用户名: 密码: 验证码:
长江口及邻近海域富营养化近30年变化趋势及其与赤潮发生的关系和控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江口及邻近海域海水富营养化及由此引起的各种海洋生态效应受到普遍关注。虽然关于该海域海水富营养化与赤潮发生关系的研究屡见报道,但对长江口及邻近海域海水富营养化趋势特别是其与赤潮发生之间关系尚缺乏了解。针对这一问题,本文在汇总20世纪50年代特别是80年代以来长江口及邻近海域海水中DIN、PO4-P和COD等年均浓度变化趋势的基础上,采用富营养化指数分析了长江口及邻近海域海水富营养化的变化趋势。同时,结合2002~2005年10个航次的调查数据,应用以线性相关性为主、以季节变化之间关系为辅研究的方法,研究了长江口及邻近海域20世纪80年代以来富营养化指数(EI及EI修正)与赤潮发生规模、频率的关系,进而分析了浮游植物生物量、COD和DO之间的线性相关性。并首次估算了东海31盐度线海域内DIN、PO4-P及COD的海洋环境容量。本文主要工作及结论如下:
     1.近50年来,长江口及邻近海域海水DIN、PO4-P、COD分别的年均浓度分别呈现出波动性上升、基本维持不变(年代间有波动)和波动性下降的变化趋势;海水中DIN、PO4-P呈现秋中及冬末(春初)高、夏中最低的“双峰”形月季变化趋势,与DIN和PO4-P不同,COD表现为丰水期高、枯水期低的季节变化特点;此外,DIN、PO4-P、COD总体上具有近岸高、外海低的特点。据此,研究海域海水的富营养化指数EI表现出了持续上升的年变化趋势,并且呈现出春、秋季节高,夏季最低的“双峰形”的季节变化特征,同时平面分布上呈近岸高、外海低的趋势。
     2.赤潮的发生主要受海水中DIN及PO4-P浓度的共同控制。
     本文从赤潮发生规模/频率、发生期及发生区域等方面研究了长江口及邻近海域海水中DIN、PO4-P、COD与赤潮发生的关系,结果表明,自20世纪80年代以来,海水中DIN及PO4-P年均浓度与赤潮发生年规模/频率之间存在显著线性相关性,而COD未表现出明显的相关性;赤潮主要发生在DIN和PO4-P冬末(春初)高峰之后的5~6月,与COD高值期基本吻合,甚至还略有提前。由此可见,赤潮的发生与COD之间的相关性不强。据此去除EI计算公式中COD项,简化得到了EI修正,采用同DIN、PO4-P、COD类似的方法,分析比较了海水富营养化指数EI及EI修正与赤潮发生之间关系的紧密程度,研究结果提示EI修正与赤潮发生的关联性更好,且强于DIN或PO4-P的影响,这样,研究海域赤潮的发生主要受到DIN、PO4-P的共同控制。
     3. COD的异常升高是赤潮爆发的结果,但非生源因素仍是研究海域COD的主要来源,致使EI修正与COD关系较弱。此外,EI修正的升高可以引起底层缺氧程度的加剧。
     现场调查结果显示,赤潮发生时,在赤潮区,伴随浮游植物生长产生的有机质贡献了49~71%的COD数值,成为COD主要来源。但在非赤潮区及整个调查海域,浮游植物生长对COD的贡献仅为13~17%和18~27%,说明非生物因素是COD的主要来源。另外,浮游植物对COD增长的贡献存在季节性差异,表现为夏>秋>春>冬,并且即使在夏季,其贡献率也仅为24%,说明对COD年均浓度来讲,陆源等非生源要素仍是其主要来源,而弱化了赤潮产生的影响。这是导致20世纪80年代以来EI修正年均值与COD年均浓度之间关系很弱的重要原因。此外,20世纪80年代起至今,EI修正的升高可以引起底层缺氧程度的恶化,表现为底层缺氧面积随EI修正的增大而增大,而溶解氧极小值随EI修正的增大而降低。从缺氧区形成时间上看,长江口外缺氧区的形成时间基本上同海水COD的高值期同步,也基本上与该海域赤潮爆发的主要时期相符,滞后于EI修正冬末春初峰值约1~2个月。
     4.国家一类海水水质标准下,东海DIN、PO4-P及COD的海洋环境容量分别为1.7×106 t·a-1、8.2×104 t·a-1和9.7×107 t·a-1。在当前的排海通量下,DIN和PO4-P分别减排1.7×106 t·a-1和6.0×104 t·a-1,相当于各自目前排海通量的60%和80%,将有助于减少长江口及邻近海域赤潮的发生。
Eutrophication and its ecological effects in Changjiang Estuary and its adjacent area have been widely interested. Although the eutrophication-HABs ( harmful algal blooms) relationship has been reported in a lot of papers, there were still gaps to learn the long term trends of eutrophication and eutrophication-HABs relationship in Changjing River Estuary and its adjacent area. To fill the gaps, the data of concentrations of DIN, PO4-P and COD since 1950s especially of 1980s was collected, and the eutrophication index ( EI ) was used to analyze the eutrophication status in Changjing River Estuary and its adjacent area . Based on those data and the data of field surveys during the period of 2002 to 2005, considering the seasonal changes, the linear regression analysis of annual mean value as the chief method was used to explain the relationships between EI or EI' and the occurrence scale and times of HABs. Similarly, the relationships among biomass, COD and DO were analyzed too. At last, the marine environmental capacity of DIN, PO4-P and COD in the area within 31 salinity range of East China Sea was estimated for the first time. The main conclusions are as follows:
     1. In the Changjiang Estuary and its adjacent area, the annually mean value of DIN concentration showed an undulatory increase, and PO4-P’s remained practically unchanged, but COD’s appeared a fluctuant downtrend in the last 50 years. And the monthly concentration of DIN and PO4-P exhibited a bimodal curve of which peaks were in the mid autumn and the end of winter (or early spring), the bottom was in the mid-summer. As for COD, its monthly concentration increased during high-water periods while decreased during low-water periods. The horizontal distribution of DIN, PO4-P and COD generally took on a clear pattern of decreaseing from inshore to offshore area. Thus, the temporal and spatial changing trend of EI was summarized. EI’s value has been increasing annually. Its monthly change suggested a bimodal distribution of which peaks were showed in autumn and spring and the bottom in summer, and its horizontal distribution showed a trend of higher inshore and lower offshore clearly.
     2. The occurrence of HABs was controlled by DIN coordinated with PO4-P.
     The relationships between the three factors (eg. DIN, PO4-P and COD )and the characters of HABs including occurrence scales , frequency, outbreak time and area were studied in the Changjiang Estuary and its adjacent area. An appreciable liner relationship was observed between the annual mean concentration of DIN and PO4-P with the frequency or scales of HABs, while the pertinency for COD is not quite noticeable. The HABs mainly appeared in May and June, lagging behind the peaks of DIN and PO4-P in late winter or early spring, but coinciding with the high value period of COD or even taking place ahead of time a bit. Obviously, the occurrence of HABs and COD concentration didn’t associate tightly. Thus, the effect of COD should not be taken into account in the calculation of EI. According to this principle, a new computational formula of EI (EI') was generated. By comparing the linear coefficient of the four factors (such as EI, EI', DIN and PO4-P) with the occurrence scale or times of HABs annually, EI' showed the tightest correlativity with the HABs. So, the occurrences of HABs in the researched area is controlled by DIN and PO4-P synergistically.
     3. The eruption of HABs brought exceptional rise of COD’s concentration, but abiotic factor was still the main source of COD that led to the uncertain relationship between EI' and COD. Furthermore, the rise of EI' could ultimately worsen the depletion of oxygen in the bottom waters.
     Based on field surveys, when HABs occurred, the organic matter produced by phytoplankton accounted for 49~68% of COD, becoming the leading source of COD in the HABs area. While in the non-red-tide area and the whole investigated area, the organic matter produced by phytoplankton accounted for only 13~17% and 21~27% of COD respectively. The results indicated that abiotic factor was the main source of COD. Additionally, seasonal variation existed when it came to the contribution of phytoplankton to the COD concentration. Generally, phytoplankton produced the most large portion of COD in summer, less in autumn, much less in spring, and least in winter. Even in summer, COD produced by phytoplankton accounted for only 24 percentage of the total amount. It is suggested that the annual mean concentration of COD was mainly attributed by the abiotic source such as terrigenous, which led to the obscure correlativity between the annual mean value of EI' and COD since 1980s. Furthermore, the rise of EI' would increase the hypoxia area and depress the minimal value of dissolved oxygen. The formation time of Changjiang Estuary hypoxic zone basically coincided with the high value period of COD and the peak outbreak period of HABs, but lagged behind the peak period of EI' for one or two months.
     4. Under the First Grade Standard of National Sea Water Quality Requirement, the environmental capacity of DIN,PO4-P and COD was 1.7×106 t·a-1 , 8.2×104 t·a-1 and 9.7×107 t·a-1 respectively. Thus, 1.7×106 t·a-1 of DIN and 6.0×104 t·a-1 of PO4-P, amounts to 60% and 80% of present total discharge fluxes respectively, must be reduced to decrease the occurrence of HABs.
引文
1. ?rtebjerg G, Andersen J H and Hansen O S (eds). (2003) Nutrients and eutrophication in Danish Marine Waters. A Challenge for Science and Management. National Environmental Research Institute, Copenhagen, 2003, 126p
    2. Andersen J H, Schlüter L and ?rtebjerg G. Coastal eutrophication: recent developments in definitions and implications for monitoring strategies. J. Plankton. Res., 2006, 28: 621–628
    3. Anderson D M, Glibert P M, Burkholder J M. Harmful algal blooms and eutrophication: nutrient sources, composition and consequences. Estuaries, 2002, 25: 562-584
    4. Anderson T H, Taylor G T. Nutrient pulse, plankton blooms, and seasonal hypoxia in western long island sound. Estuaries, 2001, 24(2): 228-243
    5. Anonymous. Notes of Workshop on a Conceptual Framework for the Assessment of Eutrophication in European Waters. JRC, Ispra, 2004, 16
    6. Arai1 M N. Pelagic coelenterates and eutrophication: a review. Hydrobiologia, 2001, 451: 69–87
    7. Axe P. Hydrography and Oxygen in the Deep Basins. HELCOM Indicator Fact Sheets 2007. http://www.helcom.fi/environment2/ifs/en_GB/cover/
    8. Baretta J W, Ebenh?h W, Ruardij P. The Eutopean Regional Seas Ecosystem Model: a complex marine ecosystem model. Neth. J. Sea Res., 1995, 33: 233-246
    9. Bedding S, Brockman U H, Dannecker W, et al. Nitrogen fluxes in the German Bight. Mar Pollut Bull, 1997, 34(6): 382-394
    10. Beman J M, Arrigo K R, Matson P A. Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean. Nature, 2005, 434: 211-214
    11. Beveridge M C M. Advances in world Aquaculture. Louisiana World Aquaculture Society, 1991, 3: 456 -467
    12. Bodenau, N. Microbial blooms in the Romanian area of the Black Sea and contemporary eutrophication conditions. In: Toxic Phytoplankton Blooms in the Sea. Smayda T J, Shimizu Y (Eds.). Elsevier, Amsterdam, 1993, 203-209
    13. Boesch D F, Carstensen J, Paerl H W, et al. Eutrophication of the seas along Sweden’s west coast. Swedish Environmental Protection Agency, Naturv?rdsverket, 2008, 36-41
    14. Bonsdorff E, Blomqvist E M, Mattila J, et al. Long-term changes and coastal eutrophication. Examples from the ?land Islands and the Archipelago Sea, northern Baltic Sea. Oceanol. Acta, 1997, 20: 319-329
    15. Bonsdorff E, Blomqvist EM, Mattila J, et al. Long-term changes and coastal eutrophication. Examples from the ?land Islands and the Archipelago Sea, northern Baltic Sea. Oceanol. Acta, 1997, 20: 319-329
    16. Bricker S B, Clement C G, Pirhalla D E, et al. National estuarine eutrophication assessment: Effects of nutrient in the nation’s estuaries. NOAA-NOS Special Projects Office and the National Centers for Coastal Ocean Science, Silver Spring, MD, 1999, 71p
    17. Bricker S B, Ferreira J G and Simas T. An integrated methodology for assessment of estuarine trophic status. Ecol. Modell., 2003, 169 : 39-60
    18. Capriulo G M, Smith G, Troy R, et al. The planktonic food web structure of a temperate zone estuary, and its alteration due to eutrophication. Hydrobiologia, 2002, 475-476 : 263-333
    19. Carlson R E. A trophic state index for lakes. Limnol. Oceanogr., 1977, 22 (2) : 361
    20. Carpenter S R, Ludwig D, Brock W A. Management of eutrophication for lakes subject to potentially irreversible change. Ecol. Appli., 1999, 9(3): 751-771
    21. Carstensen J, Conley D and Müller-Karulis B. Spatial and temporal resolution of carbon fluxes in a shallow coastal ecosystem, the Kattegat. Mar. Ecol. Prog. Ser., 2003, 252: 35-50
    22. Carstensen J, Daniel J, Henriksen C P. Frequency, composition, and causes of summer phytoplankton blooms in a shallow coastal ecosystem, the Kattegat. Limnol. Oceanogr., 2004, 49 (1): 190–201
    23. Chai Chao, Yu zhiming, Song xiuxian, et al. The status and characteristics of eutrophication in the Yangtze River(Changjiang) Estuary and the adjacent East China Sea, China. Hydrobiologia, 2006, 563: 313-328
    24. Chen C C, Gong G C and Shiah F K. Hypoxia in the East China Sea: one of the largest coastal low-oxygen areas in the world. Mar. Environ. Res., 2007, 64 (4): 399-408
    25. Chen C S, Zhu J R, Beardsley R C, et al. Physical-biological sources for dense algal blooms near the Changjiang River. Geophys. Res. Lett., 2003, 30(10): 1515
    26. Chen C T A, Ruo R, Pai S, et al. Exchange of water masses between the East China Sea and the Kuroshio off northeastern Taiwan. Cont. Shelf Res., 1995, 15:19-39
    27. Chen N H, Blanchi T S, McKee B A, et al. Historical trends of hypoxia on the Louisiana shelf: application of pigments as biomarkers. Org. Geochem., 2001, 32: 543-561
    28. Clark J F, Simpson H J, Bopp R F, et al. Dissolved oxygen in lower Hudson Estuary : 1978-93. J. Environ. Eng., 1995, 121(10): 760-763
    29. Cloern J E. Our evolving conceptual model of coastal eutrophication problem. Mar. Ecol. Prog. Ser., 2001, 210: 223-253
    30. Cociasu A , Dorogan L, Humborg C, et al. Long-term ecological changes in Romanian coastal waters of the Black Sea. Mar. Pollut. Bull., 1996, 32: 32-38
    31. Cole J J, Honjo S, Erez E. Benthic decomposition of organic matter at a deep-water site in the Panama Basin. Nature, 1987, 327: 703-704
    32. Conley D J, Carstensen J, ?rtebjerg G, et al. Long-term changes and impacts of hypoxia in Danish coastal waters. Ecol. Appli., 2007, 17: S165-S184
    33. Conley, D.J., L. Rahm, O. Savchuk and F. Wulff. Hypoxia in the Baltic Sea and basin scale changes in phosphorus biogeochemistry. Environ. Sci. Technol., 2002, 36: 5315-5320
    34. De Jonge V N, Elliott M, Orive E. Causes, historical development, effects and future challenges of a common environmental problem: Eutrophication. Hydrobiologia, 2002, 475~476: 1-19
    35. Dettmann E H. Effect of water residence time on annual export and denitrification of nitrogen in estuaries: a model analysis. Estuaries, 2001, 24: 481-490
    36. Diaz R J and Rosenberg R. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol.: An Annual Review, 1995, 33: 245-303
    37. Diaz R J. Overview of hypoxia around the world. J. Environ. Qual., 2001, 30(2): 275-281
    38. Diaz. R.J. A Global perspective on the effects of eutrophication and hypoxia on aquatic biota. in: Fish Physiology, Toxicology, and Water Quality. Rupp, G. and White, M.D. eds, Proceedings of the Seventh International Symposium, Athens: Ecosystems Research Division, 2003, 9-30
    39. Duarte C M. Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia, 1995, 41: 87-112
    40. Edmondson W T. Eutrophication. Encyclopedia of Environmental Biology, 1995, 1: 697-703
    41. Elmgren R. Man’s impact on the ecosystem of the Baltic Sea: energy flows today and at the turn of the century. Ambio, 1989, 18: 326-332
    42. European Environment Agency. Eutrophication in Europe’s Coastal Waters. European Environment Agency Topic Report 7. EEA, Copenhagen, 2001, 86p
    43. Feyzio?lu A M and ??üt H. Red Tide Observations along the Eastern Black Sea Coast of Turkey.Turk J Bot, 2006, 30 : 375-379
    44. Foy R H, Smith R V, Jordan C, et al. Upward trend in soluble phosphorus loadings to Lough Neagh despite phosphorus reduction at sewage treatment works. Water Res., 1995, 29: 1051-1063
    45. Gallegos C L and Jordan T E. Impact of the Spring 2000 phytoplankton bloom in Chesapeake Bay on optical properties and light penetration in the Rhode River, Maryland. Estuaries, 2002, 25: 508-518
    46. GESAMP, Environmental capacity: An approach to marine pollution prevention. UNEP REG. SEAS REP. STUD. 1986, no. 80, 62p
    47. Gismervik I, Olsen Y, Vadstein O. Micro- and mesozooplankton response to enhanced nutrient input - a mesocosm study. Hydrobiologia, 2002, 484: 75-87
    48. Glenn S, Amone R, Bergmann T, et al. Biogeochemical impact of summertime coastal upwelling on the New Jersey Shelf. J. Geopys. Res., 2004, 109: C12S02
    49. Glibert P M, Anderson D A, Gentien P, et al. The global, complex phenomena of harmful algal blooms. Oceanography, 2005a, 18 (2): 136-147
    50. Glibert P M, Burkholder J M. The complex relationships between increasing fertilization of the Earth, coastal eutrophication, and HAB proliferation. In: Granéli E, Turner J (Eds.). The Ecology of Harmful Algae. Springer-Verlag. New York, 2006, 341-354
    51. Glibert P M, Magnien R, Lomas M W, et al. Harmful algal blooms in the Chesapeake and Coastal Bays of Maryland, USA: comparisons of 1997, 1998, and 1999 events. Estuaries, 2001, 24: 875-883
    52. Glibert P M, Mayorga , Seitzinger S. Prorocentrum minimum tracks anthropogenic nitrogen and phosphorus inputs on a global basis: Application of spatially explicit nutrient export models. Harmful Algae, 2008, 8: 33-38
    53. Glibert P M, Seitzinger S, Heil C A, et al. The role of eutrophication in the global proliferation of harmful algal blooms: new perspectives and new approaches. Oceanography, 2005b, 18 (2): 198-209
    54. Guerzoni S, Chester R , Dulac F, et al. The role of atmospheric deposition in the biogeochemistry of the Mediterranean Sea. Prog. Oceanogr., 1999, 44: 147-190
    55. Hammer M, Jansson A M, and Jansson B O. Diversity change and sustainability: implications for fisheries. Ambio, 1993,22: 97-105
    56. Hansen I S, Keul N, S?rensen J T, et al. Baltic Sea Oxygen Maps 2000-2006. BAlANCE Interim Report No. 17. BSR InterregⅢProject“BALANCE”. 2007, 4
    57. Harding L W Jr. and Perry E S .Longterm increase of phytoplankton biomass in Chesapeake Bay, 1950-1994. Mar. Ecol. Prog. Ser., 1997, 157: 39-52
    58. Hedges J I, Keil R G, Benner R. What happens to terrestrial organic matter in the ocean? Org. Geochem., 1997, 27 (5/6): 195-212
    59. Heisler J, Glibert P, Burkholder J, et al. Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae, 2008, 8: 3-13
    60. Howarth B, Anderson D, Cloern J, et al. Nutrient Pollution of Coastal Rivers, Bays, and Seas. Issues in Ecology, Ecological Society of America. Washington, DC. 2000, 11
    61. Hoyer M V, Frazer T K, Notestein S K, et al.. Nutrient, chlorophyll, and water clarity relationships in Florida’s nearshore coastal waters with comparisons to freshwater lakes. Can. J. Fish. Aquat. Sci., 2002, 59: 1024-1031
    62. http://www.ainfo.com.cn/technology
    63. Huang X P, Huang L M, Yue W Z. The characteristics of nutrients and eutrophication in the Pearl River estuary, South China. Mar. Pollut. Bull., 2003, 47: 30-36
    64. Huang Xiuqing, Jiang Xiaoshan, Tao Ran, et al. Maltivariate analysis of the occurring process ofSkeletonema costatum red tide in the Changjiang Estuary. Mar. Sci. Bull., 2001, 3(1): 55-62
    65. Huesemann M H, Skillman A D, Crecelius E A.. The inhibition of marine nitrification by ocean disposal of carbon dioxide. Mar. Pollut. Bull., 2002, 44: 142-148
    66. Hutchinson G E. Eutrophication:The scientific background of a contemporary practical problem. Amer. Sci. , 1973, 61: 269-279.
    67. Hydes D J, Kelly-Gerreyn B A, Le Gall A C, et al. The balance of supply of nutrients and demands of biological production and denitrification in a temperate latitude shelf sea - a treatment of the southern North Sea as an extended estuary. Mar. Chem. ,1999, 68: 117-131
    68. Ignatiades L, Karydis M and Vounatsou P. A possible method for evaluating oligotrophy and eutrophication based on nutrient concentration scales. Mar. Pollut Bull, 1992, 24(5): 238-243
    69. Imberger J, Patterson J C. A dynamic reservoir simulationm model-dyrem: 5. In: Transport Models for Inland and Coastal waters. Proceedings of a symposium on predictive ability. Academic Press, 1981, pp. 310–360 Chapter IX
    70. Iseki K, Okamura K, Kiyomoto Y. Seasonality and composition of downward particulate fluxes at the continental shelf and Okinawa Trough in the East China Sea. Deep Sea Res., Part II, 2003, 50: 457-473
    71. Jaworski N A, Howarth R.W, Hetling LJ. Atmospheric deposition of nitrogen oxides onto the landscape contributes to coastal eutrophication in the northeast United States. Environ. Sci. Technol., 1997, 31:1995-2004
    72. J?rgensen B B and Richardson K (eds.). Eutrophication in Coastal Marine Ecosystems: Coastal and Estuarine Studies. American Geophysical Union, Washington, 1996, 272
    73. Justic D A. Simple oxygen index for trophic state description. Mar. Pollut Bull, 1991, 22 (4): 201-204
    74. Kahru M, Horstmann U and Rud O. Satellite detection of increased cyanobacteria blooms in the Baltic Sea: Natural fluctuations or ecosystem change? Ambio, 1994, 23: 469-472
    75. Kauppila P. Phytoplankton as an indicator of eutrophication in coastal marine waters. Applications under the Water Framework Directive. Finnish environment institute, Finland, Helsinki, 2007, 13 p
    76. Kemp W M, Boynton W R, Adolf J E, et al. Eutrophication in Chesapeake Bay: historical trends and ecological interactions. Mar. Ecol. Prog. Ser., 2005, 303: 1-29
    77. Ketchum B. Eutrophication of estuaries. In Eutrophication: Causes, consequences, correctives. National Academy of Sciences. Washington D C, 1985, 197–209
    78. Kiirikki M, Lehtoranta J, Inkala A, et al. A simple sediment process description suitable for 3D-ecosystem modelling– Development and testing in the Gulf of Finland. J. Mar. Syst., 2006, 61: 55-66
    79. Ki?rboe T, Nielsen T G. Regulation of zooplankton biomass and production in a temperate, coastal ecosystem.1.Copepods. Limnol. Oceanogr, 1994, 39: 493-507
    80. Kohonen J T. Finnish strategies for reduction and control of effluences to the marine environment examples from agriculture, municipalities and industry. Mar. Pollut. Bull., 2003, 47: 162-168
    81. Konovalov S K, Murray J W. Variations in the chemistry of the Black Sea on a time scale of decades (1960~1995). J. Mar. Syst., 2001, 31: 217-243
    82. Konovalov, S. M. The large Marine Ecosystems of the Pacific Rim. 19~20 IUCN Gland Switzerland and NOAA U. S. A. 1984
    83. Larsson U, Elmgren R, Wulff F. Eutrophication and the Baltic Sea-causes and consequences. Ambio, 1985, 14: 9-14
    84. Leeuw G, Cohen L, Frohn L M, et al. Atmospheric input of nitrogen into the North Sea: ANICE project overview. Cont. Shelf Res., 2001 (21): 2073-2094
    85. Lepp?koski E , Helminen H, H?nninen J,et al. Aquatic biodiversity under anthropogenic stress: an insight from the Archipelago Sea (SW Finland). Biodivers. Conserv., 1999, 8 : 55-70
    86. Li M T, Xu K Q, Watanabe M, et al. Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem. Estuar., Coast. Shelf Sci., 2007, 71:3-12
    87. Lim H S, Diaz R J, Hong J S, et al. Hypoxia and benthic community recovery in Korean coastal waters. Mar. Pollut. Bull., 2006, 52(11): 1517-1526
    88. Limeburner R, Beardsley R C, Zhao J. Water Masses and Circulation in the East China Sea. Proceedings of International symposium on sedimentation on the continental shelf, with special reference to the East China Sea, April 12-16, 1983, Hangzhou, China, Vol. 1. Beijing: China Ocean Press, 1983. 285-294
    89. Lindhal O. Primary production in the Gullmar fjord. In: Swedish National Report on Eutrophication Status in the Kattegat and the Skagerrak, Hakansson B ed., Swedish Meteorological and Hydrological Institute, Stockholm, 2002, 20-25
    90. Mallin M A, Johnson V L,Ensign S H, et al. Factors contributing to hypoxia in rivers, lakes and streams. Limnol. Oceanogr., 2006, 51(1, part 2): 690-701
    91. Matth?us W. Recent trend variations of oceanological parameters in the Baltic Sea. -Proc. XIII conf. Baltic Oceanographers. Government Printing Centre, Helsinki. 1982, 535-547
    92. Meyer-Reil L-A, K?ster M. Eutrophication of Marine Waters: Effects on Benthic Microbial Communities. Mar. Pollut. Bull., 2003, 41(2-6): 255-263
    93. Moll A & Radach G. Review of three-dimensional ecological modelling related to the North Sea shelf system Part 1: models and their results. Prog. Oceangr., 2003,57: 175-217
    94. Moncheva S, Gotsis-Skretas O, Pagou K, et al.. Phytoplankton blooms in Black Sea and Mediterranean coastal ecosystems subjected to anthropogenic eutrophication: similarities and differences. Estuar. Coast. Shelf Sci., 2001, 53: 281-295
    95. Moore W S. Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature, 1996, 380 (18): 612-613
    96. Moth I T, Kjeldsen K, Kristensen P, et al. Integrated environmental assessment on eutrophication: a pilot study. NERI Technical Report, 1997, No. 207
    97. MozeticˇP,Umani S F,Cataletto B, et al. Seasonal and inter-annual plankton variability in the Gulf of Trieste (northern Adriatic). J. Mar. Sci., 1998,55: 711-722
    98. Nancy N R, Turner R E,and William J.W Jr. Hypoxia in the Gulf of Mexico. J. Environ. Qual., 2001, 30: 320-329
    99. Nielsen S L, Jensen S K, Borum J, et al. Phytoplankton, nutrients, and transparency in Danish Coastal Waters. Estuaries, 2002, 25: 930-937
    100. Nixon S W. Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia, 1995, 41: 199-219
    101. Nolan B T, Ruddy B C, Hitt K J, et al. Risk of nitrate in groundwaters of the U.S.A national perspective. Environ. Sci. Technol., 1997, 31: 2229-2236
    102. North Sea Task Force. North Sea Quality Status Report . London Oslo and Paris Commission, 1993
    103. Officer C B and Ryther J H. 1980. The possible importance of silicon in marine eutrophication. Mar. Ecology Prog. Ser., 1980, 3: 83-91
    104. OSPAR Strategy to Combat Eutrophication. (Reference number: 1998–18). (http://www.ospar.org/eng/html/sap/eutstrat.htm)
    105. OSPAR. Draft Common Assessment Criteria and their Application within the Comprehensive Procedure of the Common Procedure. Proceedings of the Meeting of the Eutrophication TaskGroup ( ETG) . London , 2001.
    106. Owens N J P, Galloway N J, Duce R A. Episodic atmospheric nitrogen deposition to oligotrophic oceans. Nature, 1992, 357: 397-399
    107. Paerl H W, and Whitalld. Anthropogenically-derived atmospheric nitrogen deposition, marine eutrophication and harmful algal bloom expansion: Is there a link? Ambio, 1999, 28 : 307-311
    108. Paerl H W. Coastal eutrophication and harmful algal blooms: Importance of atmospheric deposition and groundwater as“new”nitrogen and other nutrient sources. Limnol. Oceanogr., 1997,42 (5): 1154-1165
    109. Parsons M L, Dortch Q and Turner R E. Sedimentological evidence of an increase in Paeudo-nitzschia (Bacillariophyceae) abundance in response to coastal eutrophication. Limnol. Oceanogr., 2002, 47: 551-558
    110. Perus J, Bonsdorff E. Long-term changes in macrozoobenthos in the ? land archipelago, northern Baltic Sea. J. Sea Res., 2004, 52: 45– 56
    111. Pinckney J L, Paerl H W, Tester P, et al. The Role of Nutrient Loading and Eutrophication in Estuarine Ecology. Environ. Health Perspect., 2001, 109: 699-706
    112. Prins D C, Escaravage V, Wetsteyn L P M J, et al. Effects of different N- and P-loading on primary and secondary production in an experimental marine ecosystem. Aquat. Ecol., 1999, 33: 65-81
    113. Rabalais N N, Turner R E, Seavia D. Beyond science into policy: Gulf of Mexico hypoxia and the Mississippi river. Bioscience, 2002, 52: 129-142
    114. Rabalais, N. N., R. E. Turner. Hypoxia in the Northern Gulf of Mexico: Description, Causes and Change. in: Rabalais, N. N., R. E. Turner, eds. Coastal Hypoxia: Consequences for Living Resources and Ecosystems, Coastal and Estuarine Studies No.58, American Geophysical Union, Washington, D.C. 1-36p
    115. Rasmussen B, Gustafsson B G, ?rtebjerg G, et al. Oxygen concentration and consumption at the entrance of the Baltic Sea from 1975 to 2000. J. Mar. Syst., 2003, 42: 13-30
    116. Rendell A R, Ottley C J, Jickells T D, et al.The atmospheric input of nitrogen species to the North Sea. Tellus,1993,45B:53-63
    117. Rice A L, Thurston M H, Bett B. The IOSDL DEEPSEAS programme: Introduction and photographic evidence for the presence and absence of a seasonal input of phytodetritus at constrasting abyssal sites in the northeastern Atlantic. Deep Sea Res., Part I, 1994, 41: 1305-1320
    118. Richardson K. 1997. Harmful or exceptional phytoplankton blooms in the marine ecosystem. Adv. Mar. Biol., 1997, 31: 301-385
    119. Rimmelin P, Dumon J C, Maneux E, et al. A.Study of Annual and Seasonal Dissolved Inorganic Nitrogen Inputs into the Arcachon Lagoon, Atlantic Coast (France). Estuar. Coast. Shelf Sci, 1998, 47: 649-659
    120. Rosenberg R, Elmgre, R, Fleischer S, et al. Marine eutrophication studies in Sweden. Ambio, 1990, 19: 102-108
    121. Rosenberg R, Elmgren R, Fleischer S, et al. Marine eutrophication case studies in Swden. Ambio, 1990, 19: 102-108
    122. Rosenberg, R. Negative oxygen trends in Swedish coastal waters. Mar. Pollut. Bullet., 1990, 21: 335-339
    123. Rydberg L. Nutrient reductions in the Gothenburg waste water treatment plant and their effects on nutrient concentrations and chlorophyll in the estuary of the River G?ta ?lv. Vatten, 2008, 64: 103-119
    124. Schiewer U. 30 years’eutrophication in shallow brackish waters– lessons to be learned. Hydrobiologia, 1998, 363: 73–79
    125. Sharpley A N, Daniel T C, Sims J T, et al. Determining environmentally sound phosphorus levels. J. Soil Water Conserv., 1996, 51: 160-166
    126. Short F T, Wyllie-Echeverria S. Natural and human induced disturbance of seagrasses. Environ Conserv, 1996, 23: 17–27
    127. Smayda T J. 1989. Primary production and the global epidemic of phytoplankton blooms in the sea: A linkage? In Novel Phytoplankton Blooms. Cosper E M,. Bricelj V M and Carpenter E J (eds.), Coastal and Estuarine Studies No. 35 , Springer-Verlag, NY, 449-484
    128. Smayda T J. Harmful phytoplankton blooms: their ecophysiology and general relevance. Limnol. Oceanogr., 1997, 42 : 1137-1153
    129. Smayda T J. Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In: Granéli E, Sundstrom B, Edler L, Anderson D M (Eds.), Toxic Marine Phytoplankton. Elsevier, New York, 1990, 29-40
    130. Smith R V, Lennox S D, Jordan C, et al. Increase in soluble phosphorus transported in drainow from a grassland catchment in response to soil phosphorus accumulation. Soil Use Manage., 1995, 11: 204-209
    131. Smith V H. Responses of estuarine and coastal marine phytoplankton to nitrogen and phosphorus enrichment. Limnol. Oceanogr., 2006, 51(1, part 2): 377–384
    132. Smith VH,. Tilman G D, Nekola J C.Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems.Environ. Pollut., 1999: 179-196
    133. Smith VH. Using primary productivity as an index of coastal eutrophication: the units of measurement matter. J Plankton Res, 2007, 29: 1–6
    134. Spokes L J, Yeatman S G, Cornell S E, et al. Nitrogen deposition to the eastern Atlantic Ocean:the importance of south-easterly flow. Tellus, 2000, 52: 37–49
    135. Spokes L, Jickells T, Rendell A, et al. High atmospheric nitrogen deposition events over the North Sea. Mar. Pollut. Bull., 1993, 26: 698-703
    136. Stigebrandt A. Computations of oxygen fluxes through the sea surface and net production of organic matter with application to the Baltic and adjacent seas. Limnol. Oceanogr., 1991, 36: 444-454
    137. Su Y, Weng X. Water masses in China Seas. In Oceanology of China Seas, Vol.1. Kluwer Academic Publishers, Netherlands, 1994, 3-16
    138. Tang D L, Di B P, Wei G F, et al. Spatial, seasonal and species variations of harmful algal blooms in the South Yellow Sea and East China Sea. Hydrobiologia, 2006, 568(1): 245-253
    139. Telesh I V, Alimov A F, Golubkov S M, et al. Response of aquatic communities to anthropogenic stress: a comparative study of Neva Bay and the eastern Gulf of Finland. Hydrobiologia, 1999, 393: 95-105
    140. Telesh I V, Heerkloss R. Atlas of Estuarine Zooplankton of the Southern and Eastern Baltic Sea. Part I: Rotifera. Verlag Dr. Kova?, Hamburg. 2002
    141. Tett P, Gilpin L, Svendsen H, et al. Eutrophication and some European waters of restricted exchange. Cont. Shelf Res., 2003, 23: 1635-1671
    142. Tian R C, Hu F X, Martin J M. Summer nutrient fronts in the Changjiang (Yangtze River) Estuary. Estuar. Coast. Shelf Sci., 1993, 37: 27-41
    143. Trainer V L, Cochlan W P, Erickson A, et al. Recent domoic acid closures of shellfish harvest areas in Washington State inland waterways. Harmful Algae, 2007, 6, 449-459
    144. Turner R E, Rabalais N N, Swenson E M, et al. Summer hypoxia in northern Gulf of Mexico and its prediction from 1978 to 1995. Mar. Environ. Res., 2005, 59: 65-77
    145. Turner R, Rablais N. Coastal eutrophication near the Mississippi river delta. Nature, 1994, 368: 619
    146. Udy J, Gall M, Longstaff B, et al.Water quality monitoring: a combined approach to investigate gradients of change in the Great Barrier Reef, Australian. Mar. Pollut. Bull., 2005, 51: 224-238
    147. Valiela I, Clelland M J, Hauxwell J, et al. Macroalgal blooms in shallow estuaries: Controls and ecophysiological and ecosystem consequences. Limnol. Oceanogr., 1997, 42: 1105-1118
    148. Valle-Levinson A, Wilson R E, Swanson R L. Physical mechanisms leading to hypoxia and anoxia in western long island sound. Environ. Int., 1995, 21(5): 657-666
    149. Vitousek P M, Aber J, Howarth R W, et al. Human alteration of the global nitrogen cycle: causes and consequences. Ecol. Appli., 1997a, 7: 737-750
    150. Vitousek P M, Mooney H A, Lubchenko J, et al. Human domination of Earth's ecosystems. Science, 1997b, 277: 494-499
    151. Wang Bao-dong, Wang Xiu-lin, Zhan Run. Nutrient conditions in the Yellow Sea and the East China Sea. Estuar. Coast. Shelf Sci., 2003, 58 : 127-136
    152. Wang BD. Hydromorphological mechanisms leadings to hypoxia off the Changjiang estuary. Mar. Environ. Res., 2009, 67: 53-58
    153. Wang X L, An Y, Zhang J. Contribution of Biological Processes to Self-purification of water with respect to Petroleum Hydrocarbon Associated with No.0 Diesel in Changjiang Estuary and Jiaozhou Bay, China. Hydrobiologia, 2002, 469:179-191
    154. Wei H, He Y, Li Q, et al. Summer hypoxia adjacent to the Changjiang Estuary. J. Mar. Syst., 2007, 67: 292-303
    155. Wu R S S. The environmental impact of marine fish culture: towards a sustainable fulture. Mar. Pollut. Bull., 1995, 31, nos 4-12:159-166
    156. Yan T, Zhou M J, Zou JZ. A national report on harmful algal blooms in China. www.pices.int/publications/ scientific_reports/Report23/HAB_China.pdf, 2004.
    157. Yunev O A, Carstensen J, Moncheva S, et al. Nutrient and phytoplankton trends on the western Black Sea shelf in response to cultural eutrophication and climate changes. Estuar. Coast. .Shelf Sci., 2007, 74: 63-76
    158. Yurkovskis A, Kostrichkina E, Ikauniece A. Seasonal succession and growth in the plankton communities of the Gulf of Riga in relation to long-term nutrient dynamics. Hydrobiologia, 1999, 393: 83-94
    159. Zhang J, Liu M G.Observations on nutrient elements and sulphate in atmospheric wet depositions over the Northwest Pacific coastal oceans -Yellow Sea. Mar. Chem. , 1994,47:173-189
    160. Zhang J, Liu S M, Ren J L, et al. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf. Prog. Oceanogr., 2007, 74 (4): 449-478
    161. Zou Jingzhong, Dong Liping and Qin Baoping. Preliminary studies on eutrophication and red tide problems in Bohai Bay. Hydrobiologia, 1985, 127: 27-30
    162. 126专项综合报告编写组.我国专属经济区和大陆架勘测专项综合报告.北京:海洋出版社, 2002
    163.蔡燕红,蒋晓山,黄秀清.舟山海域一次具齿原甲藻赤潮初探.海洋环境科学, 2002, 21(1) : 42-45
    164.蔡燕红和项有堂.舟山海域具齿原甲藻赤潮初探.海洋环境科学, 2002, 21(4) : 34-36
    165.柴超.长江口水域富营养化现状与特征研究: [博士学位论文].中国科学院海洋研究所,青岛:2006
    166.柴超,俞志明,宋秀贤,等.长江口水域富营养化特性的探索性数据分析.环境科学, 2007, 28(10): 53-58
    167.陈春华.海口湾海域铜的自净能力研究: [博士学位论文].青岛海洋大学,青岛, 1998
    168.陈翰林,吕颂辉,张传松,等. 2004年东海原甲藻赤潮爆发的现场调查和分析.生态科学, 2006, 25(3): 226-230
    169.陈吉余,陈祥禄,杨启伦.上海海岸带和海洋资源综合调查报告.上海:科技出版社,1988
    170.陈力群.莱州湾海洋环境评价与污染总量控制方法研究:[硕士学位论文].青岛:中国海洋大学,2004
    171.陈鸣渊.长江口富营养化评价方法及生物指示指标研究: [硕士学位论文].中科院海洋研究所,青岛, 2006
    172.陈尚,朱明远,马艳,等.富营养化对海洋生态系统的影响及其围隔实验研究.地球科学进展, 1999, 14(6) : 571-576
    173.邓超冰.海水水质的模糊综合评价模型的比较. 1993, 12 (2) : 22-28
    174.董存有,张金荣.大鹏湾沙头角海域富营养化与赤潮发生的初步研究.生科科学, 1994, 1: 75-80
    175.杜春梅.沙子口湾海水环境容量初步研究.海洋科学, 2002, 26(10) : 13-14
    176.杜虹,黄长江,陈善文等. 2001-2002年粤东柘林湾浮游植物的生态学研究.海洋与湖沼, 2003, 34(6) : 604-617
    177.方倩.东海主要化学污染物排海总量: [硕士学位论文].中国海洋大学,青岛, 2008
    178.方秦华,张珞平,王佩儿,等.象山港海域环境容量的二步分配法.厦门大学学报, 2004, 43(8): 217-220
    179.付春平,钟成华,邓春光.水体富营养化成因分析.重庆建筑大学学报, 2005, 27(1): 128-131
    180.冈市友利.浅海的污染与赤潮的发生,内湾赤潮的发生机制,日本水产资源保护协会,1972,58-76
    181.高生泉,林以安,金明明,等.春、秋季东、黄海营养盐的分布变化特征及营养结构.东海海洋, 2004, 22(4): 39-50
    182.葛明,王修林,阎菊,石晓勇等.胶州湾营养盐环境容量计算.海洋科学,2003,27 (3): 36-42
    183.谷颖和项有堂.象山港海域富营养化与赤潮的关系.海洋环境科学, 2002, 21(3) : 67-69
    184.顾宏堪.黄海溶解垂直分布中的最大值.海洋学报, 1980, 2(2): 70-79
    185.顾宏堪,熊孝先,刘明星.长江口附近氮的地球化学Ⅰ.长江口附近海水中的硝酸盐.山东海洋学院学报, 1981, 11(4) : 37- 46
    186.郭良波.渤海环境动力学数值模拟及环境容量研究:[硕士学位论文].青岛:中国海洋大学,2005
    187.郭卫东,章小明,杨逸萍,等.中国近岸海域潜在性富营养化程度的评价.台湾海峡, 1998,
    17 (1): 64-70
    188.国家海洋局. 1986.中国2000年海洋污染预测及防治对策的研究
    189.国家海洋局.海洋监测规范(GB17378.7-1998).北京:海洋出版社, 1998
    190.国家海洋局.中国海洋环境年报(1990~1998). 1991~1999. http://www.soa.gov.cn
    191.国家海洋局.中国海洋环境质量公报(2000-2008). 2001-2009,http://www.soa.gov.cn/
    192.国家海洋局东海分局. 2004 ~ 2005.东海区海洋环境质量报告(状况)
    193.国家海洋局东海环境监测中心,2004. 2004年11月上海海域海洋环境趋势性监测简报
    194.国家环保总局和国家海洋局. 1997.中华人民共和国国家海水水质标准(GB3097-1997)
    195.中国科委海洋综合调查办公室.全国海洋综合调查报告. 1964
    196.海洋综合调查办公室.渤海黄海东海海洋图集(化学卷).北京:海洋出版社,1991
    197.韩秀荣,王修林,孙霞,等.东海近海海域营养盐分布特征及其与赤潮发生关系的初步研究.应用生态学报, 2003, 14(7): 1097-1001
    198.韩秀荣.长江口及邻近海域浮游植物生长的多环境效应因子影响解析研究: [博士学位论文].中国海洋大学,青岛, 2009.
    199.洪君超,黄秀清,蒋晓山,等.嵊山水域中肋骨条藻赤潮发生过程主导因子分析.海洋学报, 1993. 15(6): 135-141
    200.胡辉,胡方西.长江口的水系和锋面.中国水产科学,1995,2(1):81-90
    201.黄自强,暨卫东.长江口水中总磷、有机磷、磷酸盐的变化特征及相互关系.海洋学报,1994, 16(1) :51-60
    202.姜太良,宋万先,房宪英.莱州湾西南部的物理自净能力.海洋通报, 1991, 10(2) : 51-79
    203.蒋国昌,王玉衡,董恒霖,等.浙江沿海富营养化程度的初步探讨.海洋通报,1987,6 (4): 38-46
    204.蒋国昌,王玉衡.淅江近海上升流区无机磷酸盐和溶解氧分布以及相互关系.海洋学报, 1989, 11(3) : 356-363
    205.蒋国昌.浙江南部海域富营养化和赤潮的探讨.东海海洋, 1993, 11(2): 55-61
    206.金卫红,邵秀伟.近岸海域水质分析及对海洋生态环境的影响研究.高师理科学刊, 2000,20(1):20-23
    207.金卫红,邵秀伟.浙江近岸海域水质环境状况分析研究.浙江海洋学院学报, 2003,22(4):327-331
    208.李道季,张经,黄大吉等.长江口外氧的亏损.中国科学(D辑), 2002, 32 (8): 686-694
    209.李慧韫,张天胜.磷和水体富营养化.日用化学品科学, 2002 ,10 (5): 12-14
    210.李嘉竹,刘贤赵.不确定性理论集对分析在海水水质富营养化评价中的应用.数学的实践与认识, 2009, 39 (1) : 84-88
    211.李金涛.长江口邻近海域营养盐对浮游植物生长的影响: [硕士学位论文].中国海洋大学,青岛:2004
    212.李克强,王修林,阎菊,石晓勇等.胶州湾石油烃污染物环境容量计算.海洋环境科学,2003,
    22 (4): 13-17
    213.李克强.胶州湾主要化学污染物海洋环境容量研究:[博士学位论文].中国海洋大学,青岛,2007
    214.李骞.春夏季东海赤潮高发区颗粒有机物的来源、含量变化及其与固碳作用的关系: [硕士学位论文].青岛:中国海洋大学, 2007
    215.李雁宾.长江口及邻近海域季节性赤潮生消过程控制机理研究: [博士学位论文].中国海洋大学,青岛, 2008
    216.李峥,沈志良,周淑青等.长江口及其邻近海域磷的分布变化特征.海洋科学, 2007, 31(1): 28-36
    217.林洪瑛,韩舞鹰.大亚湾核电站热排水对底层海水贫氧现象影响的预测.环境科学, 1987, 7-12
    218.林荣根,邹景忠.近海富营养化的结果与对策.海洋环境科学, 1997, 16 (3) : 71-75
    219.刘灿生.湄洲湾海域污水排海工程环境容量评价的研究.哈尔滨建筑大学学报, 2002, 35(2): 47-49
    220.刘东艳.胶州湾浮游植物与沉积物中硅藻群落结构演替的研究: [博士学位论文].中国海洋大学,青岛,2004
    221.刘家寿.网箱养鱼对环境影响的研究进展.水生生物学报, 1997, 2 (2): 174– 183
    222.刘丽萍,黄大吉,章本照.渤黄东海混合层演变规律的研究进展.海洋科学进展, 2002, 20(3):84-89
    223.刘素美,张经,陈洪涛.黄海和东海生源要素的化学海洋学.海洋环境科学, 2000, 19(1):68-73
    224.刘新成,沈焕庭,黄清辉.长江入河口区生源要素的浓度变化及通量估算.海洋与湖沼, 2002, 33(5): 332-340
    225.刘雪芹.舟山近岸海域富营养化评价.海洋湖沼通报, 2005, 2: 55-60
    226.刘哲.胶州湾水体交换与营养盐收支过程数值模型研究:[博士学位论文].青岛:中国海洋大学,2004
    227.马德毅.第二次全国海洋污染基线调查报告.大连:国家海洋局海洋环境监测中心,2004
    228.马效民,刘兴波,臧景红.富营养化与赤潮.河北建筑工程学院学报, 2001, 19 (2): 35-36
    229.孟伟,秦延文,郑丙辉,等.长江口水体中氮、磷含量及其化学耗氧量的分析.环境科学, 2004, 25(6): 65-68
    230.宁修仁,史君贤,蔡昱明等.长江口及杭州湾海域生物生产力锋面及其生态学效应.海洋学报, 2004, 26(6) : 96-106
    231.彭云辉,王肇鼎.珠江河口富营养化水平评价.海洋环境科学, 1991, 10 (3) : 7-12
    232.曲肇兴.大连湾污染物排放总量控制的研究: [硕士学位论文].大连海事大学,大连, 2007
    233.全国海岸带办公室《环境质量调查报告》编写组.中国海岸带和海涂资源综合调查专业报告集—环境质量调查报告.北京,海洋出版社,1989
    234.全为民,沈新强.长江口及邻近水域渔业环境质量的现状及变化趋势研究.海洋渔业,2004,
    26(2):93-98
    235.全为民,沈新强,韩金娣等.长江口及邻近水域富营养化现状及变化趋势的评价与分析.海洋环境科学,2005, 24(3): 13-16
    236.任广法.长江口及其邻近海域溶解氧的分布变化.海洋科学集刊, 1992, 33: 139-147
    237.任敏,叶仙森,项有堂.中街山列岛附近海域环境质量现状评价与分析.海洋开发与管理, 2006, 24: 114-116
    238.佘静,孙英兰,张越美,等.宁波-舟山海域入海污染物环境容量研究.环境污染与防治, 2006, 28(1) : 21-24
    239.沈新强,袁骐,王云龙等.长江口、杭州湾附近渔业水域生态环境质量评价研究.水产学报,2003,27(Suppl.):76-81
    240.沈志良.三峡工程对长江口海区营养盐分布变化影响的研究.海洋与湖沼. 1991, 22 (6): 540-546
    241.沈志良,陆家平,刘兴俊等.长江口区营养盐的分布特征及三峡工程对其影响.海洋科学集刊, 1992, 33:107-129
    242.沈志良.胶州湾营养盐结构的长期变化及其对生态环境的影响.海洋与湖沼, 2002, 33 (3): 322-331
    243.施建荣,张立,邹伟明,等.舟山渔场近岸海水中营养盐的分布特征.海洋环境科学, 1999, 18(2) : 43-48
    244.施青松,张健.崎岖列岛附近海域环境质量现状与分析.东海海洋,2002,20(2): 23-30
    245.石晓勇,王修林,韩秀荣,等.长江口邻近海域营养盐分布特征及其控制过程的初步研究.应用生态学报, 2003, 14(7): 1086-1092
    246.石晓勇,王修林,陆茸,等.东海赤潮高发区春季溶解氧和pH分布特征及影响因素探讨.海洋与湖沼, 2005, 36(5): 404-412
    247.宋国栋.东海溶解氧气候态分布及海洋学应用研究: [硕士学位论文].中国海洋大学,青岛, 2008
    248.苏畅.长江口及其邻近海域富营养化水平评价.水科学进展, 2008, 19 (1) : 99-105
    249.宿俊英,刘树坤,何少苓,等.太湖水环境容量的研究.水利学报, 1992, 11: 20-36
    250.孙百晔.长江口及邻近海域浮游植物生长的光照效应研究: [博士学位论文].中国海洋大学,青岛:2008
    251.孙秉一,于圣瑞,郝恩良.长江口至济州岛海域调查研究综合报告(第4章):海洋化学.山东海洋学院学报,1986,16(1), 132-210
    252.唐静亮,毛宏跃,过美蓉.浙江北部海域的具齿原甲藻赤潮分析.浙江海洋学院学报(自然科学版), 2005, 24(4): 330-335
    253.屠建波;王保栋.长江口及其邻近海域富营养化状况评价.海洋科学进展, 2006, 24(4): 532-538
    254.王保栋.长江冲淡水的扩展及其营养盐的输运.黄渤海海洋, 1998, 16 (2): 42-48
    255.王保栋,战闰,臧家业.长江口及其邻近海域营养盐的分布特征和输送途径.海洋学报, 2002, 24(1): 53-58
    256.王保栋.长江口及邻近海域富营养化状况及其生态效应: [博士学位论文].中国海洋大学,青岛, 2006
    257.王长友.东海Cu、Pb、Zn、Cd重金属环境生态效应评价及环境容量估算研究: [博士学位论文].中国海洋大学,青岛,2008
    258.王福表.网箱养殖水污染及其治理对策.海洋科学, 2002, 26 (7): 24 -26
    259.王桂兰,黄秀清,蒋晓山,等.长江口中肋骨条藻赤潮的分布与特点.海洋科学, 1993, 3(1) :
    51-54
    260.王颢,石晓勇,张传松,王修林. 2004年春季东海赤潮高发区COD分布及其与赤潮关系的初步研究.海洋科学, 2008, 32 (12) : 82-86
    261.王金辉.中街山列岛海域赤潮应急监测.浙江海洋学院学报(自然科学版), 2000, 20 (1):
    62-65
    262.王修林,邓宁宁,李克强,石晓勇等.渤海夏季石油烃污染现状及其环境容量估算.海洋环境科学,2004,23(4):14-18
    263.王修林,李克强,石晓勇.胶州湾主要化学污染物海洋环境容量.北京:科学出版社, 2006
    264.王修林,李克强.渤海主要化学污染物海洋环境容量.北京:科学出版社, 2006
    265.王友绍,王肇鼎,黄良民.近20年来大亚湾生态环境的变化及其发展趋势.热带海洋学报, 2004, 23 (5): 85-95
    266.王玉衡,蒋国昌,董恒霖.春季浙江南部海区溶解氧、pH值和营养盐分布特征及相互关系研究.海洋学报,1990,12(5): 654-660
    267.王肇鼎,练健生,胡建兴,等.大亚湾生态环境的退化现状与特征.生态科学, 2003, 22(4): 313-320
    268.韦蔓新,何本茂.北海湾生态环境特征及其营养状况分析.海洋湖沼通报, 2003,(4):95~10
    269.吴俊,王振基.大连湾海水交换和自净能力研究.海洋科学, 1983, 6(3) : 32-35
    270.吴立峰.厦门同安湾硅藻赤潮与理化环境条件的关系研究.福建水产, 2006, 2: 19-23
    271.夏华永,殷忠斌,葛文标.钦州湾物理自净能力研究.广西科学,1996,3(2): 65-70
    272.夏增禄.土壤环境容量研究.环境科学, 1986, 34-45
    273.熊德琪,陈守煜.海水富营养化模糊理论评价模式.海洋环境科学, 1993, 12 (3-4) : 104-110
    274.徐韧,洪君超,王桂兰,等.长江口及其临近海域的赤潮现象.海洋通报, 1994, 13: 25-29
    275.许建平.浙江沿岸的赤潮灾害及防治对策.东海海洋, 1992, 10(3): 30-37
    276.许容, 1995.应用主成分分析法研究海州湾的污染状况.海洋环境科学, 1995, 14 (2) : 28-32
    277.许淑梅.长江口外缺氧区及其邻近海域氧化还原敏感性元素的分布规律及环境指示意义: [博士学位论文].青岛:中国海洋大学, 2005
    278.杨东方,王凡,高振会等.胶州湾浮游藻类生态现象.海洋科学, 2004, 28(6): 71-74
    279.杨鸿山,朱启琴,戴国梁.长江口杭州湾海区两次赤潮的调查与初步研究.海洋环境科学, 1990, 9(1) : 23-27
    280.杨晓兰,林以安.长江口邻近海域的环境水化学特征.东海海洋, 1989, 7(2): 60-65
    281.姚庆祯.长江黄河营养物质通量及其对近岸生态环境的影响[博士后出站论文].中国海洋大学,青岛, 2008(内部资料).
    282.姚炜民,潘晓东,华丹丹.浙江海域米氏凯伦藻赤潮成因的初步研究.水利渔业, 2007, 27 (6) : 57-59
    283.叶常明.多介质环境污染研究.北京:科学出版社,1997
    284.叶仙森,张勇,项有堂.长江口海域营养盐的分布特征及其原因.海洋通报, 2000, 19(1): 89-92
    285.叶属峰,纪焕红,曹恋,等.长江口海域赤潮成因及其防治对策.海洋科学, 2004, 28 (5): 26-32
    286.余国辉.“长江河口区污染物与悬浮颗粒物的输移途径及其扩散影响研究"专辑,第二章长江河口及其邻近海区的总化学耗氧有机质与营养盐.东海海洋, 1995, 13(3-4) : 15-36
    287.曾江宁,曾淦宁,黄韦艮,等.赤潮影响因素研究进展.东海海洋, 2004, 22 (2): 40-47
    288.张传松,王修林,石晓勇,等.东海赤潮高发区COD和石油烃分布特征及其与赤潮发生关系的初步研究.应用生态学报, 2003, 14(7): 1093-1096
    289.张传松,王修林,石晓勇等.东海赤潮高发区营养盐时空分布特征及其与赤潮的关系.环境科学, 2007, 28(11): 2416-2424
    290.张传松.长江口及邻近海域赤潮生消过程特征及其营养盐效应分析: [博士学位论文].中国海洋大学,青岛, 2008
    291.张拂坤.胶州湾入海污染物容量研究: [硕士学位论文].中国海洋大学,青岛, 2007
    292.张国森.大气的干、湿沉降以及对东、黄海海洋生态系统的影响: [硕士学位论文].中国海洋大学,青岛, 2004
    293.张丽旭,赵敏,蒋晓山.海水营养状态的灰色关联评价模型及应用.海洋学研究, 2008, 26 (1) : 52-57
    294.张平.长江口营养盐结构变化研究: [硕士学位论文].中国科学院海洋研究所,青岛: 2001
    295.张学庆,孙英兰,蔡惠文,等.胶州湾COD、N、P污染物浓度数值模拟.海洋环境科学, 2005, 24(3) : 64-67
    296.张莹莹,张经,吴莹等.长江口溶解氧的分布特征及影响因素研究.环境科学, 2007, 28 (8): 1649-1654
    297.张永战,张大奎.海岸带—全球变化研究的关键地区.海洋通报, 1997,16(3): 69-80
    298.张竹琦.黄海和东海北部夏季底层溶解氧最大值和最小值特征分析.海洋通报, 1990, 9 (4) : 22-26
    299.章守宇,杨红,刘洪生.东海物质输送及其影响因素分析.上海水产大学学报,2000,9(2):152-156
    300.章守宇,杨红,焦俊鹏等.浙江北部沿海富营养化的评价与分析.水产学报, 2001, 25(1): 74-78
    301.章守宇,刘莲,杨红.东海磷营养盐变动模型的建立与应用.水产学报, 2003, 27(3): 265-272
    302.郑元甲,陈雪忠,程家骅等.东海大陆架生物资源与环境.上海:上海科学技术出版社,2003:78-115
    303.中村武弘,富坚宏由.海水交换率によゐ大村湾の水质污浊预测に关すゐ研究.第27回海岸工程学讲演论文集, 1980, 487-491
    304.中国海湾志编撰委员会.中国海湾志(第十四分册).北京:海洋出版社,1998
    305.中国海洋志编纂委员会.中国海洋志.郑州:大象出版社,2003
    306.中华人民共和国环境保护部, 2002-2008.中国近岸海域环境质量公报(2001~2007年) .北京: 中华人民共和国环境保护部. http://www.mep.gov.cn/
    307.周德山.海州湾海域赤潮形成的环境因子研究: [硕士论文].苏州大学,苏州, 2008
    308.周凯,黄长江,姜胜.柘林湾浮游植物群落结构及数量变动的周年调查.生态学报, 2002, 22 (5): 688– 698
    309.周名江,朱明远,张经.中国赤潮的发生趋势和研究进展.生命科学,2001,13(2):53-59
    310.周名江,颜天,邹景忠.长江口邻近海域赤潮发生区基本特征初探.应用生态学报, 2003, 14(7) : 1031-1038
    311.周名江,于仁成.有害赤潮形成机制、危害效应与防治对策.自然杂志, 2007, 29(2): 72-77
    312.朱建荣,王金辉,沈焕庭,等. 2003年6月中下旬长江口外海区冲淡水和赤潮的观测及分析. 科学通报, 2005, 50(1) : 59-65
    313.朱卓毅.长江口及邻近海域低氧现象的探讨—以光合色素为出发点: [博士学位论文].华东师范大学,上海, 2007
    314.邹建军,杨刚,刘季花等.长江口邻近海域九月溶解氧的分布特征.海洋科学进展, 2008, 26 (1): 65-73
    315.邹景忠,董丽萍,秦保平.渤海湾富营养化和赤潮问题的初步探讨.海洋环境科学, 1983, 2 (2): 42-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700