用户名: 密码: 验证码:
B样条基组方法在强外场中原子谱计算中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
里德堡原子由于其长寿命和对外场的敏感等特性,是研究外场效应的理想体系。它们在外场中的行为涉及到原子物理和量子力学的许多基本概念和理论问题,如不可分离变量的量子力学体系的求解,连续态和束缚态的耦合及其对谱结构的影响,经典与量子的对应等。研究外场中的原子可以为天体物理、等离子体物理提供基本数据及其他应用。
     本文发展了强外场下里德堡原子谱计算的有效方法,系统地应用于碱金属原子在电场、磁场、平行电磁场及交叉电磁场中的吸收谱、共振态的研究中。主要内容如下:
     1.将B样条基与模型势相结合的方法用于锂原子和钠原子近离化阈的抗磁谱计算。波函数角向部分采用对称化的B样条基。对于处于磁场下的锂原子,在我们所讨论的能区内,该方法计算量小于R-矩阵与多通道量子亏损理论,但仍可给出与实验谱相符的结果。同样对钠原子离化阈附近的抗磁谱也做了计算,靠近电离阈时,发现体系连续态对谱线的影响变得很重要。
     2.将B样条基与模型势相结合法推广到计算平行电磁场中碱金属里德堡原子的振子强度谱。对于锂原子,在B=0.594 T,F=5.33 V/cm的情况下,定量地分析了振子强度强弱的原因。在所讨论的能区内,我们比较了锂原子不同初态,例如2s和3s态的π光吸收谱,发现谱线结构非常相似,整体上相差一个常数因子。这表明,谱线结构主要由末态决定,几乎与初态无关。在平行电磁场下,对比锂原子与钠原子的吸收谱,发现原子实的作用对谱线的影响很大。
     3.首次把B样条基展开方法推广到处理交叉电磁场中氢原子的Balmerα谱,计算结果与最近的理论结果非常吻合。进一步说明了B样条基矢展开法可有效处理原子在交叉电磁场中的问题。
     4.首次采用B样条基与模型势和复坐标旋转相结合的方法,计算了低激发锂原子的Stark共振态。对最近文献中关于共振态能级位置和宽度的争论做了进一步的讨论和澄清,计算结果表明本文的方法是可行的、有效的,比较灵活且计算量小,便于推广到交叉电磁场下碱金属原子共振态的计算。
Rydberg atoms are ideal systems for studying the effect of external fields on atoms due to its long lifetime and sensitivity to external fields. Atoms in external fields relate to many basic theoretical problems in atomic physics, e.g. the solution for non-separable system, the coupling of discrete and continuum states and its influence on the structure of the spectrum, the quantum-classical correspondence and so on. The research on atoms in strong fields can provide essential data for astrophysics, plasma physics, and other applications.
     In this paper, new effective methods dealing with the atoms in strong fields have been developed. These methods are applied to systematically investigate the spectra and resonances of alkali atoms in external electric and magnetic fields. The major contents of this paper are as follows:
     1. We calculated near-threshold diamagnetic spectra of Li and Na atoms in strong fields by B-spline basis plus model potential (B-spline+MP) approach. The angular wave-functions are expanded in terms of the symmetry-adapted B-spline functions. For Li atom, in contrast with R-matrix+MQDT, the B-spline+MP method obtains a higher spectral accuracy with a smaller computational effort over the energy range of our study. For Na atom, the contribution of continuum states to the spectra becomes significant near threshold region.
     2. We presented oscillator strength spectra of Li and Na in parallel electric and magnetic fields via the B-spline+MP method. In the case of Li atom, the oscillator strength is calculated and analysed in B = 0.594 T, F = 5.33 V/cm. We got the same form of spectrum byπphoto absorption from the Li (2s) initial state as that from the 3s state. The two spectra only differ by an overall constant. The structure of the spectrum, over the narrow energy ranges considered in this paper, can be independent of the initial state chosen for a given atom. The structure of the spectrum is determined by the final state only. Comparing the spectra of Li and Na, the marked effect of atomic core on the spectra can be found.
    3. We presented oscillator strength spectra of the hydrogen Balmer α series in strong magnetic and electric fields with arbitrary mutual orientation via the B-spline basis method. The results are in good agreement with the ones in literatures. It shows that the B-spline basis method can effectively deal with the problem of atoms in crossed fields.
    4. The B-spline-based coordinate rotation method plus model potential approach is applied for the first time to investigate the complex energies of low-lying Stark resonances of the lithium atoms. We further discuss and clarify the argument on energy positions and widths of resonance states in recent literatures. The calculated results show that this method has the advantages of simplicity, flexibility and small computational effort. The method can be extended easily to deal with the problem of alkali atoms in crossed fields.
引文
[1] 徐克尊,高等原子分子物理,科学出版社,2002.
    [2] J. Neukammer, H. Rinneberg, K. Vietzke, A. Konig, H. Hieronymus, M. Kohl, and H. J. Grabka, G. Wunner, Spectroscopy of Rydberg atoms at n≈500: observation of Quasi-Landau resonances in low magnetic fields, Phys. Rev. Lett. 59, 2947-2950 (1987).
    [3] (英)J.P.康纳德,译者:詹明生,王谨,高激发原子,科学出版社,2003.
    [4] J. Ahn, T. C. Weinacht, P. H. Bucksbaum, Quantum phase information storage and retrieval through quantum phase, Science 287, 463-465 (2000).
    [5] H. Ruder, G. Wunner, H. Herold, and F. Geyer, Atoms in strong magnetic fields, Springer-Verlag, Berlin, 1994, and references therein.
    [6] P. Schmelcher and W. Schweizer, Atoms and molecules in strong external fields, Plenum Press, New York, 1998, and references therein.
    [7] W. R. S. Garton, F. S. Tomkins, Ba I absorption-line series at high resolution, Astrophys. J. 158, 1219-1230 (1969).
    [8] A. Holle, G. Wiebusch, J. Main, B. Hager, H. Rottke, and K. H. Welge, Diamagnetism of the hydrogen atom in the Quasi-Landau regime, Phys. Rev. Lett. 56, 2594-2597 (1986).
    [9] M. L. Du and J. B. Delos, Effect of closed classical orbits on quantum spectra: ionization of atoms in a magnetic field, Phys. Rev. Lett. 58, 1731-1733 (1987).
    [10] P. F. O'Mahony, F. Mota-Furtado, Continuum spectrum of an atom or molecule in a magnetic field, Phys. Rev. Lett. 67, 2283-2286 (1991).
    [11] S. Watanabe, H. Komine, Adiabatic-expansion method applied to diamagnetic Rydberg atoms, Phys. Rev. Lett. 67, 3227-3230 (1991).
    [12] C. Stubbins, K. Das and Y. Shiferaw, Low-lying energy levels of the hydrogen atom in a strong magnetic field, J. Phys. B: At. Mol. Opt. Phys. 37, 2201-2209 (2004).
    [13] O. Alexander, A. Hujaj and P. Schmelcher, Lithium in strong magnetic fields, Phys. Rev. A 70, 033411-12 (2004).
    [14] Zach Medin and Dong Lai, Density-functional-theory calculations of matter in strong magnetic fields. I. Atoms and molecules, Phys. Rev. A 74, 062507 (2006).
    [15] 刘强,椭球坐标下求解强磁场中的氢原子和氢分子离子,硕士学位论文,河南师范大学,2006.
    [16] 顾思洪,外场中里德伯态碱原子非氢与类氢特性研究,博士学位论文,中科院武汉物理与数学研究所,1997.
    [17] Y. Li, W. Y. Liu and B. W. Li, Positions and widths for anticrossings of potassium Rydberg Stark states, J. Phys. B: At. Mol. Opt. Phys. 29, 1433-1438 (1996).
    [18] M. Gatzke, J. R. Veale, W. R. Swindell, and T. F. Gallagher, Avoided level crossings between s states and Stark states in Rydberg Rb atoms, Phys. Rev. A 54, 2492-2495 (1996).
    [19] J. M. Menendez, I. Martin, and A. M. Velasco, Stark maps and Rydberg transitions in the presence of an electric field for Li, Na, and K. A quantum defect orbital approach, J. Chem. Phys. 119, 12926-12930 (2003).
    [20] W. Y. Liu and B. W. Li, Numerical study of Rydberg Cs atoms in parallel electric and magnetic fields, J. Phys. B: At. Mol. Opt. Phys. 27, 5185-5196 (1994).
    [21] J. M. Menendez, I. Martin, A. M. Velasco, Ionization thresholds and positions of avoided crossing of potassium Stark Rydberg states: a Stark-adapted quantum defect orbital treatment, Theor. Chem. Acc. 115, 65-71 (2006).
    [22] 柳晓军,外电场中Rydberg原子的光谱,博士学位论文,中科院武汉物理与数学研究所,2000.
    [23] 曹俊文,外电场中碱土金属原子光谱与量子相干控制,博士学位论文,中科院武汉物理与数学研究所,2002.
    [24] 倪霓,强外场中高Rydberg态Ba原子光谱研究,硕士学位论文,中科院武汉物理与数学研究所,2003.
    [25] M. S. Zhan, X. J. Liu, J. W. Cao and J-P Connerade, Scaled-energy spectroscopy of strontium atoms in an electric field, J. Phys. B: At. Mol. Opt. Phys. 34, 1175-1183 (2001).
    [26] D. Delande, J. Zakrzewski, Experimentally attainable example of chaotic tunneling: the hydrogen atom in parallel static electric and magnetic fields, Phys. Rev. A 68, 062110 (2003).
    [27] X. X. Guan, Y. X. Zhang, Influence of an added parallel electric field on diamagnetic hydrogen oscillator strength spectra, Phys. Rev. A 70, 033409 (2004).
    [28] J. von Neumann and E. P. Wigner, On the theory of non-adiabatic chemical reactions, Z. Phys. 30, 467-470 (1929).
    [29] R. Gonzalez-Ferez, J. S. Dehesa, Shannon entropy as an indicator of atomic avoided crossings in strong parallel magnetic and electric fields, Phys. Rev. Lett. 91, 113001 (2003).
    [30] R. Gonzalez-Ferez, J. S. Dehesa, Diamagnetic informational exchange in hydrogenic avoided crossings, Chem. Phys. Lett. 373, 615-619 (2003).
    [31] R. Gonzalez-Ferez, J. S. Dehesa, Characterization of atomic avoided crossings by means of Fisher's information, Eur. Phys. J. D 32, 39-43 (2005).
    [32] E. Korevaar and M. G. Littman, Effect of crossed electric and magnetic fields on sodium Rydberg states, J.Phys.B. 16, L437-L442 (1983).
    [33] H. Crosswhite, U. Fano, K. T. Lu, A. R. P. Ran, Motional Stark effect on Li vapor photoabsorption in high magnetic fields, Phys. Rev. Lett. 42, 963-966 (1979).
    [34] F. Penent, D. Delande, J. C. Gay, Rydberg states of rubidium in crossed electric and magnetic fields, Phys. Rev. A 37, 4707-4719 (1988).
    [35] G. Wiebusch, J. Main, K. Kruger, H. Rottke, A. Holle, and K. H. Welge, Hydrogen atom in crossed magnetic and electric fields, Phys. Rev. Lett. 62, 2821-2824 (1989).
    [36] G. Raithel, H. Held, L. Marmet, and H. Walther, Rubidium Rydberg atoms in strong static fields, J. Phys. B: At. Mol. Opt. Phys. 27, 2849-2866 (1994).
    [37] G. Raithel and H. Walther, Ionization energy of rubidium Rydberg atoms in strong crossed electric and magnetic fields, Phys. Rev. A 49, 1646-1665 (1994).
    [38] G. Raithel, M. Fauth, and H. Waither, Quasi-Landau resonances in the spectra of rubidium Rydberg atoms in crossed electric and magnetic fields, Phys. Rev. A 44, 1898-1909 (1991).
    [39] C. Neumann, R. Ubert, S. Freund, E. Flothmann, B. Sheehy, and K. H. Welge, M. R. Haggerty, J. B. Delos, Symmetry breaking in crossed magnetic and electric fields, Phys. Rev. Lett. 78, 4705-4708 (1997).
    [40] J-P Connerade, G. Droungas, N. E. Karapanagioti and M. S. Zhan, Atoms in crossed fields: a new experimental approach, J. Phys. B: At. Mol. Opt. Phys. 30, 2047-2066 (1997).
    [41] J-P Connerade, M. S. Zhan, J. G. Rao and K. T. Taylor, Strontium spectra in crossed electric and magnetic fields, J. Phys. B: At. Mol. Opt. Phys. 32, 2351-2360 (1999).
    [42] J. G. Rao and K. T. Taylor, Atoms in crossed fields: calculations for barium and hydrogen, J. Phys. B: At. Mol. Opt. Phys. 30, 3627-3645 (1997).
    [43] S. Freund, R. Ubert, E. Flothmann, and K. Welge, D. M. Wang, J. B. Delos, Absorption and recurrence spectra of hydrogen in crossed electric and magnetic fields, Phys. Rev. A 65, 053408 (2002).
    [44] A. M. Abdulla, S. Hogan, M. S. Zhan and J-P Connerade, High-lying Rydberg states of barium in crossed fields, J. Phys. B: At. Mol. Opt. Phys. 37, L147-L152 (2004).
    [45] J-P Connerade, S. D. Hogan and A. M. Abdulla, Experimental investigation of atoms in crossed electric and magnetic fields, J. Phys. B: At. Mol. Opt. Phys. 38, S141-S150 (2005).
    [46] G. Stania, H. Walther, Quantum chaotic scattering in atomic physics: ericson fluctuations in photoionization, Phys. Rev. Lett. 95, 194101 (2005).
    [47] K. Weibert, J. Main and G. Wunner, General rydberg atoms in crossed electric and magnetic fields: calculation of semiclassical recurrence spectra with special emphasis on core effects, Annals of Physics 268, 172-204 (1998).
    [48] T. Bartsch, J. Main, and G. Wunner, Closed orbits and their bifurcations in the crossed-field hydrogen atom, Phys. Rev. A 67, 063410-15 (2003).
    [49] T. Bartsch, J. Main, and G. Wunner, Semiclassical quantization of the hydrogen atom in crossed electric and magnetic fields, Phys. Rev. A 67, 063411-17 (2003).
    [50] S. Gekle, J. Main, S. Gekle, T. Uzer, Hydrogen atom in crossed electric and magnetic fields: Phase space topology and torus quantization via periodic orbits, Phy. Rev. A 75, 023406-13 (2007).
    [51] E. A. Solov'ev, Second-order perturbation theory for a hydrogen atom in crossed electric and magnetic fields, Soy. Phys. - JETP 58, 63-66 (1983).
    [52] P. A. Braun, E. A. Solov'ev, The Stark effect for the hydrogen atom in a magnetic field, Sov. Phys. -JETP 59, 38-46 (1984).
    [53] J. Main and G. Wunner, Ericson fluctuations in the chaotic ionization of the hydrogen atom in crossed magnetic and electric fields, Phys. Rev. Lett. 69, 586-589 (1992).
    [54] J. Main and G. Wunner, Rydberg atoms in external fields as an example of open quantum systems with classical chaos, J. Phys. B: At. Mol. Opt. Phys. 27, 2835-2848 (1994).
    [55] J. Main, M. Schwacke, and G. Wunner, Hydrogen atom in combined electric and magnetic fields with arbitrary mutual orientations, Phys. Rev. A 57, 1149-1157 (1998).
    [56] E. Flothmann, J. Main, K. H. Welge, The Kepler ellipses of the hydrogen atom in crossed electric and magnetic fields, J. Phys. B: At. Mol. Opt. Phys. 27, 2821-2833 (1994).
    [57] H. Marxer, I. Maser, F. Mota-Furtado, P. F. O'Mahony, Photoabsorption spectra in the perturbative regime for atoms in crossed electric and magnetic fields, J. Phys. B: At. Mol. Opt. Phys. 27, 4491-4499 (1994).
    [58] J. G. Rao, D. Delande, K. T. Taylor, Quantum manifestations of closed orbits in the photoexcitation scaled spectrum of the hydrogen atom in crossed fields, J. Phys. B: At. Mol. Opt. Phys. 34, L391-L399 (2001).
    [59] J. G. Rao and K. T. Taylor, The closed orbits and the photo-excitation scaled spectrum of the hydrogen atom in crossed fields, J. Phys. B: At. Mol. Opt. Phys. 35, 2627-2641 (2002).
    [60] J. G. Rao, D. Delande, K. T. Taylor, Quantum manifestations of scattering orbits in the scaled spectrum of a non-hydrogenic atom in crossed fields, J. Phys. B: At. Mol. Opt. Phys. 35, L1-L10 (2002).
    [61] X. M. Tong and S. I. Chu, Time-dependent approach to high-resolution spectroscopy and quantum dynamics of Rydberg atoms in crossed magnetic and electric fields, Phys. Rev. A 61, 031401 (2000).
    [62] J. Madronero, and A. Buchleitner, Ericson fluctuations in an open deterministic quantum System: Theory meets experiment, Phys. Rev. Lett. 95, 263601 (2005).
    [63] H. Cartarius, J. Main, G. Wunner, Exceptional points in atomic spectra, arXiv:nlin.CD/0703023
    [64] A. Czasch, M. SchSoffler, M. Hattass, et al. Partial photoionization cross sections and angular distributions for double excitation of helium up to the N=13 threshold, Phys. Rev. Lett. 95, 243003 (2005).
    [65] L. A. Brukova, I. E. Dzyaloshinski, G. F. Drukarev, and B. S. Monozon, Hydrogenlike system in crossed electric and magnetic fields, Sov. Phys. JETP 44, 276-278 (1976).
    [66] S. K. Bhattacharya and A. R. P. Rau, Coulomb spectrum in crossed electric and magnetic fields: eigenstates of motion in double-minimum potential wells, Phys. Rev. A 26, 2315-2321 (1982).
    [67] C. W. Clark, E. Korevaar and M. G. Littmann, Quasi-Penning resonances of a Rydberg electron in crossed electric and magnetic fields, Phys. Rev. Lett. 54, 320-322 (1985).
    [68] L. G. Guimaraes and R. B. Santiago, Finite parabolic quantum wells under crossed electric and magnetic fields: a double-quantum-well problem, J. Phys.: Condens. Matter 10, 9755-9762 (1998).
    [69] R. B. Santiago, L. G. Guimaraes, Spin-dependent resonant tunneling between coupled levels in parabolic wells under crossed,fields, Phys. Rev. B 67, 193301 (2003).
    [70] S. D. Hogan, Rydberg states interacting in crossed electric and magnetic fields, Ph.D thesis, Imperial College London, 2005.
    [71] M. H. Rice and R. H. Good, Jr., Stark effect in hydrogen, J. Opt. Soc. Am. 52, 239-246 (1962).
    [72] A. F. Starace, Quasi-Landau spectrum of a hydrogen like atom in a high magnetic field, J. Phys. B 6, 585-590 (1973).
    [73] H. Friedrich, J. Trost, Working with WKB waves fur from the semiclassical limit, Phys. Rep. 397, 359-449 (2004).
    [74] J. Gao and J. B. Delos, Quantum manifestations of bifurcations of closed orbits in the photoabsorption spectra of atoms in electric fields, Phys. Rev. A 56, 356-364 (1997).
    [75] X. Z. Zhang, H. M. Jiang, J. G. Rao, and B. W. Li, Frequency-modulated excitation of potassium atoms, Phys. Rev. A 68, 025401 (2003).
    [76] X. Z. Zhang, H. M. Jiang, J. G. Rao, and B. W. Li, Population trapping and excitation of a potassium atom in a frequency modulated field, J. Phys. B: At. Mol. Opt. Phys. 36, 4089-4095 (2003).
    [77] G. Wunner, M. Kost, and H. Ruder, "Circular" states of Rydberg atoms in strong magnetic fields, Phys. Rev. A 33, 1444-1447 (1986).
    [78] A. Holle, G. Wiebusch, J. Main, K. H. Welge, G. Zeller, G. Wunner, T. Ertl, H. Ruder, Hydrogenic Rydberg atoms in strong magnetic fields: theoretical and experimental spectra in the transition region from regularity to irregularity, Z. Phys. D 5, 279-285 (1987).
    [79] S. Sahoo and Y. K. Ho, Photoionization of Li and Na in Debye plasma environments, Phys. Plasmas 13, 063301-10 (2006).
    [80] I. N. Reid, J. Liebert, G. D. Schmidt, Discovery of a magnetic DZ White Dwarf with Zeeman-Split lines of heavy elements, The Astrophysical Journal 550, L61-L63 (2001).
    [1] 饶建国,有限基矢集方法用于强场中原子问题的计算,博士学位论文,中国科学院武汉物理与数学研究所,1999.
    [2] W. Schweizer, P. Faβbinder, Model potential for alkli metal atones and Li-like ions, Atomic Data and Nuclear Data Tables 72, 33-55 (1999).
    [3] M. Aymar, C. H. Greene, E. Luc-Koenig, Multichannel Rydberg spectroscopy of complex atoms, Rev. Mod. Phys. 68, 1015-1123 (1996).
    [4] I. J. Schoenberg, On spline functions, in Inequalities I (O. Shisha, ed), Academic Press, New York, p255, 1967.
    [5] C. M. Bender, K A. Milton, D. H. Sharp, L. M. Simmons, Jr. and R. Strong, Discrete-time quantum mechanics, Phys. Rev. D 32, 1476-1485 (1985).
    [6] C. de. Boor, On calculating with B-splines, J. Approx. Theory 6, 50-62 (1972).
    [7] M. G. Cox, The numerical evaluation of B-splines, J. Inst. Math. & Applic. 10, 134-149 (1972).
    [8] J. M. Droffe and C. Itzykson, Lattice gauge fields, Phys. Rep. 38, 133-175(1978).
    [9] W. R. Johnson, S. A. Blundall and J. Sapirstein, Finite basis sets for the Dirac equation constructed from B splines, Phys. Rev. A 37, 307-315 (1988).
    [10] T. N. Chang, Energy levels and the oscillator strengths of the Be atom determined by a configuration-interaction calculation with a finite basis set from B splines, Phys. Rev. A 39, 4946-4955 (1989).
    [11] T. N. Chang, Combined perturbation and configuration-interaction calculation for the fine-structure level splittings of the 1s4f states of helium, Phys. Rev.A 39, 6129-6133 (1989).
    [12] J. H. Xi, L. J. Wu, X. H. He and B. W. Li, Energy levels of the hydrogen atom in arbitrary magnetic fields obtained by using B-spline basis sets, Phys. Ray. A 46, 5806-5811 (1992).
    [13] W. Y. Liu, J. H. Xi, X. H. He, L. J. Wu and B. W. Li, Hydrogenic circular states in a superstrong magnetic field: A B-spline approach, Phys. Rev. A 47, 3151-3159 (1993).
    [14] H. X. Qiao, B. W. Li, Calculations of the helium atom in magnetic fields with B-spline-type functions, Phys. Rev. A 60, 3134-3137 (1999).
    [15] T. Y. Shi, B. W. Li, H. X. Q, Variational calculations for a hydrogen atom confined off-centre in an impenetrable spherical box using B-splines, J. Phys. B: At. Mol. Opt. Phys. 33, L349-L355 (2000).
    [16] S. Kang, J. Li, T. Y. Shi, Investigation of hydrogenic-donor states confined by spherical quantum dots with B-splines, J. Phys. B: At. Mol. Opt. Phys. 39, 3491-3505 (2006).
    [17] 史庭云,长程力作用下的少体系统研究,博士学位论文,中山大学,1999.
    [18] P. F. O'Mahony and K. T. Taylor, Quadratic Zeeman effect for nonhydrogenic systems: application to the Sr and Ba atoms, Phys. Rev. Lett. 57, 2931-2934 (1986).
    [19] M. H. Halley, D. Delande, K. T. Tayloy, The combination of R-matrix and complex coordinate methods: application to the diamagnetic Rydberg spectra of Ba and Sr, J. Phys. B: At Mol. Opt. Phys. 26, 1775-1790 (1993).
    [20] E. Balslev, J. M. Combes, Spectral properties of many-body Schrodinger operators with dilatation-analytic interactions, Commun. Math. Phys. 22, 280-294 (1971).
    [21] B. Simon, Resonances in N-body quantum systems with dilation analytic potentials and the foundations of time-dependent perturbation theory, Ann. Math. 97, 247-274 (1973).
    [22] W. P. Reinhardt, Complex coordinates in the theory of atomic and molecular structure and dynamics, Annu. Rev. Phys. Chem. 33, 223-255 (1982).
    [23] B. R. Junker, Recent computational developments in the use of complex scaling in resonance phenomena, Adv. At. Mol. Phys. 18, 207-263 (1982).
    [24] Y. K. Ho, The method of complex coordinate rotation and its applications to atomic collision processes, Phys. Rep. 99, 1-68 (1983).
    [25] N. Moiseyev, Quantum theory of resonances: calculating energies, widths and crosssections by complex scaling, Phys. Rep. 302, 211-293 (1998).
    [26] N. Moiseyev, S. Friedland, P. R. Certain, Cusps, trajectories, and the complex virial theorem, J. Chem. Phys. 74, 4739-4740 (1981).
    [27] E. Brandas, P. Froelich, Continuum orbitals, complex scaling problem, and the extended virial theorem, Phys. Rev. A 16, 2207-2210 (1977).
    [28] G. Jolicard, E. J. Austin, Optical potential stabilisation method for predicting resonance levels, Chem. Phys. Lett. 121, 106-110 (1985).
    [29] S. Sahoo, Y. K. Ho, Determination of resonance energy and width using the method of complex absorbing potential, Chin. J. Phys. 38, 127-138 (2000).
    [30] S. Sahoo, Y. K. Ho, The complex absorbing potential method (CAP) to study the Stark effect in hydrogen and lithium, J. Phys. B: At. Mol. Opt. Phys. 33, 2195-2206 (2000).
    [31] S. I. Themelis and C. A. Nicolaides, Complex energies and the polyelectronic Stark problem, J. Phys. B: At. Mol. Opt. Phys. 33, 5561-5580 (2000).
    [1] S. Watanabe, H. Komine, Adiabatic-expansion method applied to diamagnetic Rydberg atoms, Phys. Rev. Lett. 67, 3227-3230 (1991).
    [2] B. E. Granger, C. H. Greene, Nonclassical paths in the recurrence spectrum of diamagnetic atoms, Phys. Rev. Lett. 90, 043002 (2003).
    [3] W. Schweizer, P. Faβbinder, Model potential for alkli metal atoms and Li-like ions, Atomic Data and Nuclear Data Tables 72, 33-55 (1999).
    [4] W. Y. Liu, X. H. He, B. W. Li, Quantum defect and the anticrossings of diamagnetic energy levels of Rydberg Lithium atom, Progress in Natural Science 4, 241-247 (1994).
    [5] (a)P. Cacciani, S. Liberman, E. Luc-Koenig, J. Pinard, C. Thomas, Rydberg atoms in parallel magnetic and electric fields. Ⅰ. Experimental studies of the odd diamagnetic multiplet of lithium: n mixing and core. effects, J. Phys. B 21, 3473-3498 (1988).(b) P. Cacciani, S. Liberman, E. Luc-Koenig, J. Pinard, C. Thomas, Rydberg atoms in parallel magnetic and electric fields. Ⅱ. Theoretical analysis of the Stark structure of the diamagnetic manifold of hydrogen, J. Phys. B 21, 3499-3521 (1988). (e)P. Cacciani, S. Liberman, E. Luc-Koenig, J. Pinard, C. Thomas, Rydberg atoms in parallel magnetic and electric fields. Ⅲ Experimental investigations of the Stark structure of the diamagnetic manifold of lithium, J. Phys. B 21, 3523-3545 (1988).
    [6] C. H. Iu, G. R. Welch, M. M. Kash, D. Kleppner, Diamagnetic Rydberg atom: confrontation of calculated and observed spectra, Phys. Rev. Lett. 66, 145-148 (1991).
    [7] 康帅,刘强,钟振祥,张现周,史庭云,氢原子Rydberg态抗磁谱的高阶B-spline基组计算,物理学报55,3380-3385(2006).
    [8] M. H. Halley, D. Delande, K. T. Taylor, The combination of R-matrix and complex coordinate methods: application to resonances in the diamagnetic Rydberg spectrum of Li, J. Phys. B At. Mol. Opt. Phys. 25, L525-L532 (1992).
    [9] 徐克尊,高等原子分子物理,科学出版社,p114,2002.
    [10] 孟慧艳,史庭云,詹明生,里德堡钠原子抗磁谱的模型势计算,原子与分子物理学报23,217(2006).
    [11] M. Nawaz, W. A. Faroog, J. P. Connerade, Magneto-optical spectra of lithium and sodium, J. Phys. B At. Mol. Opt. Phys. 25, 5327-5342 (1992).
    [12] V. P. Shevelko, Atoms and their spectroscopic properties, Springer, Heidelberg, p52 1997.
    [13] D. Hofsaess, Photoabsorption of alkali and alkaline earth elements calculated by the Scaled Thomas Fermi method, Z.Phys. A 281, 1-13 (1977).
    [14] J. C. Weisheit, Photoabsorption by ground-state alkali-eetal atoms, Phys. Rev. A 5, 1621-1630 (1972).
    [15] I. Martin, C. Barrentos, Core-polarization effects in the alkali atoms: oscillatorstrength calculations, Can. J. Phys. 64, 867-871 (1986).
    [16] J. G. Rao, B. W. Li, K. T. Taylor, Theoretical calculations of the diamagnetic Rydberg spectrum of Na, J. Phys. B: At. Mol. Opt. Phys. 28, 4715-4722 (1995).
    [17] J. C. Castro, M. L. Zimmerman, R. G. Hulet, D. Kleppner, Origin and structure of the Quasi-Landau resonances, Phys. Rev. Lett. 45, 1780-1783 (1980).
    [18] W. Y. Liu, X. H. He, B. W. Li, Numerical study of the quasi-Landau resonances of sodium, Phys. Rev. A 47, 2725-2729 (1993).
    [19] 李白文,陈暧球,张学荣,张承修,Na原子高里德伯态的波函数和振子强度,物理学报36,998-1003(1987).
    [20] 何兴虹,李白文,张承修,碱原子高里德堡态的极化率,物理学报38,1717-1722(1989).
    [21] X. H. He, B. W. Li, A. Q. Chen, C. X. Zhang, Model-potential calculation of lifetimes of Rydberg states of alkali atoms, J. Phys. B 23, 661-678 (1990).
    [22] W. Y. Liu, B. W. Li, Numerical study of Rydberg Cs atoms in parallel electric and magnetic fields, J. Phys. B: At. Mol. Opt. Phys. 27, 5185-5196 (1994).
    [23] Y. Li, W. Y. Liu, B. W. Li, Positions and widths for anticrossings of potassium Rydberg Stark states, J. Phys. B: At. Mol. Opt. Phys. 29, 1433-1438 (1996).
    [24] X. X. Zhou, C. D. Lin, Linear-least-squares fitting method for the solution of the time-dependent Schrodinger equation: Applications to atoms in intense laser fields, Phys. Rev. A 61, 053411-7 (2000).
    [25] X. B. Bian, H. X. Qiao, T. Y. Shi, B-Spline with symplectic algorithm method for solution of time-dependent schrodinger equations, Chin. Phys.Lett. 23, 2403-2406 (2006).
    [26] 孟慧艳,康帅,史庭云,詹明生,平行电磁场中的里德堡锂原子吸收谱的模型势计算,物理学报(已录用).
    [27] S. Bivonat, W. Schweizer, P. F. O'Mahony, K. T. Taylor, Wavefunction localization for the hydrogen atom in parallel electric and magnetic fields, J. Phys. B: At. Mol. Opt. Phys. 21, L617-L623 (1988).
    [28] J. P. Santos, F. Mota-Furtado, M. F. Laranjeira, F. Parente, Rydberg states of atoms in parallel electric and magnetic fields, Phys. Rev. A 59, 1703-1706 (1999).
    [29] 饶建国,有限基矢集方法用于强场中原子问题的计算,博士学位论文,中国科学院武汉物理与数学研究所,1999.
    [30] B. M. Liu, J. M. Wang, G. L. Ding, W. Y. Liu, B. W. Li, S. S. Gong, The theretical and experimental investigations of Stark structure in sodium Rydberg states atoms, Chinese journal of Lasers B2, 429-434 (1993).
    [31] P. F. O'Mahony, Quasi-Landau modulations in nonhydrogenic systems in a magnetic field, Phys. Rev. Lett. 63, 2653-2656 (1989).
    [32] C. Jin, X. X. Zhou, S. F. Zhao, Study of microwave multiphoton transition of Rydberg potassium atom by using B-Spline, Commun.Theor. Phys. 44, 1065-1070 (2005).
    [1] C. Nessmann, W. P. Reinhardt, Saddle-point "trapping" of Rydberg electrons in crossed electric and magnetic de fields: A time-dependent approach, Phys. Rev. A 35, 3269-3282 (1987).
    [2] S. H. Gu, W. Y. Liu, and S. S. Gong, B. W. Li, Characteristics of large electricdipole moment states in crossed electric and magnetic fields studied by quantum calculations, Phys. Rev. A 56, 1249-1254 (1997).
    [3] Jan yon Mflczewski, G. H. F. Diercksen, and T. Uzer, Computation of the Arnol'd Web for the hydrogen atom in crossed electric and magnetic fields, Phys. Rev. Lett. 76, 2890-2893 (1996).
    [4] R. H. Cushman, and D. A. Sadovskii, Monodromy in the hydrogen atom in crossed fields, Physica D 142, 166-196 (2000).
    [5] T. Ericson, Fluctuations of nuclear cross sections in the "Continuum" region, Phys. Rev. Lett. 5, 430-431 (1960); On probability distributions of nuclear cross sections, Phys. Lett. 4, 258-259 (1963); A theory of fluctuations in nuclear cross sections, Ann. Phys. 23, 390-414 (1963).
    [6] P. Von Brentano, J. Ernst, O. Hausser, T. Mayer-Kuckuk, A. Richter, and W. Von Witsch, Statistical fluctuations in the cross sections of the reactions Cl~(35)(p, α)S~(32) and Cl~(37)(p, α)S~(34), Phys. Lett. 9, 48-51 (1964).
    [7] X. X. Guan, Oscillator strength spectrum of hydrogen in strong magnetic and electric fields with arbitrary mutual orientation, Phys. Rev. A 74, 023413 (2006).
    [8] P. Fassbinder and W. Schweizer, Hydrogen atom in very strong magnetic and electric fields, Phys. Rev. A 53, 2135-2139 (1996).
    [9] V. S. Melezhik, Three-dimensional hydrogen atom in crossed magnetic and electric fields, Phys. Rev. A 48, 4528-4538 (1993).
    [10] I. Seipp and W. Schweizer, Electric fields for hydrogen bound-free transitions in magnetic white dwarfs, Astron. Astrophys. 318, 990-996 (1997).
    [11] J. G. Rao and K. T. Taylor, Atoms in crossed fields: calculations for barium and hydrogen, J. Phys. B: At. Mol. Opt. Phys. 30, 3627-3645 (1997).
    [1] R. F. Stebbings and F. B. Dunning, Rydberg states of atoms and molecules, Cambridge University Press, New York, 1983.
    [2] S. I. Themelis and C. A. Nicolaides, Complex energies and the polyelectronic Stark problem, J. Phys. B: At. Mol. Opt. Phys. 33, 5561-5580 (2000).
    [3] S. I. Themelis and C. A. Nicolaides, Complex energies and the polyelectronie Stark problem: Ⅱ. The Li n=4 levels for weak and strong fields, J. Phys. B: At. Mol. Opt. Phys. 34, 2905-2925 (2001).
    [4] S. Sahoo and Y. K. Ho, The complex absorbing potential method (CAP) to study the Stark effect in hydrogen and lithium, J. Phys. B: At. Mol. Opt. Phys. 33, 2195-2206 (2000).
    [5] S. Sahoo and Y. K. Ho, Stark effect on the low-lying excited states of the hydrogen and the lithium atoms, J. Phys. B: At. Mol. Opt. Phys. 33, 5151-5163 (2000).
    [6] S. Sahoo and Y. K. Ho, Resonance of hydrogen and lithium atoms in parallel magnetic and electric fields, Phys. Rev. A 65, 015403 (2001).
    [7] S. Bashkin and J. O. Stoner, Atomic energy levels and Grotrian diagrams, vol 1 North-Holland, 1975.
    [8] H. Bachau, P. Galan and F. Martin, Feshbach-model potential approach for the study of resonant and bound states of Be-like ions, Phys. Rev. A 41, 3534 (1990).
    [9] C. Laughlin and G. A. Victor, Atomic physics, vol 3 Plenum, New York p247 1972.
    [10] R. A. Moore, J. D. Reid, W. T. Hyde and C. F. Liu, Core charge polarisation effects in the alkali atoms, J. Phys. B: At. Mol. Phys. 14, 9 (1981).
    [11] J. G. Rao and W. Y. Liu, Theoretical complex Stark energies of hydrogen by a complex-scaling plus B-spline approach, Phys. Rev. A 50, 1916-1919 (1994), and references therein.
    [12] J. G. Rao, B. W. Li, Resonances of the hydrogen atom in strong parallel magnetic and electric fields, Phys. Rev. A 51, 4526-4530 (1995).
    [13] Y. X. Zhang, H. Y. Meng, T. Y. Shi, Resonances of the hydrogen atom in strong parallel magnetic and electric fields using B-spline basis sets, submitted to chin. phys.
    [14] S. I. Themelis and C. A. Nicolaides, Theory and computation of scalar and tensor polarizabilities and hyperpolarizabilities and of LoSurdo-Stark shifts in polyelectronic atoms, Phys. Rev. A 46, R21-R24 (1992).
    [15] C. A. Nicolaides, S. I. Themelis, Theory of the resonances of the LoSurdo-Stark effect, Phys. Rev. A 45, 349-357 (1992).
    [16] C. A. Nicolaides, S. I. Themelis, Theory and computation of electric-field-induced tunneling rates of polyelectronic atomic states, Phys. Rev. A 47, 3122-3127 (1993).
    [17] S. I. Themelis and C. A. Nicolaides, Field-induced tunneling rates, polarizabilities, and hyperpolarizabilities for low-lying excited states of Li and Na, Phys. Rev. A 51, 2801-2807 (1995).
    [18] S. I. Themelis and C. A. Nicolaides, Quantum-mechanical versus semiclassical calculations of dc-field-induced tunneling rates of Li 1s~22s ~2S, 1s~22p ~2P~o, and 1s~23d ~2D, Phys. Rev. A 59, 2500-2503 (1999).
    [19] D. Fisher and Y. Maron, L. P. Pitaevakii Ionization of many-electron atoms by a quasistatic electric, field, Phys. Rev. A 58, 2214-2224 (1998).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700