [74]Wu Z, Grubbs R H. Macromolecules, Preparation of Alternating Copolymers from the Ring-Opening Metathesis Polymerization of 3-Methylsyslobutene and 3,3-Dimethylcyclobutene[J]. Mcromolecules,1995, 28:3502-3508.
    [75]Miao Y J, Herkstroeter W G, Sun B J. Photophysics of Poly(paracyclophan-l-ene) and Derivatives-Evidence for Intrachain Energy-Transfer and Chromophore Aggregation[J]. J. Am. Chem. Soc., 1995,117:11407-11420.
    [76]Trnka T M, Grubbs T H. The Development of L(2)X(2)Ru= CHR Olefin Metathesis Catalysts:An Organometallic Success Story[J]. Acc. Chem. Res.,2001,34:18-29.
    [77]Mcbee E T, Idol J D, Roberts C W. Chemistry of Hexachlorocyclopentadiene. VI. Diels-Alder Adducts with Alkynes[J]. J. Am. Chem. Soc.,1955,77(24):6674-6675.
    [78]Cortez G. A, Schrock R R, Hoveyda A H. Efficient Enantioselective Synthesis of Piperidines through Catalytic Asymmetric Ring-Opening/Cross-Metathesis Reactions[J]. Angew. Chem. Int. Ed.,2007,46: 4534-4538.
    [79]Rybtchinski B, Milstein D. Metal Insertion into CyC Bonds in Solution[J]. Angew. Chem. Int. Ed., 1999,38:870-883.
    [80]Ohmura T, Taniguchi H, Kondo Y. et al. Palladium-Catalyzed Asymmetric Silaborative C-C Cleavage of meso-Methylenecyclopropanes[J]. J. Am. Chem. Soc.,2007,129:3518-3519.
    [81]Aulenta F, Holemann A, ReiBig H. Samarium Diiodide Induced Reactions of Cyclopropyl Ketones: Reductive Ring Cleavage and Dimerization Leading to 1,8-Diketones-Scope, Limitations, Mechanisms[J]. Eur. J. Org. Chem.,2006:1733-1739.
    [82]朱志斌.亚甲基环丙烷和环丙烯反应性能研究[D].上海:中国科学院上海有机化学研究所.2011.
    [83]付维军.亚烃基环丙烷的一些加成反应研究[D].浙江:浙江大学理学院.2007.
    [84]Donskaya N A, Yureva N M, Beletskaya I P. New Efficient Catalysts of Hydroxylation Based on Rhodium Cation Complexes Containing Methylenecyclopropane or Cyclooctene Ligands[J]. Zhur. Org. Khim.,1997,33(6):962-963.
    [85]Furstner A, Arssa C. PtCl2-Catalyzed Rearrangement of Methylenecyclopropanes[J]. J. Am. Chem. Soe.,2006,128:6306-6307.
    [86]Shi M. Liu L P, Tang J. Palladium-Catalyzed Ring Enlargement of Aryl-Substituted Methylenecyclopropanes to Cyclobutenes[J]. J. Am. Chem. Soc.,2006,128:7430-7431.
    [87]Necas D, Kotora M. Rhodium-Catalyzed C-C Bond Cleavage Reactions[J]. Current Org. Chem.,2007. 11:1566-1591.
    [88]Kondo T, Taguchi Y. Kaneko Y, et al. Ru- and Rh-Catalyzed C-C Bond Cleavage of Cyclobutenones: Reconstructive and Selective Synthesis of 2-Pyranones, Cyclopentenes, and Cyclohexenones[J]. Angew. Chem. Int. Ed.,2004,43(40):5369-5372.
    [89]Davis S, Qin C, Zhao Z. MCSCF Study of the Thermal Isomerization of Tricyclo[2.1.0.02.5]Pentane to 1,3-Cyclopentadiene[J]. Inte. J. Quan. Chem.,2004.96:411-415.
    [90]Leemans E, D'hooghe M, Kimpe N D. Ring Expansion of Cyclobutylmethylcarbenium Ions to Cyclopentane or Cyclopentene Derivatives and Metal-Promoted Analogous Rearrangements[J]. Chem. Rev.,2011,111:3268-3333.
    [91]Kondo T, Taguchi Y, Kaneko Y, et al. Ru- and Rh-Catalyzed C-C Bond Cleavage of Cyclobutenones: Reconstructive and Selective Synthesis of 2-Pyranones, Cyclopentenes, and Cyclohexenones[J]. Angew. Chem. Int. Ed.2004,43:5369-5372.
    [92]Dubnikova F, Lifshitz A. Ring Expansion in Methylcyclopentadiene Radicals. Quantum Chemical and Kinetics Calculations[J]. J. Phys. Chem. A,2002,106:8173-8183.
    [93]Wang D, Violi A. Formation of Naphthalene, Indene, and Benzene from Cyclopentadiene Pyrolysis:A DFT Study[J]. J. Phys. Chem. A,2006,110:4719-4725.
    [94]McGivern W S. Manion J A, Tsang W. Ring-Expansion Reactions in the Thermal Decomposition of tert-Butyl-1,3-Cyclopentadiene[J]. J. Phys. Chem. A,2006,110:12822-12831.
    [95]Kim D H, Mulholland J A, Wang D. Pyrolytic Hydrocarbon Growth from Cyclopentadiene[J]. J. Phys. Chem. A,2010,114:1241-12416.
    [96]Burcat A, Dvinyaninov M, Olchanski E. Detailed Combustion Kinetics of Cyclopentadiene Studied in a Shock-Tube[J]. Inte. J. Chem. Kin.,2001,33:491-508.
    [97]Bacskay G B, Mackie J C. The Pyrolysis of Cyclopentadiene:Quantum Chemical and Kinetic Modelling Studies of the Acetylene Plus Propyne/allene Decomposition Channels[J]. Phys. Chem. Chem. Phys.,2001,3:2467-2473.
    [98]Hansen N, Klippenstein S J, Miller J A, et al. Identification of C5Hx Isomers in Fuel-Rich Flames by Photoionization Mass Spectrometry and Electronic Structure Calculations[J]. J. Phys. Chem. A,2006,110: 4376-4388.
    [99]Butler R G, Glassman I. Cyclopentadiene Combustion in a Plug Flow Reactor Near 1150 K[J]. Proceed. Comb. Inst.,2009,32:395-402.
    [100]Mendez I. D, Klimova E, Klimova T, et al. Synthesis of Ferrocenylvinylcyclopropene and Its Transformation into Cyclopentadiene[J]. J. Organometallic Chem.,2003,681:115-119.
    [101]Chiba S, Xu Y J, Wang Y F. A Pd(Ⅱ)-Catalyzed Ring-Expansion Reaction of Cyclic 2-Azidoalcohol Derivatives:Synthesis of Azaheterocycles[J]. J. Am. Chem. Soc.,2009,131:12886-12887.
    [102]Bartosz S, Lechoslaw L, Udmila S. A Facile Palladium-Mediated Contraction of Benzene to Cyclopentadiene:Transformations of Palladium(Ⅱ)p-Benziporphyrin[J]. Angew. Chem. Int. Ed.,2011,50: 6587-6591.
    [103]Robinson R K. Lindstedt R P. On the Chemical Kinetics of Cyclopentadiene Oxidation[J]. Comb. Flam.,2011,158:666-686.
    [104]Necas D, Kotora M. Ring Opening of Methylenecycloalkenes via the C-C Bond Cleavage[J]. Org. Lett.,2008,10(22):5261-5263.
    [105]Sattler A, Parkin G. Cleaving Carbon-Carbon Bonds by Inserting Tungsten into Unstrained Aromatic Rings[J]. Nature,2010,463(28):523-526.
    [106]Seott L T, Brunsvold W R, Kirms M A, et al. A Convenient Synthesis of "Homoazulene" (1,5-Methano [10] annulene)[J]. Angew. Chem. Inr. Ed. Engl.,1981,20(3):274-275.
    [107]Lu H, Yuan X, Zhu S, et al. Copper-Catalyzed Intramolecular N-Vinylation of Sulfonamides: General and Efficient Synthesis of Heterocyclic Enamines and Macrolactams[J]. J. Org. Chem.,2008,73: 8665-8668.
    [108]Dong F, Heinbuch S, Xie Y, et al. C=C Bond Cleavage on Neutral VO3(V2O5)n Clusters[J]. J. Am. Chem. Soc.2009,131:1057-1066.
    [109]Luo J, Xie Z, Lam J W Y, et al. Aggregation-Induced Emission of 1-Methyl-1,2,3,4,5-Pentaphenylsilole[J]. Chem. Commun.,2001:1740-1741.
    [110]Hong Y, Lam J W Y, Tang B Z. Aggregation-Induced Emission:Phenomenon, Mechanism and Applications[J]. Chem. Commun.,2009:4332-4353.
    [111]Zhao Z, Chen S, Shen X, et al. Aggregation-Induced Emission, Self-Assembly, and Electroluminescence of 4,4'-Bis(1,2,2-Triphenylvinyl)biphenyl[J]. Chem. Commun.,2010.46:686-688.
    [112]Zeng Q, Li Z, Dong Y, et al. Fluorescence Enhancements of Benzene-Cored Luminophors by Restricted Intramolecular Rotations:AIE and AIEE Effects[J]. Chem. Commun.,2007:70-72.
    [113]Zhao Y S, Fu H B, Hu F Q, et al. Multicolor Emission from Ordered Assemblies of Organic 1D Nanomaterials[J]. Adv. Mater.,2007,19:3554-3558.
    [114]Gao X C, Cao H, Huang L, et al. Comparison of the Electroluminescence and its Related Properties of two Cyclopentadiene Derivatives[J]. Appl. Surf. Sci.,2003,210:183-189.
    [115]Cao H, Gao X C, Huang C H, et al. Effect of Electric. Field Strength on the Electroluminescence Spectra of a Blue-Emitting Device[J]. Synth. Met.1998.96:191-194.
    [116]Liao Y L, Lin C Y, Wong T K, et al. Anovel Ambipolar Spirobifluorene Derivative that Behaves as an Efficient Blue-Light Emitter in Organic Light-Emitting Diodes[J]. Org. Lett.,2007,9:4511-4514.
    [117]Miyasaka H, Nobuto T, liayal A,et al. Picosecond Laser Photolysis Studies on a Photochromic Dithienylethene in Solution and in Crystalline Phases[J]. Chem. Phys. Lett.,1997,269:281-285.
    [118]Ern J, Bens A T, Bock A, et al. Femtosecond Transient Absorption Studies on Photochromism of Dithienylethene Derivates[J]. J. Lumin.,1998,76/77:90-94.
    [119]Miyasaka H, Murakami M. Itaya A, et al. Multiphoton Gated Photochromic Reaction in a Diarylethene Derivative[J]. J. Am. Chem. Soc.,2001,123:753-754.
    [120]Murakami M, Miyasaka H, Okada T, et al. Dynamics and Mechanisms of the Multiphoton Gated Photochromic Reaction of Diarylethene Derivatives[J]. J. Am. Chem.Soc.,2004.126:14764-14772.
    [121]Kawai T, Kunitake T, Irie M. Novel Photochromic Conducting Polymer Having Diarylethene Derivative in the Main Chain[J]. Chem. Lett.,1999,9:905-906.
    [122]Nourmohammadian F, Davoodzadeh M, Alizadeh A A. New Cyclopentadiene Derivatives as Novel pH Indicators[J]. Dyes Pigm.,2007,74:741-743.
    [123]Moreno C, Arnanz A, Delgado S. Comparative Reactivity Study of Cyclopentadienyl and Fulvalene Molybdenum Complexes[J]. Inorg. Chim. Acta,2001.312:139-150.
    [124]Zhu B, Miljanic O S, Vollhardt K P C, et al. Synthesis of 2,2',3,3'-Tetramethyl-and 2,2'3,3'-Tetra-tert-Butylfulvalene[J]. Synthesis,2005,19:3373-3379.
    [125]Gong W T, Ning G L, Li X C, et al. A Facile Oxidation and Oxygen Insertion of the Cyclopentadiene Ring by Molecular Oxygen in Solution[J]. J. Org. Chem.,2005.70:5768-5770.
    [126]Ning G, Li X, Munakata M, Gong We. Conversion of Phenyl-Substituted Cyclopentadienes to Pyrylium Cations[J]. J. Org. Chem.,2004,69:1432-1434.
    [127]Xu T, Gong W, Ye J, et al. Unprecedented Ring Transformation of an a,oc'-Monosubstituted 2,4,5-Triphenylpyrylium Salt with r13-Phosphines:Efficient Synthesis of Aryl- and Alkylphosphonium Triphenylcyclopentadienylides[J], Organometallics,2010,29:6744-6748.
    [128]胡世荣,孟繁艳,王建辉.三苯基环戊二烯的合成[J].石汕化工,2007(36):610-613.
    [129]张良辅,郭胜利,王树梅等.1,2,4-三苯基环戊二烯的合成及其烷基化反应[J].有机化学,1993(13):383-388.
    [130]Dyker G, Heiermann J, Miura M, et al. Palladiun-Catalyzed Arylation of Cyclopentadienes[J]. Chem. Rur. J.,2000.6(18):3246-3433.
    [131]Horning E C有机合成第二集[M].北京:科学出版社,1981:109-110.
    [132]Louis M, Ernest I B, Paul E S. Tetraarylcyclopentadienes[J]. J. Am. Chem. Soc.,1952,77(4): 984-989.
    [133]关烨第,葛数丰,李翠娟.小量-半微量有机化学实验[M].北京:北京大学出版社,1999:103-104.
    [134]John R J, Oliver G. Tetraphenylcyclopentadienone[J]. Org. Syn. Coll.,1981,3(1):806-810.
    [135]Leslie D F, Kathy M H, Charles M L. The Preparation and Characterization of Substituted Pentaphenyl-Cyclopentadenyl Ligands, There Precursors, and Complexes of Iron[J]. Aust. J. Chem.,1990, 43(1):281-285.
    [136]黄涛.有机化学实验[M].北京:高等教育出版社,1983.
    [137]Barltrop J A, Coyle J D. Principles of Photochemistry. Second ed.,1978.
    [138]Gao X C, Cao H, Huang L, Huang Y Y, et al. Comparison of the Electroluminescence and its Related Properties of two Cyclopentadiene Derivatives[J], Appl. Surf. Sci.,2003,210:183-186.
    [139]Qiu T, Xu X Y, Qian X H. Solvent Effects for Fluorescence and Absorption of Tetra(fluoroalkyl) Metallophthalocyanines:Fluorocarbon Solvent Cage[J]. J. Photochem. Photobiol. A,2010,214:86-89.
    [140]Dong Y Q, Lam J W Y, Qin A, et al. Aggregation-Induced Emissions of Tetraphenylethene Derivatives and their Utilities as Chemical Vapor Sensors and in Organic Light-Emitting Diodes[J]. Appl. Phys. Lett.,2007,91:011111.
    [141]He J T, Xu B, Chen F P, et al. Aggregation-Induced Emission in the Crystals of 9,10-Distyrylanthracene Derivatives:The Essential Role of Restricted Intramolecular Torsion[J]. J. Phys. Chem. C,2009.113:9892-9896.
    [142]Marvella E, Sikic T. Valence Isomerization of 2,4.6-Trimethyl-2H-Pyran[J]. J. Org. Chem.,1972,37: 3036-3037.
    [143]Kenneth C, Phillip C R.2,2',4,4'.6,6'-Hexamethyl-4,4'-bi-4H-Pyran J. Org. Chem.1961,26: 2260-2263.
    [144]Hiroki K.Yoshizo S, Shigeya N. Photodimerization of 2,6-Diphenylpyrylium Salt in the Solution[J]. Tetra. Lett.,1986,27:4489-4492.
    [145]Modestov A D, Kazarinov V E. Electrochemical Reduction of 2,6-Diphenylpyrylium Cations by Spin-Polarized Electrons. The Hedvall Effect[J]. Chem. Phy. Lett.,1993,206:401-404.
    [146]Balaban A T, Bratu C, Rentea C N. One-Electron Reduction of Pyrylium Salts[J]. Tetrahedron,1964, 20:265-269.
    [147]王学杰,叶率官.1,2,4,6-四芳环吡啶鎓高氯酸盐的合成及其核磁共振谱的解析[J].浙江大学学报,1990(24):363-373.
    [148]兰州大学,复旦大学.化学系有机化学教研室编.有机化学实验[M].北京:高等教育出版社,1978.
    [149]Vanallan J A, Reynolds G A. The Preparation of Certain Pyrylium Salts by Using Chalcone and Boron Triflate Etherate[J]. J. Org. Chem.,1968,33(3):1102-1105.
    [150]Shaw M J, Mertz J. Electrocatalytic Reactions of a Manganese-Pyrylium Complex[J]. Organometallics,2002,21:3434-3442.
    [151]Olah G A, Kuhn S J. Tolgyesi W S, et al. Stable Carbonium Ions. II Oxocarbonium (Acylium) Tetrafluoroborates, Hexafluorophosphates, Hexafluoroantimonates and Hexafluoroarsenates. Structure and Chemical Reactivity of Acyl Fluoride:Lewis Acid Fluoride Complexes[J]. J. Am. Chem. Soc.,1962,84: 2733-2740.
    [152]Olah G A.100 Years of Carbocations and Their Significance in Chemistry[J]. J. Org. Chem.,2001, 66:5943-5957.
    [153]Kirmse W, Chiem P V, Henning P G. Carbenes and the O-H Bond:3-Cyclopentenylidene. A Novel Approach to Bis(homocyclopropenyl) Cations[J]. J. Am. Chern. Soc.,1983,105:1695-1695.
    [154]Qiao X, Pelczer I, Jr R A P. Synthesis and Stereochemistry of Ortho-Methylated Octaphenylnaphthalenes[J].Chiraity,1998,10:154-158.
    [155]Koning C B, Rousseaub A L, Otterlo W A L. Modern Methods for the Synthesis of Substituted Naphthalenes[J]. Tetrahedron,2003,59:7-36.
    [156]Murakami Y, Mitsui K, Naito K, et al. Kinetics and Oxidation Mechanism of Cyclopentadiene behind the Shock Waves[J]. Shock Waves,2003,13:149-154.
    [157]Mecinovic J, Hamed R B., Schofield C J. Iron-Mediated Cleavage of C-C Bonds in Vicinal Tricarbonyl Compounds in Water[J]. Angew. Chem. Int. Ed.,2009.48:2796-2800.
    [158]Ocal N. Yano L M. and Erden I. Photooxygenation of the C=N Bond:a Mild New Method for Oxidative C-C Cleavage[J]. Tetra. Lett.,2003.44:6947-6949.
    [159]Orugunty R S, Wright D L, Battiste M A, et al. Bicyclo[3,2,1]octane Synthons from Cyclopropenes: Functionalization of Cycloadducts by Nucleophilic Additions[J]. J. Org. Chem.,2004,69:406-416.
    [160]Suginome M, Matsuda T, Ito Y. Palladium- and Platinum-Catalyzed Silaboration of Methylenecyclopropanes through Selective Proximal or Distal C-C Bond Cleavage[J]. J. Am. Chem. Soc. 2000,122:11015-11016.
    [161]Pascal W W C, Mailhot G, Pilichowski J F, et al. Competitive Oxidative Cleavage and Epoxidation of 4,4"-Diaminostilbene-2,2'-Disulfonic Acid by Fe(Ⅲ) Aqua Complexes[J]. New. J. Chem.,2004,28: 451-456.
    [162]Miranda M A, Garcia H.2,4,6-Triphenylpyrylium Tetrafluoroborate as an Electron-Transfer Photosensitize^ J]. Chem. Rev.,1994.94:1063-1089.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700