用户名: 密码: 验证码:
猪IGFBP7基因遗传变异及其促生长的分子调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰岛素样生长因子结合蛋白7(IGFBP7)是一种既能携带转运IGFs,又能调控IGFs生物活性的重要蛋白。同时,IGFBP7能独立调节细胞生长、分化和发育。已有研究结果表明IGFBP7基因在双肌臀猪肌肉组织RNA池中的表达量高于非双肌臀,说明IGFBJD7基因与猪肌肉生长发育相关。但关于该基因是如何影响猪肌肉生长发育以及其促生长的调控机制目前未见详细报道。本研究对IGFBP7基因遗传特性及其在猪种间背最长肌发育过程中的表达规律进行了分析,同时鉴定了以IGFBP7基因为靶标的microRNAs,以期阐述IGFBP-基因在肌肉生长发育中潜在的分子作用机制和调控机理。
     本研究首先分析了猪IGFBP7基因的遗传结构特性,序列分析结果显示IGFBP7基因编码区不存在品种间突变,只在内含子1、3、4中检测到了品种间序列变异。我们进而采用荧光定量PCR技术检测了第1、30、90、120、150和180日龄间大白猪和金华猪背最长肌组织中IGFBP7基因、胰岛素样生长因子1和2(IGF1,IGF2)基因mRNA表达变化,定量结果显示IGFBP7.IGF1和IGF2基因表达模式在品种和不同发育阶段存在显著差异。第1、30和180日龄,金华猪IGFBP7mRNA表达量高于大白猪,而第90、120、150日龄,大白猪IGFBP7mRNA表达高于金华猪,且在90日龄达到差异极显著水平(P<0.01)。大白猪IGFBP7mRNA表达量在90日龄时达到最高,且显著高于其它日龄(P<0.05),而金华猪IGFBP7mRNA表达量在1、30和90日龄间差异不显著,但显著高于120、150、和180日龄(P<0.05):IGF1和IGF2基因表达也呈时序性变化,但与IGFBP7基因表达具有不同的发育表达模式。以上结果表明IGFBP7基因表达可能与不同品种猪肌肉生长发育差异有关,且IGFBP7可能通过一种不依赖IGFs的方式来影响肌肉的发育。Western blot分析结果显示90日龄和180日龄IGFBP7蛋白的表达与此阶段mRNA的表达模式不一致,表明猪IGFBP7基因可能存在转录后蛋白水平的调控。
     通过生物信息学对IGFBP7基因启动子特性分析显示,IGFBP7基因启动子区有多个与肌肉生长发育相关的转录因子的结合位点,如MVoD、YY1等。缺失载体构建和瞬时转染实验结果表明:启动子的-333~+3区段活性最高,在-349--315之间存在至少一个增强子序列,-585--349之间至少存在一个沉默子序列。遗传特性分析结果显示IGFBP7基因ATG上游-687bp处有一个300bp片段的插入,但我们的研究证实300bp片段的插入并没有影响启动子的活性。而同时在启动子区发现的7个SNPs位点,其中5个位点引起了结合的转录因子的改变,这可能对IGFBP7启动子的转录调控具有作用。本研究还分析了猪IGFBP7基因潜在的可变剪接体模式,结果显示猪IGFBP7存在两个可变剪接体,共有三个转录本,其中IGFBP7完整的mRNA序列为主转录本。
     随后利用microRNA表达谱芯片筛选了90日龄大白猪与金华猪背最长肌组织中差异表达的microRNAs,结果显示:金华猪相对于大白猪有4个microRNAs表达显著上调,16个microRNAs表达显著下调。差异表达microRNAs靶基因预测和双荧光报告系统实验的结果显示ssc-miR-487b和ssc-miR-142-5p的靶基因可能是IGFBP7。ssc-miR-142-5p和ssc-miR-487b的表达在不同猪种不同日龄存在差异,这两个microRNAs可能在转录后水平调控IGFBP7基因的表达。
The insulin-like growth factor binding-protein7(IGFBP7) has binding affinities to IGFs and been found to be able to etiher positively or negatively regulate the IGFs signaling pathway, and also plays a crucial role on cell growth, differentiation and development in an IGF-independent manner. It has been reported that the expression of IGFBP7in double-muscled pig RNA pool was higher than that in non-double-muscled pig RNA pool, and IGFBP7was a potential candidate gene associated for pig muscle growth and development. However, the regulatory mechanism of IGFBP7gene behind it is still unclear. In order to elucidate molecular mechanism of IGFBP7in promoting muscle growth, the genetic variations of IGFBP7and the expression pattern of IGFBP7in diverse pig breeds were investigated. Moreover the microRNAs were identified, which have IGFBP7as target gene.
     Firstly, the genetic structure and variation of IGFBP7gene among different pig breeds were analyzed. There were no sequences variation found in exons region but some sequences variation found in introns1,3and4. Subsequently real-time fluorescence quantitavite PCR was applied to investigate the developmental expression pattern of IGFBP7, IGF1and IGF2at the age of day1,30,90,120,150and180with longissimus muscle tissue from Yorkshire and Jinhua pigs. Results showed that IGFBP7, IGF1and IGF2mRNA expression exhibited different patterns between these two pig breeds. Furthermore, IGFBP7mRNA expression at day1,30and180was higher in Yorkshire pigs than that in Jinhua pigs, however IGFBP7mRNA expression was higher in Jinhua pigs at the rest investigated days. In Yorkshire pigs, IGFBP7expression was significantly higher at day90than at other ages. In Jinhua pigs, there were no significant differences among IGFBP7mRNA expression at day1,30and90, however, which were higher than that at day120,150,180days. The mRNA expression patterns among IGFBP7, IGF1and IGF2showed that IGFBP7may have function on muscle growth in an IGF-independent manner. The IGFBP7protein levels at day90and180were higher in Jinhua pigs than in Yorkshire pigs by western blot was inconsistent with the qPCR results, which may be due to post-transcriptional gene regulation.
     Sequence analysis by bioinformatics revealed that several putative transcription factors associated with muscle development existed in this region, such as MyoD, YY1. Transient transfection assay showed that the fragment at the region-333bp to+3bp exhibited the highest luciferase response and the-349~-315region might have positive elements binding sequences while the-585~-349region might have inhibitor binding sequences. The results of genetic variation analysis in the promoter region showed that a300bp-fragment insertion was identified at the-687bp site, however, which had no influence on the promoter activity. Moreover, seven genetic variations were found in IGFBP7promoter region and resulted in the change of transcription factors in the alternative alleles, which might have a role in IGFBP7transcriptional regulation. In the study, the potential alternative splicing pattern of IGFBP7gene was investigated. Two novel splice variants were identified. And the transcript was the primary transcript.
     The microRNA microarray was used to identify and characterize the differentially expressed miRNAs in Jinhua pigs relative to Yorkshire pigs. Four up-and sixteen down-regulated miRNAs were identified and had more than2-fold differential expression between Jinhua pigs and Yorkshire pigs (P value <0.05). Further, ssc-miR-487b and ssc-miR-142-5p were predicted targeting to IGFBP7gene and were validated by Dual-Glo Luciferase Assay System. ssc-miR-487b and ssc-miR-142-5p might regulated IGFBP7gene at post-transcriptional level.
引文
蔡兆伟.阉割影响猪脂肪沉积的分子机理:[博士学位论文].杭州:浙江大学,2011
    陈鸿飞,王进科.转录因子相关数据库.遗传,2010,32(10):1009-1017
    高萍,傅伟龙,朱晓彤,等.蓝塘仔猪IGF-1水平与组织IGF-1、GHR基因的表达.畜牧兽医学报.2005,36(1):38242
    耿倩倩,余守和,张越,等.miR-376b-3p可促进Runx2诱导C2C 12细胞进行成骨细胞早期分化.中国组织工程研究,2013,17(28):5108-5112.
    顾以韧,张凯,李明洲,等.猪背最长肌中胰岛素样生长因子(IGFs)系统基因的发育表达模式.遗传,2009,31(8):837-843
    郭玉姣,唐国庆,李学伟,等.猪脂肪组织中IGF2和IGFBP3因表达的发育性变化及其品种差异.遗传,2008,3(5):602-606
    侯冠或,周汉林,王东劲,等.五指山猪8种组织IGF2和IGFBP3基因表达的发育性变化研究.家畜生态学报,2010,31(5):8-12
    郎松.中国特有小型猪IGFs基因的SNP分析及其在相关组织中表达规律的研究:[硕士学位论文].长春:吉林大学,2011[121]陆文汇.IGFBP7基因变异与代谢综合征危险性的关联研究:[硕士学位论文].杭州:浙江大学,2012
    李莉,陈预明,白银山,等.猪IGF2R基因多态性及其遗传印记.中国农业科学,2010,43(10):2156-2161
    李明玉.硬骨鱼类IGF信号通路两个重要基因的结构和功能研究:[博士学位论文].青岛:中国海洋大学,2011
    李仕新,李加琪,田允波,等.猪IGF-1R基因差异表达、5’调控区的克隆及遗传多态性.江西农业大学学报,2013,35(4):813-818
    李文海,邓学梅,等.SSH法结合定量PCR技术研究双肌臀猪肌肉组织的差异表达基因.生物化学与生物物理进展,2005,32(4):353-358
    李英贤,贺福初.DNA与蛋白质相互作用研究方法.生命的化学,2003,23(4):3062308
    刘德武,赵云翔,任广彩,等.蓝塘猪和长白猪肝脏和肌肉中IGF-Ⅰ、IGF-ⅠR和IGFBP3基因表达的发育性变化.畜牧兽医学报,2008,39:866-872
    孙伟,唐中林,谭林,等.HMGCS1基因对猪肌肉生长发育的影响及miRNA-18a/18b对HMGCS1基因的调控.中国农业科学,2013,46(12):2543-2549
    王荣梅,苏荣胜,张细权,等.变性高效液相色谱分析猪GH基因单核苷酸多态性及与生产性能的关系.畜牧与兽医,2007,39(4):20-24
    武炜.IGF-I在大鼠脑内的分布及禁食、味觉嗜好性对其在肝、脑表达的影响:[硕士学位论文].石家庄:河北师范大学,2005[122]张仲葛.中国猪品种志.上海:上海科技出版社,1986
    徐金先,夏东,赵如茜,等.猪下丘脑和垂体中生长激素受体、胰岛素样生长因子1型受体的发育性变化.遗传学报,2004,31:495-501
    赵拴平.猪骨骼肌生长发育相关基因和microRNA鉴定及其网络互作分析:[博士学位论 文].西安:西北农林科技大学,2012
    赵晓枫,欧阳克,张阳,等.胰岛素样生长因子结合蛋白5基因(IGFBP5)部分编码序列的SNP快速筛查及其多态性对猪生产性能的影响.农业生物技术学报,2009,17(5):758-762
    Akaogi K, Okabe Y, Funahashi K, et al. Cell adhesion activity of a 30-kDa major secreted protein from human bladder carcinoma cells. Biochem Biophys Res Commun,1994,198(3):1046-53
    Ambros V. MicroRNA Pathway in Files and Worms:Growth, Death, Fat, Stress, and Timing. Cell, 2003,113:673-676
    Bai Y, Huang JM, Liu G, et al. A comprehensive microRNA expression profile of the backfat tissue from castrated and intact full-sib pair male pigs. BMC Genomics,2014,15:47
    Barlow D P, Stoger R, Herrmann B G, et al. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature,1991,349:84-87
    Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell,2004,116:281-297
    Baxter RC. Insulin-like growth factor (IGF)-binding proteins:interactions with IGFs and intrinsic bioactivities. Am J Physiol Endocrinol Metab,2000,278(6):E967-976
    Bedzhov I, Liszewska E, Kanzler B, et al. Igflr signaling is indispensable for preimplantation development and is activated via a novel function of E-cadherin. PLoS Genet,2012,8(3):e1002609
    Beitzinger M, Peters L, Zhu JY, et al. Identification of human microRNA targets from isolated argonaute protein complexes. RNA Biol,2007,4:76-84
    Berezikov E, Cuppen E, Plasterk RH. Approaches to microRNA discovery. Nat Genet,2006, 38 suppl:S2-7
    Bieche I, Lerebours F, Tozlu S, et al. Molecular profiling of inflammatory breast cancer: identification of a poor-prognosis gene expression signature. Clin Cancer Res,2004,10(20):6789-6795
    Brennecke J, Stark A,, Russell RB, et al. Principles of microRNA-target recognition. PLoS Biol, 2005,3:e85
    Buchman AR., Berg P. Comparison of intron-dependent and intron-independent gene expression. Mol Cell Biol,1988,8(10):4395-405
    Burke TW, Kadonaga JT. The downstream core promoter element, DPE, is conserved from Drosophila to humans and is recognized by TAFI160 of Drosophila. Genes Dev,1997,11:3020-3031
    Callis J, Fromm M, Walbot V. Introns increase gene expression in cultured maize cells. Genes Dev,1987,1(10):1183-200
    Catheerine M, Nolan J, Killian K, et al. Imprint status of M6P/IGF2R and IGF2 in chickens. Development Genes and Evolution,2001,211:179-193
    Carninci P, Sandelin A, Lenhard B, et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet,2006,38:626-635
    Carrington JC, Ambros V. Role of microRNAs in plant and animal development. Science,2003, 301(5631):336-8
    Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet,2006,38:228-233
    Chen JF, Tao Y, Li J, et al. microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol,2010,190:867-879
    Chi SW, Zang JB, Mele A, et al. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature,2009,460:479-486
    Cooper SJ, Trinklein ND, Anton ED, et al. Comprehensive analysis of transcriptional promoter structure and function in 1% of the human genome. Genome Res,2006,16:1-10
    Damon SE, Haugk K, Swisshelm K, et al. Developmental regulation of Mac25/insulin-like growth factor-binding protein-7 expression in skeletal myogenesis. Exp Cell Res,1997,237(1):192-195
    Davis ME, Simmen RCM. Genetic parameter estimates for serum insulin-like gowth factor-I concentration and carcass traits in Angus beef cattle. Journal of Animal Science,2000,78(9): 2305-2312
    Davoli R, Braglia S, Russo V, et al. Expression profiling of functional genes in prenatal skeletal muscle tissue in Duroc and Pietrain pigs. J Anim Breed Genet,2011,128(1):15-27
    Degeorges A, Wang F, Frierson HF, et al. Human prostate cancer expresses the low affinity insulin-like growth factor binding protein IGFBP7. Cancer Res,1999,59(12):2787-2790
    Deng W, Roberts SG. A core promoter element downstream of the TATA box that is recognized by TFIIB. Genes Dev,2005,19:2418-2423
    Dimberg J, Hong TT, Skarstedt M,et al. Analysis of APC and IGFBP7 promoter gene methylation in Swedish and Vietnamese colorectal cancer patients et al. Oncol Lett,2013,5(1):25-30
    Drummond MJ, Glynn EL, Fry CS. et al. Essential amino acids increase microRNA-499,-208b, and-23a and downregulate myostatin and myocyte enhancer factor 2C mRNA expression in human skeletal muscle. J Nutr,2009,139(12):2279-2284
    Duan C, Ding J, Li Q, et al. Insulin-like growth factor bingding protein 2 is a growth inhibitory ptoitein conserved in zebrafish. Proceedings of the National Aeademy of Sciences of the United States of Ameriea,1999,96(26):152741-5279
    Dufourny B, Alblas J, van Teeffelen HA, et al. Mitogenic signaling of insulin-like growth factor I in MCF-7 human breast cancer cells requires phosphatidylinositol 3-kinase and is independent of mitogen-activated protein kinase. J Biol Chem,1997,272(49):31163-31171
    Duncker BP, Davies PL, Walker VK.. Introns boost transgene expression in Drosophila melanogaster. Mol Gen Genet,1997,254(3):291-6
    Easow G, Teleman AA, Cohen SM. Isolation of microRNA targets by miRNP immunopurification. RNA,2007,13:1198-1204
    Enright AJ, John B, Gaul U, et al. MicroRNA targets in Drosophila. Genome Biology,2003, 5:R1
    Faller EM, Brown DL. Modulation of microtubule dynamics by the microtubule-associated protein 1a. J Neurosci Res,2009,87(5):1080-9
    Friedman JM, Jones PA. MicroRNAs:critical mediators of differentiation, development and disease. Swiss Med Wkly,2009,139(33-34),:466-72
    Gagan J, Dey BK, Layer R, et al. MicroRNA-378 targets the myogenic repressor MyoR during myoblast differentiation. J Biol Chem,2011,286:19431-19438
    Gaken J, Mohamedali AM, Jiang J, et al. A functional assay for microRNA target identification and validation. Nucleic Acids Res,2012, doi:10.1093/nar/gks145
    Gan L, Schwengberg S, Denecke B. MicroRNA profiling during cardiomyocyte-specific differentiation of murine embryonic stem cells based on two different miRNA array platforms. PLoS One,2011,6:e25809
    Garcia-Blanco MA, Baraniak AP, Lasda EL. Alternative splicing in disease and therapy. Nat Biotechnol,2004,22(5):535-46
    Gennarino VA, Sardiello M, Avellino R, et at. MicroRNA target prediction by expression analysis of host genes. Genome Res,2009,19(3):481-90
    Gerrard DE, Okamura CS, Ranalleta MA, et al. Developmental expression and location of IGF-1 and IGF-Ⅱ mRNA and protein in skelet muscle. J Journal of Animal Science,1998,76(4):1004-11
    Gotz W, Dittjen O, Wicke M, et al. Immunohistochemical detection of components of the insulin-like growth factor system during skeletal muscle growth in the pig. Anatomia Histologia Embryologia,2001,30(1):49-56
    Guo L, Lu Z. The Fate of miRNA* Strand through Evolutionary Analysis:Implication for Degradation As Merely Carrier Strand or Potential Regulatory Molecule? PLoS One,2010,5(6):e11387
    Harafuji N, Schneiderat P, Walter MC, et al. miR-411 is up-regulated in FSHD myoblasts and suppresses myogenic factors. Orphanet J Rare Dis,2013,8:55
    Hausman GJ, Barb CR, Dean RG. Patterns of gene expression in pig adipose tissue:Insulin-like growth factor system proteins, neuropeptide Y (NPY), NPY receptors, neurotrophic factors and other secreted factors. Domestic Animal Endocrinology,2008,35:24-34
    Hwa V, Oh Y, Rosenfeld RG. The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocr Rev,1999,20(6):761-787
    Hochberg M, Zeligson S, Amariglio N, et al. Genomic-scale analysis of psoriatic skin reveals differentially expressed insulin-like growth factor-binding protein-7 after phototherapy. British Journal of Dermatology,2007,156:289-300
    Huang TH, Zhu MJ, Li XY, et al. Discovery of porcine microRNAs and profiling from skeletal muscle tissues during development. PLoS One,2008,3:e3225
    Huang J, Morris Q, Frey B. Bayesian inference of microRNA targets from sequence and expression data. J Comp Biol,2007,14(5):550-563
    Huang YJ, Niu J, Liu Z, et al. The functional IGFBP7 promoter-418G>A polymorphism and risk of head and neck cancer. Mutat Res,2010,702(1):32-9
    James PL, Jones SB, Busby WHJ, et al. A highly conserved insulin-like growth factor-binding protein (IGFBP-5) is expressed during myoblast differentiation. J Biol Chem,1993,268(30): 22305-22312
    Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins:biological actions. Endocr Rev,1995,16(1):3-34
    Juven-Gershon T, Hsu J-Y, Kadonaga JT. Perspectives on the RNA polymerase II core promoter. Biochem Soc Trans,2006.34:1047-1050
    Kalscheuer V M, Mariman E C, Schepens M T, et al. The insulin-like growth factor type-2 receptor gene is imprinted in the mouse but not in humans. Nature Genetics,1993,5:74-78
    Kamanga SE, Pampusch MS, White ME, et al. Insulin-like growth factor binding protein (IGFBP)-3 and IGFBP5 mediate TGF-beta and myostatin-induced suppression of proliferation in porcine embryonic myogenic cell cultures. Experimental Cell Research,2005,311(1):167-176
    Kanemitsu N, Kato MV, Miki T, et al. Characterization of the promoter of the murine mac25 gene. Biochem Biophys Res Commun,2000,279(1):251-7
    Kim TH, Barrera LO, Zheng M, et al. A high-resolution map of active promoters in the human genome. Nature,2005,436:876-880
    Kimchi-Sarfaty C, Marple AH, Shinar S, et al. Ethnicity-related polymorphisms and haplotypes in the human ABCB1 gene. Pharmacogenomics,2007,8(1):29-39
    Kiriakidou M, Nelson PT, Kouranov A, et al. A combined computational-experimental approach predicts human microRNA targets. Genes Dev,2004,18:1165-1178
    Komatsu S, OkazakiY, Tateno M, et al. Methylation and Downregulated Expression of mac25/ Insulin-like Growth Factor Binding Protein-7 is Associated with Liver Tumorigenesisin SV40T/t Antigen Transgenic Mice, Screened by Restriction Landmark Genomic Scanning for Methylation (RL-GS-M). Biochem Biophys Res Commun,2000,267(1):109-117
    Kopecny M, Stratil A, et al. Linkage and radiation hybrid mapping of the porcine IGF-IR and TPM2 genes to chromosome 1. Animal Genetics,2002,33:398-400
    Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet,2005, 37:495-500
    Krichevsky A M, King KS, Donahue CP, et al. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA,2003,9:1274-1281
    Kusakabe R, Tani S, Nishitsuji K, et al. Characterization of the compact bicistronic microRNA precursor, miR-1/miR-133, expressed specifically in Ciona muscle tissues. Gene Expr Patterns,2013> 13(1-2):43-50
    Kutach AK, Kadonaga JT. The downstream promoter element DPE appears to be as widely used as the TATA box in Drosophila core promoters. Mol Cell Biol,2000,20:4754-4764
    Laviola L, Natalicchio A, Giorgino F. The IGF-I signaling pathway. Curr Pharm Des,2007, 13(7):663-669
    Lagrange T, Kapanidis AN, Tang H, et al. New core promoter element in RNA polymerase II-dependent transcription:sequence-specific DNA binding by transcription factor IIB. Genes Dev, 1998,12:34-44
    Le Hir H, Nott A, Moore MJ. How introns influence and enhance eukaryotic gene expression. Trends Biochem Sci,2003,28(4):215-20
    Leal SM, Huang SS, Huang JS, et al. Interactions of high affinity insulin-like growth factor-binding proteins with the type V transforming growth factor -b receptor in mink lung epithelial cells. J Biol Chem.1999,274:6711-6717
    Lee DY, Deng Z, Wang CH, et al. MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci USA.2007.104: 20350-20355
    Lewis BP, Burge CB, Bartel DP. Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets. Cell,2005,120:15-20
    Li C, Bin YF. Curchoe C, et al. Genetic imprinting of H19 and IGF2 in Domestic pigs (Sus scrofa). Animal Biotechnology,2008,19(1):22-27
    Li Z, Rahman S, Kosar-Hashemi B, et al. Cloning and characterization of a gene encoding wheat starch synthase 1. Theor APP1 Genet,1999,98:1208-1216
    Lim LP, Lau N C, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature,2005,433:769-773
    Liu N, Bezprozvannaya S, Shelton JM, et al. Mice lacking microRNA 133a develop dynamin 2-dependent centronuclear myopathy. J Clin Invest,2011,121:3258-3268
    Liu S, Guo W, Shi J, et al. MicroRNA-135a contributes to the development of portal vein tumor thrombus by promoting metastasis in hepatocellular carcinoma. J Hepatol,2012,56(2):389-96
    Loots GG, Locksley RM, Blankespoor CM, et al. Identification of a coordinate regulator of interleukins 4,13, and 5 by cross-species sequence comparisons. Science,2000,288(5463):136-40
    McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a newTGF-beta superfamily member. Nature,1997,387(6628):83-90
    Mervyn JB, Stanley NC. Gene expression in Streptomyces:construction and application of promoter-probe plasmid vectors in Streptomyces lividans. Molecular and General Genetics,1982, 187(2):265-277
    Meunier L, Puiffe ML, Le Page C, et al. Effect of ovarian cancer ascites on cell migration and gene expression in an epithelial ovarian cancer in vitro model. Transl Oncol,2010.3(4):230-8
    Morgan CJ, Coutts AGP, McFadyen MC, et al. Characterization of IGF21 receptors in the porcine small intestine during postnatal development. The Journal of Nutritional Biochemistry,1996,7: 339-347
    Mukherjee A, Wilson EM, Rotwein P. Insulin-like growth factor (IGF) binding protein-5 blocks skeletal muscle differentiation by inhibiting IGF actions. Mol Endocrinol,2008,22(1):206-215
    Muroya S, Taniguchi M, Shibata M, et al. Profiling of differentially expressed microRNA and the bioinformatic target gene analyses in bovine fast-and slow-type muscles by massively parallel sequencing. J Anim Sci,2013,91(1):90-103
    Murphy M, Pykett MJ, Harnish P, et al. Identification and characterization of genes differentially expressed in meningiomas. Cell Growth Differ,1993,4(9):715-722
    Naguibneva I, Ameyar-Zazoua M, Polesskaya A, et al. The microRNA miR-181 targets the homeobox protein Hox-All during mammalian myoblast differentiation. Nat Cell Biol,2006,8: 278-284
    Nezer C, Moreau L, Brouwers B, et al. An imprinted QTL with major effect on muscle mess and fat deposition maps to the IGF-2 locus in pigs. Nature Genetics,1999,21(2):155-156
    Nunez-Iglesias J, Liu CC, Morgan TE, et al. Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer's disease cortex reveals altered miRNA regulation.2010, PLoS One,5(2): e8898
    Oh Y, Nagalla SR, et al. Synthesis and Characterization of Insulin Like Growth Factor Binding Protein (IGFBP)-7. J Biol Chem,1996,271(48):30322-30325
    Oliver WT, Rosenberger J, Lopez R, et al. The local expression and abundance of insulin-like growth factor (IGF) binding proteins in skeletal muscle are regulated by age and gender but not local IGF-Ⅰ in vivo. Endocrinology,2005,146(12):5455-5462
    Peng M, Pelletier G, Palin MF, et al. Ontogeny of IGFs and IGFBPs mRNA levels and tissue concentrations in liver, kidney and skeletal muscle of pig. Growth Dev Aging,1996,60:171-187
    Pierzchala M, Pareek CS, Urbanski P, et al. Study of the differential transcription in liver of growth hormone receptor (GHR), insulin-like growth factors (IGF1, IGF2) and insulin-like growth factor receptor (IGF1R) genes at different postnatal developmental ages in pig breeds. Molecular Biology Reports,2012,39(3):3055-3066
    Ponjavic J, Lenhard B, Kai C, et al. Transcriptional and structural impact of TATA-initiation site spacing in mammalian core promoters. Genome Biol,2006,7:R78
    Rajah R, Valentinisp B, Cohen P. Insulin-like growth factor binding protein-3 induces apoptosis and mediates the effects of transforming growth factor-bl on programmed cell death through a p53-and IGF-independent mechanism. J Biol Chem.1997,272:12181-12188
    Rechael LN, Robert WW, Raymond LR. Eukaryotic DNA fragments which act a promoters for a plsemid gene. Nature,1979,277:324-325
    Reeve JN. Archaeal chromatin and transcription. Mol Microbiol,2003,48:587-598
    Rehmsmeier M, Steffen P, Hochsmann M, et al. Fast and effective prediction of microRNA/target duplexes. RNA,2004,10:1507-1517
    Ritchie W, Rajasekhar M, Flamant S, et al. Conserved expression patterns predict microRNA targets. PLoS Comput Biol,2009,5:e1000513
    Ruan WJ, Xu E, Xu FY, et al. IGFBP7 Plays a Potential Tumor Suppressor Role in Colorectal Carcinogenesis. CancerBiology & Therapy,2007,6(3):354-359
    Rusinov V, Baev V, Minkov I N, et al. MicroInspector:a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res,2005,33:W696-700
    Sambrook J, Russell DW. Molecular cloning:A laboratory manual. Cold Spring Harbor Laboratory Press,2001
    Saunders R1, Deane CM. Synonymous codon usage influences the local protein structure observed. Nucleic Acids Res,2010,38(19):719-28
    Sebert SP, Lecannu G, Kozlowski F, et al. Childhood obesity and insulin resistance in a Yueatan mini-piglet model:putative roles of IGF-1 and muscle PPARs in adipose tissue activity and development. International Journal of Obesity,2005,29(3):324-333
    Seth A, Kitching R, Landberg G, et al. Gene expression profiling of ductal carcinomas in situ and invasive breast tumors. Anticancer Res,2003,23 (3A):2043-2051
    Selbach M, Schwanhausser B, Thierfelder N, et al. Widespread changes in protein synthesis induced by microRNAs. Nature,2008,455(7209):58-63
    Sprenger CC, Damon SE, Hwa V, et al. Insulin-like growth factor binding protein-related protein 1 (IGFBP7) is a potential tumor suppressor protein for prostate cancer. Cancer Res,1999,59(10): 2370-2375
    Sullivan L, Murphy TM, Barrett C, et al. IGFBP7 promoter methylation and gene expression analysis in prostate cancer. J Urol,2012,188(4):1354-1360
    Sun D, Lee YS, Malhotra A, et al. miR-99 family of MicroRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation. Cancer Res,2011,71(4):1313-24
    Sun Y, Koo S, White N, et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res,2004,32:e188
    Suzuki M, Shiraishi K, Eguchi A, et al. Aberrant methylation of LINE-1,SLIT2, MAL and IGFBP7 in non-small cell lung cancer. Oncol Rep,2013,29(4):1308-1314
    Sylvius N, Bonne G, Straatman K, et al. MicroRNA expression profiling in patients with lamin A/C-associated muscular dystrophy. FASEB J,2011,25(11):3966-78
    Tamar JG, James TK. Regulation of Gene Expression via the Core Promoter and the Basal Transcriptional Machinery. Dev Biol,2010,339(2):225-229
    Tanaka T, Yoshida N, Kishimoto T. Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. EMBOJ,1997,16(24):7432-43
    Tang X, Gal J, Zhuang X, et al. A simple array platform for microRNA analysis and its application in mouse tissues. RNA,2007,13:1803-1822
    Tilley RE, McNeil CJ, Ashworth CJ, et al. Altered muscle development and expression of the insulin-like growth factor system in growth retarded fetal pigs. Domest Anim Endocrinol,2007,32(3): 167-177
    Tony T. Inverse PCR (I-PCR) for obtaining promoter sequence. Methods in Molecular Biology, 2000,130:79-84
    Van der Auwera I, Limame R, van Dam P, et al. Integrated miRNA and mRNA expression profiling of the inflammatory breast cancer subtype. Br J Cancer,2010,103(4):532-41
    Van Laere AS, Nguyen M, Braunschweig M, et al. A regulatory mutation in IGF2 causes a major QTL efect on muscle growth in the pig. Nature,2003,425:832-836
    Wada S, Kato Y, Okutsu M, et al. Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy. J Biol Chem,2011,286:38456-38465
    Wang E, Sandberg R, Luo S, et al. Alternative isoform regulation in human tissue transcriptomes. Nature,2008,456:470-476
    Wang K, Li P, Dong Y, et al. A microarray-based approach identifies ADP ribosylation factor-like protein 2 as a target of microRNA-16. J Biol Chem,2011,286:9468-9476
    Wigmore PM, Stickland NC. Muscle development in large and small pig fetuses. J Anat,1983, 137:235-45
    Winter J, Jung S, Keller S, et al. Many roads to maturity:microRNA biogenesis pathways and their regulation. Nat Cell Biol,2009,11(3):228-34
    Xie Q,Chen X,Lu F,et al. Aberrant expression of microRNA 155 may accelerate cell proliferation by targeting sex-determining region Y box 6 in hepatocellular carcinoma. Cancer,2011, doi: 10.1002/cncr.26566.
    Xie X, Lu J, Kulbokas EJ, et al. Systematic discovery of regulatory motifs in human promoters and 3'UTRs by comparison of several mammals. Nature,2005,434(7031):338-45
    Xing Y, Lee C. Alternative splicing and RNA selection pressure--evolutionary consequences for eukaryotic genomes. Nat Rev Genet,2006,7(7):499-509
    Yamauchi T, Umeda F, Masakado M, et al. Purification and molecular cloning of prostacyclin-stimulating factor from serum-free conditioned medium of human diploid fibroblast cell. Biochem J,1994,303:591-598
    Ye RS, Xi QY, Qi Q, et al. Differentially expressed miRNAs after GnRH treatment and their potential roles in FSH regulation in porcine anterior pituitary cell. PLoS One,2013,8(2):e57156

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700