用户名: 密码: 验证码:
长江口水域富营养化的形成、演变与特点研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以我国长江口水域富营养化为研究对象,对长江水体溶解态无机氮、磷分布特点和通量变化进行了分析,基于长江流域氮“输入-输出”关系模型探索了水体氮的来源;分析了长江口水域富营养化长期演变及特点;探索了长江口海域低氧区的发生机制。结果如下:
     长江水体中NO_3~--N、NH_4~+-N、DIN和DIP浓度从上游往下游呈增加趋势,但存在季节差异。长江流域从上游往下游的DIN输送通量的变化主要受水流量的影响,但从上游往下游单位面积年产N量逐渐升高;DIP输送通量从上游往下游呈增加趋势,同时也主要受水流量控制,但从季节变化来讲,DIP的月输送通量受其浓度的控制更加明显。自20世纪60年代来,长江水体中NO_3~--N、NO_2~--N、DIN和DIP浓度都处于缓慢上升趋势,但到80年代上升速度明显加快;不同历史时期DIN和DIP的季节变化特点也不尽相同,反映出其来源的差异。同时,本研究采用长江流域氮“输入-输出”关系模型(污染负荷统计模型)对长江水体氮来源进行了分析,估算了各种氮源对水体氮的贡献率。结果表明,2006年向长江流域输入氮的总量为17.6 Tg,其中20%的输入氮转移到了水体(3.5 Tg)。本年度长江大通水文站实测氮输送通量为1.8 Tg,表明约50%的氮在水体输送过程中发生了生物、化学、物理损耗。对于长江水体氮的来源来讲,饲养牲畜粪便氮流失和大气干/湿沉降氮的贡献率较大,分别为26%和25%;农业氮肥流失和城市生活污水排放的贡献率相同,都为17%;农村人口粪便氮流失和工业废水排放的贡献率分别为6%和9%。
     自20世纪60年代以来,长江口口门内和外海(盐度>30psu)水体中营养盐浓度增加显著。在表层水体盐度大于22psu海域DIN: PO_4~(3-)-P值表现出了明显升高的历史变化趋势。SiO_3: PO_4~(3-)-P值从1959年到1985-86年显著下降,然后到2003-06年有所上升。根据SiO_3: PO_4~(3-)-P值和DIN: PO_4~(3-)-P值的长期变化趋势,可以推出,SiO_3: DIN值从20世纪50-60年代以后呈现下降趋势。在长江口海域,随着营养盐浓度的增加,浮游生物量的大幅度升高在本研究中得到证实。同时,长江口水域浮游植物种群结构对营养盐结构的长期变化产生响应,研究结果表明,硅藻种类比重从1985-86年84.6%下降到2004-05年69.8%;年均硅藻丰度占浮游植物总丰度比重在1985-86年达到99.5%,但到2004-05年降低为75.5%,而甲藻丰度比重则由0.7%增大到25.4%。
     底层水体DO浓度与Delta S(底层水体与表层水体的盐度之差)和Delta T(表层水体与底层水体的温度之差)成显著负相关,这表明了水体层化或者垂直水体交换是控制长江口水域底层水体溶解氧变化的主要因素,但水体温度层化要比盐度层化在控制低氧区形成上起到更大的作用。上升流在该海域低氧的形成和分布上起到很重要的作用,显著影响低氧水团的垂直分布,也显著影响到溶解氧的水平分布。现场生产的浮游植物可能是低氧区的形成的生物基础,日益增加的叶绿素a浓度和大规模的有害藻华可能是长江口低氧区逐渐增大的原因。本研究认为,此海域低氧区的形成主要受长江冲淡水、台湾暖流的入侵、地形、尤其是温跃层的形成和现场生产的有机物质控制。
In order to study the eutrophication of the Changjiang Estuary, the distribution and fluxes of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) in the Changjiang River were investigated in this paper. And also, this study estimated the sources of riverine N in the Changjiang River drainage according to a N budget model based on the N input to watersheds and N transported into waterbodies. Moreover, the long-term ecological interactions between nutrients concentration and structure, and phytoplankton community from the 1950s in the Changjiang Estuary were analyzed, disclosing some patterns of eutrohpication. Last but not the least, we also studied the occurrence, distribution and seasonal variation of hypoxia in the susceptible area of the Changjiang Estuary. The main results are as follows:
     The results suggested that the concentrations of NO_3~--N, NH_4~+-N, DIN and DIP increased from upstream to downstream in the waterbodies of the Changjiang River, while seasonal differences were also observed. According to our data, DIN flux was mainly controlled by water discharge, whereas DIP flux was greatly influenced by its concentration when seasonal variations were considered. The areal yields of DIN were obviously increased downstream. The concentrations of NO_3~--N, NO_2--N, DIN and DIP increased gradually since the 1960s, while the rising-speeds were greatly enhanced after 1980. The results of the work also revealed that the seasonal variations of DIN and DIP were quite different in different periods since the 1960s, indicating the elemental sources were not the same. A N budget model, based on N input to watersheds and N transported into waterbodies, was established to assess the contribution of different sources to riverine N in the Changjiang River drainage. The results of our estimate disclosed that the total N input to the Changjiang drainage was 17.6 Tg in 2006, 20% of which (3.5 Tg) was transported to the waterbodies. Meanwhile, the field investigation at Datong hydrological station recorded the riverine TN flux was approximately 1.8 Tg, indicating that about 50% of total N in waterbodies was consumed by watershed process before reaching Datong. Of the total N transported into waterbodies, excretion N from raised animals accounted for 26%; atmospheric wet/dry deposition N provided 25%; synthetic fertilizer N was quite similar to domestic sewage wastes, being 17%; excretion N from the rural population and industrial wastewater N produced only 6% and 9%, respectively.
     Both nitrate (NO_3~--N) and soluble reactive phosphate (PO_4~(3-)-P) concentrations at the freshwater end-member inside the mouth of the Changjiang River and in the outer sea area with surface salinity>30 psu increased obviously since 1960s. Values of DIN to PO_4~(3-)-P ratio in the area where the surface seawater salinity>22 psu showed a clear increasing trend. In contrast, an overall historical change of SiO_3: PO_4~(3-)-P ratio showed a reverse trend in this area. Based on the long-term change of SiO_3: PO_4~(3-)-P and DIN: PO_4~(3-)-P ratios, we could make a conclusion that an overall historical change of SiO_3: DIN ratios was decreasing in this area from 1950-60s to 2000s. This work provided an evidence that the increasing nutrient contents resulted in the increment of planktonic biomass in the Changjiang Estuary. Meanwhile, the analysis on the response of phytoplankton community to the long-term changes of nutrient structure showed that the annual averaged percentage of diatom species in the Changjiang Estuary decreased from 84.6% during 1985-86 to 69.8% during 2004-05. Furthermore, the yearly averaged percentage of diatom abundance in the Changjiang Estuary decreased from 99.5% during the former period to 75.5% during the latter period, while that of dinoflagellates increased dramatically from 0.7% to 25.4%.
     The occurrence, distribution and seasonal variations of hypoxia in the Changjiang Estuary were studied and discussed in this paper. The results suggested that thermal stratification played a more important role in controlling the occurrence of hypoxia than saline stratification. The inflow of Taiwan Warm Current (TWC) from the southeast brought low-oxygen waters to the subsurface and made a great contribution to water stratification, which inhibited vertical mixing and associated aeration of the subsurface waters. Meanwhile, upwelling would contribute to a strong thermal and saline stratification, which further prevented the bottom water from exchanging with the surface water. In addition, upwelling would push the hypoxic waters upward and influence the vertical and horizontal distribution of hypoxia. Overall, the formation of hypoxia was controlled by a combination of several factors, especially the thermal stratification and in situ production, and the Changjiang diluted water, the inflow of TWC and the topography are included as well.
引文
1. Admond J.M., Spivack A., Grant B.C., Hu M.H., Chen Z.X., Chen S., Zeng X.S. Chemical dynamics of the Changjiang estuary. Continental Shelf Research, 1985, 4: 17-36
    2. Anderson T.H, Taylor G.T. Nutrient pulse, plankton blooms, and seasonal hypoxia in western Long Island Sound. Estuaries, 2001, 24(2): 228-243
    3. Bao X., Watanabe M., Wang Q.X., Hayashi S., Liu J.Y. Nitrogen budgets of agriclutural fields of the Changjiang river basin from 1980 to 1990. Science of the Total Environment, 2006,363: 136-148
    4. Bennekom A.J., van Berger A.W., Helder H. and Vries R.T.P. Nutrient distribution in the Zaire estuary and river plume. Netherlands Journal of Sea Research, 1978, 12: 296–323
    5. Berg G.M. Glibert P.M. , Lomas M.W., et al. Organic nitrogen uptake and growth by the chrysophyte Aureococcus anophagefferens during a brown tide event. Marine Biology, 1997, 129: 377-387
    6. Bianchi T.S., Johansson B., Elmgren R. Breakdown of phytoplankton pigments in Baltic sediments: effect of anoxia and loss of deposit-feeding macrofauna. Journal of Experimental Marine Biology and Ecology, 2000, 251: 161-183
    7. Boesch D.F. Challenges and opportunities for science in reducing nutrient overenrichment of coastal ecosystems. Estuaries, 2002, 25: 886–900
    8. Boyer E.W., Goodale C.L., Jaworski N.A., Howarth R.W. Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern USA. Biogeochemistry, 2002,57/58: 137-169
    9. Bricker S.B., Ferreira J.G., Simast T. An integrated methodology for assessment of estuarine eutrophic status. Ecological Modelling, 2003, 169: 239-260
    10. Buck S.P., Wolfem M.L., Mostaghimi S., Woeste F.E., Vietor D.M. Application of probabilistic risk assessment to agricultural nonpoint source pollution. Journal of Soil and Water Conservation, 2000, 55: 340-346
    11. Burns R.C., and Hardy R.W.F. Nitrogen Fixation in Bacteria and Higher Llants. New York: Springer-Verlag, 1975
    12. Butt A.J. and Brown B.L. The cost of nutrient reduction: A. case study of Chesapeake Bay. Coastal Management, 2000, 28: 175–185
    13. Buzzelli C.P., Powers S.P., Luettich Jr. R.A., McNinch J.E., Peterson C.H., Pinckney J.L., Paerl H.W., Estimating the spatial extent of bottom water hypoxia and benthic fishery habitat degradation in the Neuse River Estuary, N.C. Marine Ecology Progress Series, 2002, 230: 103-112
    14. Cairns S.H. Eutrophication monitoring and prediction, Ph.D Dissertation, University of NorthTexas, 1993
    15. Carlson R.E.A. Trophic state index for lakes. Limnological Oceanography, 1977, 22(2): 361
    16. Carstensen J., Conley D.J., Andersen J.H., ?rtebjerg G. Coastal eutrophication and trend reversal: A .Danish case study. Limnology and Oceanography, 2006, 51(1, part 2): 398–408
    17. Cauwet G. and Mackenzie F.T., Carbon inputs and distribution in estuaries of turbid rivers: the Yang Tze and Yellow rivers (China). Marine Chemistry, 1993, 43: 235-246
    18. Chai C., Yu Z.M., Song X.X., Cao X.H., The status and characteristics of eutrophication in the Yangtze River (Changjiang) Estuary and the adjacent East China Sea, China, Hydrobiologia ,2006, 563: 313-328
    19. Chen C.C., Gong G.C., Shiah F.K. Hypoxia in the East China Sea: One of the largest coastal low-oxygen areas in the world. Marine Environmental Research, 2007, 64: 399-408.
    20. Chen C.S., Zhu J.R., Beardsley R.C., Franks P.J.S., Physical-biological sources for dense algal blooms near the Changjiang River. Geophysical Research Letters, 2003, 30(10): 1515, doi:10.1029/2002GL016391
    21. Chen C.S., Zhu J.R., Beardsley, RC, Franks P.J.S. Physical-biological sources for dense algal blooms near the Changjiang River. Geophysical Research Letters, 2003,30 (10): 1515
    22. Chen C.T.A. The Three Gorge Dam: Reducing the upwelling and thus productivity in the East China Sea. Geophysical Research letters, 2000,27(3), 381-383
    23. Chen, S.L., Zhang, G.A., Yang, S.L., Shi, J.Z. Temporal variations of fine suspended sediment concentration in the Changjiang River estuary and adjacent coastal waters, China. Journal of Hydrology, 2006, 331: 137-145
    24. Chin-Leo G., Benner R. Enhanced bacterioplankton production and respiration at intermediate salinities in the Mississippi River plume. Marine Ecology Progress Series, 1992, 87: 87-103
    25. Cleveland C.C., Townsend A.R., Schimel D.S., et al. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochemical Cycles, 1999,13 (2): 623-545
    26. Cloern J.E. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecological Progress Series, 2001, 210: 223–253
    27. Conley D.J. and Malone T.C. Annual cycle of dissolved silicate in Chesapeake Bay: implications for the production and fate of phytoplankton biomass. Marine Ecology Progress Series, 1992, 81: 121-128
    28. Conley, D. J. Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochemical Cycles, 2002, 16(4), 1121, doi:10.1029/2002GB001894.
    29. Dagg M.J., Ammerman J.W., Amon R.M.W., et al. A review of water column process influencing hypoxia in the northern Gulf of Mexico. Estuaries and Coasts, 2007, 30(5): 735-752
    30. Dagg, M., Benner, R., Lohrenz, S., et al. Transformation of dissolved and particulatematerials on continental shelves influenced by large rivers: plume processes. Continental Shelf Research ,2004,24 (7-8), 833–858
    31. Dai M.H., Guo X.H., Zhai W.D., et al. Oxygen depletion in the upper reach of the Pearl River estuary during a winter drought. Marine Chemistry, 2006, 102: 159-169
    32. Degobbis D. and Gilmartin M. Nitrogen, phosphorus, and biogenic silicon budgets for the northern Adriatic Sea. Oceanologica Acta ,1990, 13: 31–45
    33. DeMaster D.J. and Pope R.H. Nutrient dynamics in Amazon shelf waters: results from AMASSEDS. Continental Shelf Research, 1996, 16: 263–289
    34. Denant V. and Saliot A. Seasonal variations of nutrients (NO3-, NO2-, NH4+, PO4-3 and Si(OH)4) and suspended matter in the Rh?ne delta, France. Oceanologica Acta, 1990, 13: 47–52
    35. Diaz R.J. Overview of hypoxia around the world. Journal of Environmental Quality, 2001, 30 (2), 275-281
    36. Dignon J. and Hameed S. Global emissions of nitrogen and sulfur-oxides from 1860 to 1980. Journal of the Air and Waste Management Association, 1989, 39:180-186
    37. Dortch Q., Whitledge T.E. Does nitrogen or silicate limit phytoplankton production in the mississippi river plume and nearby regions? Continental Shelf Research, 1992, 12: 1293-1309
    38. Drira Z., Hamza A., Belhassen M., et al. Dynamics of dinoflagellates and environmental factorsduring the summer in the Gulf of Gabes (Tunisia, Eastern Mediterranean Sea). Scientia Marina, 2008, 72(1): 59-71
    39. Duan S.W., Zhang S., Huang H. Transport of dissolved inorganic from the major rivers to the estuaries in China. Nutrient Cycling in Agroecosystem, 2000, 57: 13-22
    40. Eppley R.W., Renger E.H., Harrison W.G. Nitrate and phytoplankton production in southern California coastal waters. limnology and Oceanology, 1979, 24(3): 483-494
    41. Falkowski P.G., Hopkins T.S., Walsh J.J. An analysis of factors affecting oxygen depletion in the New York bight. Journal of Marine Research, 1980, 38: 479–506
    42. Fan M.S., Lu S.H., Jiang R.F., et al. Nitrogen input, 15N balance and mineral N dynamics in a rice-wheat rotation in southwest China. Nutrient Cycling in Agroecosystems, 2007, 79: 255–265
    43. Figley W., Pyle B., Halgren B. Oxygen depletion and associated benthic mortalities in New York Bight, 1976. In: Swanson CJS (eds), Socioeconomic Impacts. Natl. Oceanic and Atmos. Admin. Silver Spring, 1979, pp. 315
    44. Fisher D.C. Oppenhelmer M. Atmospheric nitrogen deposition and Chesapeake Bay estuary. Ambio, 1991, 20: 102-108
    45. Flemer D.A., Champ M.A.., What is the future fate of estuaries given nutrient over-enrichment, freshwater diversion and low flows? Marine Pollution Bulletin,2006, 52: 247-258
    46. Frink C.R. Estimating nutrient export to eatuaries. Journal of Environmental Quality, 1999, 20: 717-724
    47. Galloway, J.N., Dentener, F.J., Capone, D.G., et al. Nitrogen cycles: past, present, and future. Biogeochemistry, 2004,70, 153-226
    48. Gao X.L., Song J.M. Dissolved oxygen and O2 flux across the water-air interface of the Changjiang Estuary in May 2003. Journal of Marine Systems, 2008,74: 343-350
    49. Garnier J., Billen G. and Coste M. Seasonal succession of diatoms and Chlorophyceae in the drainage network of the Seine River: observations and modeling. Limnology and Oceanography ,1995, 40: 750-765
    50. Glibert P.M., Magnien R.E., Lomas M.W., et al. Harmful algal blooms in the Chesapeake Bay and coastal bays of Maryland, USA: comparison of 1997, 1998 and 1999 events. Estuaries, 2001, 24 (6A ): 875-883
    51. Grantham B.A., Chan F., Nielsen K.J., et al. Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature, 429: 749-754
    52. Grasshoff K. Methods of Seawater Analysis. Weinheim New York: Verlag Chemie,1976
    53. Green R.E., Bianchi T.S., Dagg M.J., et al. An organic carbon budget for the Mississippi River burbidity plume and plume contribution to air-sea CO2 flux and bottom water hypoxia. Estuaries and Coasts, 2006, 29: 579-597
    54. Guan B. Patterns and structures of the currents in Bohai, Huanghai and East China Seas. In: Zhou D., Liang Y.B., Zeng C.K. (Eds.), Oceanology of China Seas, vol. 1. Kluwer Academic Publishers, Netherlands, 1994: 17–26
    55. Gundersen, P. Nitrogen deposition and leaching in European forests– preliminary results from a data compilation. Water, Air and Soil Pollution, 1995, 85: 1179-1184
    56. Hagy, J.D., Boynton, W.R., Keefe, C.W., et al. Hypoxia in Chesapeake Bay, 1950-2001: Long-term change in relation to nutrient loading and river flow. Estuaries, 2004, 27(4): 634-658
    57. Helly J.J. and Levin L.A. Global distribution of naturally occurring marine hypoxia on continental margins. Deep-Sea Res, 2004, 51: 1159-68
    58. Hernes P.J. and Benner R. Photochemical and microbialdegradation of dissolved lignin phenols: Implications for the fate of terrigenous dissolved organic matter in marine environments. Journal of Geophysical Research, 2003, 108 doi:10.1029/2002jc001421
    59. Hinga, K.R., Keller, A.A., Ovjatt, C.A. Atmospheric deposition and nitrogen inputs to coastal waters. Ambio, 1991, 20: 256-260
    60. Houston J.A. and Brooker M.P. A comparison of nutrient sources and behaviour in two lowland subcatchments of the River Wye. Water Research, 1981, 15: 49-57
    61. IPCC. (1996). International Panel on Climate Change guidelines for national greenhouse gas inventories, Chapter 4, Agriculture: Nitrous oxide from agricultural soil and manure management. Paris: OECD
    62. Johnes P.J. Evaluation and mnagement of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficient modeling approach. Journal of Hydrology, 1996, 183: 323-349
    63. Ju X.T., Zhang F.S., Bao X.M., et al. Utilization and management of organic wastes in Chinese agriculture: Past, present and perspective. Science in China (Ser B), 2005, 48: 965-979
    64. Justi? D., Rabalais N. N., Turner R. E. et al. Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences. Estuarine, Coastal and Shelf Science, 1995, 40: 339–356
    65. Justi? D., Rabalais N. N., Turner R. E. et al. Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences. Estuarine, Coastal and Shelf Science, 1995, 40: 339–356
    66. Justic D., Rabalais N.N., Turner R.E. Modeling the impacts of decadal changes in riverine nutrient fluxes on coastal eutrophication near the Mississippi River Delta. Ecological Modelling, 2002, 152: 33-46
    67. Kamykowski D. and Zentara S.J. Hypoxia in the world ocean as recorded in the historical data set. Deep-Sea Res, 1990, 37: 1861-1874
    68. Kaste, ?., Henriksen, A., Hindar, A. Retention of atmospherically-derived nitrogen in subcatchments of the Bjerkreim river in southwestern Norway. Ambio, 1997, 26: 296-303
    69. Kilham P. A hypothesis concerning silica and the freshwater planktonic diatoms. Limnology and Oceanography, 1971, 16: 10-18
    70. Laznik M., Stalnacke P., Grimvall A., et al. Riverine input of nutrients to the Gulf of Riga-temporal and spatial variation. Journal of Marine Systems, 1999, 23: 11–25
    71. Lee Y.J. and Lwiza K.M.M. Characteristic of bottom dissolved oxygen in Long Island Sound, New York. Estuarine, Coastal and Shelf Science, 2008, 76: 187-200
    72. Li D.J. Zhang J. Huang D.J., et al. Oxygen depletion off the Changjiang (Yangtze River) Estuary. Science in China (series D), 2002, 45(12): 1137-1136
    73. Li M.T., Xu K.Q., Wantanabe M., et al. Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem. Estuarine, Coastal and Shelf Science, 2007, 71: 3-12
    74. Linthurst R. Testimony before the United States Senate, Committee on Commerce, Science, and Transportation, June 8,1988
    75. Liu C., Wang Q.X., Mizuochi M., et al. Human behavioral impact on nitrogen flow-a case study of the rural areas of the middle and lower reaches of the Changjiang River, China. Agriculture, Ecosystems and Environment, 2008b, 125: 84–92
    76. Liu C., Wang, Q.X. Watanabe M. Nitrogen transported to three Gorges Dam from agro-ecosystems during 1980–2000. Biogeochemistry, 2006, 81: 291–312
    77. Liu C., Watanabe M., Wang Q.X. Changes in nitrogen budgets and nitrogen use efficiency inthe agroecosystems of the Changjiang River basin between 1980 and 2000. Nutrient Cycling Agroecosystem, 2008a, 80:19–37
    78. Liu H. and Dagg M.J. Interactions between nutrients, phytoplankton growth, and micro- and meso-zooplankton grazing in the plume of the Mississippi river. Marine Ecology Progress Series, 2003, 258: 31-42
    79. Liu S.M., Zhang J., Chen H.T. Nutrients in the Changjiang and its tributaries. Biogeochemistry, 2003, 62: 1-18
    80. Lohrenz S.E., Fahnenstiel G..L., Redalje D.G., et al. Nutrients, irradiance and mixing as factors regulating primary production in coastal waters impacted by the Mississippi River plume. Continental Shelf Research, 1997, 19: 1113-1141
    81. Lohrenz S.E., Redalje D.G., Cai W.J., et al. A retrospective analysis of nutrients and phytoplankton productivity in the Mississippi River plume. Continental Shelf Research, 2008, 28(12): 1466-1475
    82. Lomas M.W. Glibert P.M. , Clougherty D.A. ,et al. Elevated organic nutrient ratios associated with brown tide blooms of Aureococcus anophagefferens (Pelagophyceae ). Journal of Plankton Research, 2001, 23: 1339-1344
    83. Lovett G.M., Lindberg S.E. Atmospheric deposition and canopy interactions of nitrogen in forests. Canadian Journal of Forest Research, 1993, 23: 1603–1616
    84. Lu X.G., Qiao F.L., Xia C.S., et al. Tidally induced upwelling off Yangtze River estuary and in Zhejiang coastal waters in summer. Science in China (Ser D), 2007, 50(3): 462-473
    85. Malone T.C., Garside C., Neale P.J. Effects of silicate depletion on photosynthesis by diatoms in the plume of the Hudson River. Marine Biology, 1980, 58: 197-204
    86. Mee L.D. Eutrophication in the Black Sea and a basin wide approach to control it. In: Von Bodungen, B., Turner, R.E. (Eds.), Science and Integrated Coastal Management. Dahlem University Press, Berlin, ,2001: 71-91
    87. Meybeck M., Cauwet G., Dessery S., et al. Nutrients (organic C, P, N, Si) in the eutrophic river Loire (France) and its estuary. Estuarine, Coastal and Shelf Science, 1988, 27: 595–624
    88. Meybeck M., Chapman D.V., Helmer R. Global freshwater quality: a first assessment. World Health Organization/United Nations Environment Programme. Cambridge, Massachusetts: Basil Blackwell, 1989
    89. Milliman J.D. and Boyle E. Biological Uptake of Dissolved Silica in the Amazon River Estuary. Science, 1975, 189: 995-997
    90. Milliman J.D., Xie Q.H., Yang Z.C. Transfer of particulate organic carbon and nitrogen from Changjiang river to the ocean. American Journal of Science, 1984, 284: 824-834
    91. Mulholland P.J. and Hill W.R. Seasonal patterns in streamwater nutrient and dissolved organic carbon concentrations: Separating catchment flow path and in-stream effects. Water Resource Research, 1997, 33(6): 297-1306
    92. Naqvi S.W.A., Jayakumar D.A., Narvekar P.V., et al. Increased marine production of N2Odue to intensifying anoxia on the Indian continental shelf. Nature, 2000; 408:346-49
    93. Nixon S.W. Coastal eutrophication: a defination, social cause and future concerns. Ophelia, 1995, 41, 199-220
    94. Oenema O. and Tamminga S. Nitrogen in global animal production and management options for improving nitrogen use efficiency. Science in China (Series B), 2005, 48: 871-887
    95. OSPAR. Draft common assessment criteria and their application within the comprehensive procedure of the common procedure. Proceedings of the Meeting of the Eutrophication Task Group (ETG), London: OSPAR Convention for the Protection of the Marine Environment of the NorthEast Atlantic (ed.), 2001.
    96. Owens M. Nutrient balance in rivers. Water Treatment and Examination, 1970, 19: 239-252
    97. Paerl H.W. Nuisance phytoplankton blooms in coastal, estuarine, and inland waters. Limnology and Oceanography, 1988, 33: 823-847
    98. Pakulski J.D., Benner R., Amon R., et al. Community metabolism and nutrient cycling in the Mississippi River plume: Evidence for intense nitrification at intermediate salinities. Marine Ecology Progress Series, 1995,117: 207-218
    99. Pakulski J.D., Benner R., Whitledge T., et al. Microbal metabolism and nutrient cycling in the Mississippi and Atchafalaya River plumes. Estuarine, Coastal and Shelf Science, 2000, 50: 173-184
    100. Parsons T.R., Maitas Y., Lalli C.M. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, 1984, pp173
    101. Pei S.F., Shen Z.L., Laws E.A. Nutrient Dynamics in the Upwelling Area of Changjiang (Yangtze River) Estuary. Journal of Coastal Research, 2008, DOI: 10.2112/07-0948.1
    102. Perona E., Bonilla I., Mateo P. Spatial and temporal changes in water quality in a Spanish river. The Science of the Total Environment, 1999, 241: 75-90
    103. Perona E., Bonilla I., Mateo P. Spatial and temporal changes in water quality in a Spanish river. The Science of the Total Environment, 1999, 241: 75-90
    104. Philippart C.J.M., Cadee, G.C., Raaphorst, W.V., Riegman, R. Long-term phytoplankton-nutrient interactions in a shallow coastal sea: algal community structure, nutrient budgets, and denitrification potential. Limnology and Oceanography, 2000, 45(1): 131-144
    105. Pokryfki L. and Randall R.E. Nearshore hypoxia in the bottomwater of the northwestern Gulf of Mexico from 1981 to 1984. Marine Environental Research, 1987, 22: 75–90
    106. Prastka K., Sanders R. and Jickells T. Has the role of estuaries as sources or sinks of dissolved inorganic phosphorus changed over time? Results of a Kd study. Marine Pollution Bulletin, 1998, 36(9): 718-728
    107. Rabalais N.N. Nitrogen in Aquatic Ecosystems. Ambio, 2002, 31(2): 102-112
    108. Rabalais N.N., Atilla N., Normandeau C., et al. Ecosystem history of Mississippi River-influenced continental shelf revealed through preserved phytoplankton pigments.Marine Pollution Bulletin, 2004, 49 (7-8): 537–547
    109. Rabalais N.N., Turner R.E., Wiseman, W.J. Gulf of Mexico Hypoxia, A.K.A.“the dead zone”. Annual review of Ecological systems, 2002, 33: 235-263
    110. Rabalais N.N., Wiseman W.J., Turner R.E., et al. Nutrient Changes in the Mississippi River and System Responses on the Adjacent Continental Shelf. Estuaries, 1996, 19: 386-407
    111. Rabalais N.N., Turner R.E., Wiseman W.J. Gulf of Mexico Hypoxia, A.K.A.“the dead zone”. Annual review of Ecological systems , 2002, 33: 235-263
    112. Rabouille C., Conley M.H., Dai M.H., et al. Comparison of hypoxia among four river-dominated ocean margins: The Changjiang (Yangtze), Mississippi, Pearl, and Rh?ne rivers. Continental Shelf Research, 2008, 28: 1527-1537
    113. Redfield A. C., Ketchum B. H., Richards F. A.. The influence of organism on the composition of seawater. In Hill, M. N. (ed.), The Sea, Vol. 2. John Wiley, New York, 1963: 26-77
    114. Redfield A. C., Ketchum B. H., Richards F. A.. The influence of organism on the composition of seawater. In Hill, M. N. (ed.), The Sea, Vol. 2. John Wiley, New York, 1963: 26-77
    115. Robbins J.W.D., Howells D.H., Kriz G.J. Stream pollution from animal production units. Research Journal of the Water Pollution Control Federation, 1972, 44: 1536-1544
    116. Rowe G.T. Seasonal hypoxia in the bottom water off the Mississippi River delta.Journal of Environmental Quality, 2001, 30: 281-290
    117. Rudek J., Paerl H.W., Mallin M.A., et al. Seasonal and hydrological control of phytoplankton nutrient limitation in the lower Neuse River Estuary, North Carolina. Marine Ecology Progress Series, 1991, 75: 133-142
    118. Schelske C.L. and Stoermer E.F. Eutrophication, Silica Depletion, and Predicted Changes in Algal Quality in Lake Michigan..Science, 1971, 173: 423-424
    119. Schelske C.L. and Stoermer E.F. Eutrophlcatlon, silica depletion and predicted changes in algal quallty in Lake Michigan. Science, 1971, 173: 423-424
    120. Sheeder S.A., Lynch J.A., Grimm J. Modeling atmospheric nitrogen deposition and transport in the Chesapeake Bay watershed. Journal of Environmental Quality, 2002, 31: 1194-1206.
    121. Shen Z.L. A study on the relationships of the nutrients near the Changjiang River estuary with the flow of the Changjiang River water. Chinese Journal of Oceanology and Liminology, 1993, 11(3): 260-267
    122. Shen Z.L. Historical changes in nutrient structure and its influences on phytoplankton composition in Jiaozhou Bay. Estuarine.Coastal and shelf Science, 2001, 52:211~224
    123. Shen Z.L., Zhou S.Q,. Pei S.F. Transfer and transport of phosphorus and silica in the turbidity maximum zone of the Changjiang Estuary. Estuarine, Coastal and Shelf Science, 2008, 78(3): 481-492
    124. Shen Z.L. Is precipitation the dominant controlling factor of high inoganic introgen content in the Changjiang river and its mouth? Chinese Journal of Oceanology and Limnology, 2003, 21(4): 368-376
    125. Shen Z.L., Liu Q. Nutrients in the Changjiang River, Environmental Monitoring and Assessment, 2008, DOI 10.1007/s10661-008-0334-2
    126. Shen Z.L., Liu Q., Zhang S.M., et al. A nitrogen budget of the Changjiang river catchment. Ambio, 2003, 32: 65-69
    127. Shiah F.K. and Ducklow H.W. Temperature and substrate regulation of bacterial abundance, production and specific growth rate in Chesapeake Bay, USA. Marine Ecology Progress Series, 1994, 103: 297-308
    128. Sirois A. and Vet R.J. Detailed analysis of sulfate and nitrate atmospheric deposition estimates at the Turkey Lakes Watershed. Canadian journal of fishing aquatic science, 1988, 45( Supplement, No. 1): 14-15
    129. Smil V. Nitrogen in crop production: an account of global flows. Global Biogeochemistry Cycles, 1999, 13: 647-662
    130. Sommer U. (ed.) Biologische Meereskunde, Berlin: Springer, 1998, pp.475
    131. Strickland J. D. H and Parsons T. R. A practical handbook of seawater analysis. Fisheries Research Board of Canada Bulletin , 1972, 167-311
    132. Tian R.C., Hu F.X, Martin J.M. Summer nutrient fronts in the Changjiang (Yantze River) Estuary, Estuarine. Coastal and Shelf Science, 1993, 37: 27-41
    133. Tian R.C., Hu F.X, Saliot A. Biogeochemical process controlling nutrients at the turbidity maximum and the plume water fronts in the Changjiang Estuary. Biogeochemistry, 1993, 19: 83-102
    134. Tian, Y.H., Yin, B., Yang, L.Z, et al. Nitrogen runoff and leaching losses during rice-wheat rotations in Taihu Lake region, China. Pedosphere, 2007, 17(4), 445–456
    135. Turner R.E, Qureshi N., Rabalais, N.N. Fluctuating silicate: nitrate ratios and coastal plankton food webs. Proceedings of the National Academy of Sciences, 1998, 95:13048-13051
    136. Turner R.E. and Rabalais, N.N. Changes in Mississippi river water quality this century: implications for coastal food webs. BioScience, 1991, 41(3): 140-147
    137. Turner R.E., Qureshi, N., Rabalais, N.N. Fluctuating silicate: nitrate ratios and coastal plankton food webs. Proceedings of the National Academy of Sciences, 1998, 95: 13048-13051
    138. Turner R.E. and Rabalais N.N. Changes in the Mississippi River water quality this century-implications for coastal food webs. BioScience, 1991, 41: 140–147
    139. Turner, R.E. and Rabalais, N.N. Coastal eutrophication near the Mississippi River Delta. Nature , 1994, 368 (6472): 619-621
    140. Ulloa O., Escribano R., Hormazábal S., et al. Evolution and biological effects of the 1997-1998 El Nino in the upwelling ecosystem of northern Chile. Geophy Res Lett,2001, 28: 1591-94
    141. van der Weijden C.H. and Middelburg J.J. Hydrogeochemistry of the river Rhine: long termand seasonal variability, elemental budgets, base levels and pollution. Water Research, 1989, 23: 1247–1266
    142. Vet, R.J., Sirois, A., Jeffries, D.S., et al. Comparison of bulk, wet-only, and wet-plus-dry deposition measurements at the Tuikey Lakes Watershed. Canadian journal of fishing aquatic science, 1988, 45(Supplement, No. 1): 26-37
    143. Waldhauer B., Draxler .JF.J., McMillan D.G., et al. Bioogical, physical and chemical dynamics along a New York Bight transect and their relation to hypoxia. Estuaries, 1985, 8(2B): 129
    144. Wang B.D. Hydromorphological mechanisms leading to hypoxia off the Changjiang estuary. Marine Environmental Research, 2009, 67: 53-58
    145. Wang, B.D. Cultrual eutrophication in the Changjiang (Yangtze River) plume: Histrory and perspective. Esturine Coastal and Shelf Science, 2006, 69: 471-477
    146. Wang, B.D. Hydromorphological mechanisms leading to hypoxia off the Changjiang estuary. Marine Environmental Research, 2009, 67: 53-58
    147. Wang W.X., Lu, X.F., Pang, Y.B., et al. Geographical distribution of NH3 emission intensities in China. Acta Scientiae Circumstantiae, 1997, 17: 1–7.
    148. Washington D.C. National research council, Clean coastal waters-understanding and reducing the effects of nutrient pollution. National Academic Press, 2000
    149. Watanabe, I. Nitrogen fixation by non-legumes in tropical agriculture with special reference to wetland rice. Plant Soil, 1986, 90: 343-357
    150. Wei H., He Y.C., Li Q.J., et al. Summer hypoxia adjacent to the Changjiang Estuary. Journal of Marine System, 2007, 67: 292-303
    151. Wei H., Sun J., Moll A., et al. Phytoplankton dynamics in the Bohai Sea-observations and modeling. Journal of Marine Systems, 2004, 44: 233–251
    152. Weller, D.E., Peterjohn, W.T., Goff, N.M., et al. Ion and acid budgets for a forested Atlantic coastal plain watershed and their implications for the impacts of acid deposition. In Correll, D.L. (ed.), Watershed Research Perspectives, Smithsonian Institution Press, 1986
    153. Welsh B.L. and Eller F.C. Mechanisms controlling summertime oxygen depletion in western Long Island Sound. Estuaries, 1991, 14: 265–78
    154. Wong G. T. F., Gong G.C., Liu K.K. et al.“Excess Nitrate”in the East China Sea, Estuarine, Coastal and Shelf Science, 1998, 46(3): 411-418
    155. Xie Y.X., Xiong, Z.Q., Xing G.X., et al. Assessment of Nitrogen pollutant sources in surface waters of Taihu Lake region. Pedosphere, 2007, 17 (2): 200-208
    156. Xing G.X., Cao Y.C., Shi S.L., et al. N pollution sources and denitrification in waterbodies in Taihu Lake region. Science in China (Series B), 2001,44: 304-314
    157. Xing G.X., Cao Y.C., Shi S.L., et al. Denitrification in underground saturated soil in a rice paddy region. Soil Biology and Biogeochemistry, 2002, 34 (11): 1593-1598
    158. Xing G.X. and Yan, X. Direct nitrous emissions from agricultural fields in China estimatedby the revised 1996 IPCC guidelines for national greenhouse gases. Environmental Science Policy, 1999,2:355-361
    159. Xing G.X. and Zhu Z.L. An assessment of N loss from agricultural fields to the environment in China. Nutrient Cycling in Agroecosystems, 2000, 57:67-73
    160. Xing G.X. and Zhu Z.L. Regional nitrogen budghet for China and its major watershes. Biogeochemistry, 2002, 57/58: 405-427
    161. Xiong Z.Q., Xing G.X., Shen G.Y. et al. Non-point source N pollution of lakes, rivers and wells in the Taihu Lake region. Rural Eco-Environment, 2002, 18 (3): 29-33
    162. Xu N., Lu S.H., Duan S.S. The influence of nutrients input on the red tide occurrence. Marine Environmental Science, 2004, 23(2): 20-24
    163. Yan W.J., Zhang S., Sun, P., et al. How do nitrogen inputs to the Changjiang basin impact the Changjiang river nitrate: a temporal analysis for 1968-1997. Global Biogeochemical Cycles, 2003, 17: 1-9
    164. Yin K.Q., Lin Z., Ke Z. Temperal and spatial distribution of dissolved oxygen in the Pearl River Estuary and adjacent coastal waters. Continental Shelf Research, 2004, 24: 1935-1948
    165. Zhang J. Nutrient elements in large Chinese estuaries, Continental Shelf Research, 1995, 16(18): 1023-1045
    166. Zhang J., Zhang Z.F., Liu S.M., et al. Human impacts on the large world rivers: Would the Changjiang (Yangtze River) be an illustration? Global Biogeochemical Cycles, 1999, 13(4): 1099-1105
    167. Zhang J., Zhang G. S., and Liu S. M. Dissolved silicate in coastal marine rainwaters: Comparison between the Yellow Sea and the East China Sea on the impact and potential link with primary production. Journal of Geophysical Research, 2005, 110, D16304, doi:10.1029/2004JD005411
    168. Zhang J., Huang W.W.; Liu M.G.; et al. Eco-social impact and chemical regimes of large chinese rivers: a short discussion. Water Research, 1994, 28: 609-617
    169. Zhang J., Yan J., Zhang Z.F. Nationwide river chemistry trends in China: Changjiang and Huanghe. Ambio, 1995, 24(5): 275-279
    170. Zhou M.J., Shen Z.L., Yu R.C. Responses of a coastal phytoplankton community to increased nutrient input from theChangjiang (Yangtze) River. Continental Shelf Research, 2008, doi:10.1016/j.csr.2007.02.009
    171. Zhu J.R. Dynamic mechanism of the upwelling on the west side of the submerged river valley off the Changjiang mouth in summertime, Chinese Science Bulletin, 2003, 48(24): 2754-2758
    172. Zhu J.R., Chen C.S., Ding P.X., et al. Does the Taiwan warm current exist in winter? Geophysical Research Letters, 2004, 31, L12302, doi: 10.1029/2004GL019997
    173. Zhu Z.L., Chen D.L. Nitrogen fertilizer use in China-Contribution to food production, impact on the environment and best management strategies. Nutrient Cycling in Agroecosystems,2002, 63:117-127
    174. Zhu Z.L., Wen Q.X., Frency J.R. Nitrogen Soil of China. Norwell, 1997,Mass: Kluver Acad
    175.柴超.长江口水域富营养化现状与特征研究.中国科学院海洋研究所博士论文, 2006
    176.陈锦,李东庆,喻光明等.近40年来西北地区沙尘暴日数时空分布及变化趋势.华中师范大学学报(自然科学版),2008, 42(4): 659-664
    177.陈静生,关文荣,夏星辉等.长江干流近三十年来水质变化探析.环境化学, 1998, 17 (1): 8-13
    178.陈菊芳,齐雨藻,肖咏之等.我国赤潮新记录种-Peridinium quinquecorne的研究.海洋环境科学,2000,19(3):20-23
    179.窦明,谢平,夏军等.汉江水华问题研究.水科学进展,2002,13(5): 557-561
    180.段水旺,章申,陈喜保等.长江下游氮、磷含量变化及其输送量的估计.环境科学,2000,21:53-56
    181.冈市友利.浅海的污染与赤潮的发生,内湾赤潮的发生机制.日本水产资源保护协会,1972:58-76
    182.顾宏堪,熊孝先,刘明星等.长江口附近氮的地球化学—1、长江口附近海水中的硝酸盐.山东海洋学院学报,1981,11(4):37-46
    183.郭玉杰,杨则禹.长江口区浮游植物的数量变动及生态分析.海洋科学集刊,1992(33):
    168-189
    184.胡方西,胡辉,谷国传.长江口锋面研究,2002,华东师范大学出版社
    185.国家海洋局. 1999年中国海洋统计年鉴.北京海洋出版社, 2000
    186.国家海洋综合调查办公室,全国海洋综合调查资料,第一册,渤、黄、东海水文气象和化学要素大面观测记录, 1958.9-1959.12
    187.霍文毅,俞志明,邹景忠等.胶州湾中肋骨条藻(Skeletonema costatum)赤潮与环境因子的关系.海洋与湖沼,2001a,32(3):311-318
    188.焦念志.关于沉积物释磷问题的研究.海洋湖沼通报,1989, 2 :80-84
    189.金蕾,邵敏,曾立民,等.穿透水方法估算主要可溶性无机组分的干沉降通量.科学通报,2006,51(11): 1333-1337
    190.林荣根,邹景忠.近海富营养化的结果与对策.海洋环境科学,1997,16(3):71-75
    191.林以安,唐友仁,李炎.长江口区C、N、P的生物地球化学变化对悬浮体凝聚沉降的影响.张经主编,中国主要河口的生物地球化学研究:化学物质的迁移与环境,1996,北京:海洋出版社
    192.林植青,郑建禄,朱建华.珠江中氮的迁移.海洋与湖沼,1984,15(6): 515-520
    193.刘衢霞,卢奋英.武汉东湖湖区降水中的氮含量及其变化的研究.海洋与湖沼, 1983,14(5):454-459
    194.刘晓利,许俊香,王方浩等.我国畜禽粪便中氮素养分资源及其分布状况.河北农业大113学学报,2005,28(5):27-32
    195.陆敏,刘敏,黄明蔚等.大田条件下稻麦轮作土壤氮素流失研究.农业环境科学学报,2006, 25(5): 1234-1239
    196.栾青杉.长江口及其邻接水域浮游植物群集生态学研究.硕士论文,2007,中国海洋大学
    197.马立珊,汪祖强,张水铭等.苏南太湖水系农业面源污染及其控制对策研究.环境科学学报,1997, 17: 39–47
    198.宁修仁,战闰,臧家业.我国海洋初级生产力研究二十年.东海海洋,2000,18(3):13-20
    199.宁修仁,史君贤,蔡昱明等.长江口和杭州湾海域生物生产力锋面及其生态学效应.海洋学报,2004, 26(6): 96-106
    200.齐雨藻,沈萍萍,王艳.棕囊藻属(Phaeocystis)的分类与生活史(综述).热带亚热带植物学报,2001,9(2):174-184
    201.齐雨藻.赤潮.广州:广东科技出版社, 1999
    202.钱宏林.广东沿海的赤潮生物与赤潮研究.见:张利民主编.中国赤潮研究与防治.北京:海洋出版社,2005, 8-15
    203.日本机械工业联合会等.杨祯奎等译.水域的富营养化及其防治对策.中国环境科学出版社, 1987: 271
    204.沈洪艳;宋存义;贾建和.城市化进程中的生态环境问题及生态城市建设.河北师范大学学报(自然科学版),2006, 30 (6): 726-731
    205.沈萍萍,王艳,齐雨藻等.球形棕囊藻的生长特性及生活史研究.水生生物学报,2000,24(6):635-643
    206.沈新强,胡方西.长江口外水域叶绿素a分布的基本特征.中国水产科学,1995,2(1):71-80
    207.沈志良,刘兴俊,陆家平.长江下游无机氮和磷的分布将及其在河口的转移过程.海洋科学集刊, 1987, 28: 69-77
    208.沈志良,刘群,张淑美.长江总氮和有机氮的分布变化与迁移.海洋与湖沼,2003,34(6): 577-585
    209.沈志良.长江氮的输送通量.水科学进展,2004,15(6): 752-759
    210.沈志良.长江磷和硅的输送通量.地理学报,2006,61(7): 741-751
    211.宋国栋.东海溶解氧气候态分布及海洋学应用研究.硕士论文,2008,中国海洋大学
    212.屠建波,王保栋.长江口及其邻近海域富营养化状况评价.海洋科学进展,2006,24(4):532-538
    213.王保栋.长江口及邻近海域富营养化状况及其生态效应.博士论文,2006,中国海洋大学
    214.王杰.长江大辞典.武汉出版社,1997
    215.王金辉.长江口3个不同生态系的浮游植物群落.青岛海洋大学学报(自然科学版),2002a, 32 (3): 422–428
    216.王金辉.长江口邻近水域的赤潮生物.海洋环境科学, 2002b, 21(2): 37-41
    217.王寿松,冯国灿.夏综年等.大鹏湾夜光藻赤潮发生要素的结构分析.海洋与湖沼,1994,25(2):146-151
    218.王体健,张艳,杨浩明.利用次网格技术模拟华东地区大气硫氮沉降.高原气象, 2006 5: 870-876
    219.王晓燕.非点源污染及其管理. 2003,北京海洋出版社
    220.王修林,李克强,石晓勇.胶州湾主要化学污染物海洋环境容量. 2006,pp77
    221.向仁军,柴立元,张龚等.湖南蔡家塘森林小流域氮和硫的输入输出特征.环境科学学报, 2006,26(8):1372-1378
    222.徐宁,段舜山,李爱芬等.沿岸海域富营养化与赤潮发生的关系.生态学报,2005,25(7):3870-3875
    223.薛金凤,夏军,马彦涛.非点源污染预测模型研究进展.水科学进展,2002,5 (9): 649 - 656
    224.张国森.大气的干、湿沉降以及对东、黄海海洋生态系统的影响.硕士论文,2004,中国海洋大学
    225.赵保仁.长江口外的上升流现象.海洋学报,1993, 15: 106-114
    226.张水元,刘衢霞,黄耀桐.武汉东湖营养物质氮,磷的主要来源.海洋与湖沼, 1984,15(3):203-213
    227.中国环境监测总站.长江三峡工程生态与环境监测公报,2004
    228.中国统计局.中国统计年鉴, 2007,北京:中国统计出版社
    229.周菊珍,谷国传.长江河口夏季营养盐的分布、变化及锋面对营养盐的影响.广州环境科学,2002,17(1):1-5
    230.周名江,颜天,邹景忠.长江口邻近海域赤潮发生区基本特征初探.应用生态学报,2003, 14(7): 1031-1038
    231.周明江,朱明远.“我国近海有害赤潮发生的生态学、海洋学机制及预测防治”研究进展.地球科学进展,2006,21(7) :673-679
    232.朱波,彭奎,谢红梅.川中丘陵区典型小流域农田生态系统氮素收支探析.中国生态农业学报,2006,14(1): 108-111
    233.朱波,汪涛,况福虹等.紫色土坡耕地硝酸盐淋失特征.环境科学学报, 2008, 28(3): 525-533
    234.朱建荣,王金辉,沈焕庭等. 2003年6月中下旬长江口外海区冲淡水和赤潮的观测及分析.科学通报,2005,50(1): 59-65
    235.朱毅卓.长江口及邻近海域低氧现象的探讨—以光合色素为出发点,博士论文,2007,华东师范大学
    236.邹建军,杨刚,刘季花等.长江口邻近海域九月溶解氧的分布特征.海洋科学进展,2008, 26(1): 65-73
    237.邹景忠,董丽萍,秦保平.渤海湾富营养化和赤潮问题的初步探讨.海洋环境科学,1983,2(2):41-54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700