用户名: 密码: 验证码:
超微电极的制备及其在扫描电化学显微镜中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微电极因其小尺寸表现出许多与常规电极不同的优良性质:高传质速率、小时间常数、低IR降、高信噪比和高电流密度等,因此,微电极成为电化学和电分析化学的前沿领域之一。超微电极的这些优点使其在电化学动力学、伏安检测、修饰纳米微电极、传感器、成像探针和单分子检测等方面都有着广阔的潜在应用背景。因此探讨超微电极的制作及其应用有着重要的意义。本论文包含以下四个部分:
     第一章首先对超微电极的基本原理及特点、制作方法、表征方法及应用等方面做了详细介绍。且对扫描电化学显微镜的实验装置、工作模式及应用等也进行了阐述。
     第二章用电化学镀和电化学刻蚀相结合的方法制备了不同材料(铂、金、碳纤维)和不同尺寸的超微圆盘电极。并用循环伏安法对其进行表征,它们都有良好的伏安响应。并根据极限电流算出电极的有效半径,其中最小有效半径可达到1.6μm。观察了扫速的变化对循环伏安曲线形状的影响,我们还通过对比超微电极放置四周前后的稳态电流对其稳定性进行了考察,结果证明我们制备的超微电极有很好的稳定性。
     第三章HAuCl_4存在的条件下,采用常规铂电极在单一K_3Fe(CN)_6溶液中进行循环伏安扫描沉积普鲁士蓝(PB),同时探讨了K_3Fe(CN)_6浓度、HAuCl_4浓度、及溶液pH值对PB沉积速度的影响。此外,研究了该修饰电极的电化学性质,结果表明Au颗粒的存在大大改善了膜的性能,并用该修饰电极对L-半胱氨酸及溶液中葡萄糖进行检测,分别求出了它们的线性范围和检测限。实验结果表明PB修饰电极对它们都表现出很强的电催化活性。
     第四章用第三章中优化了的条件在铂超微电极上沉积PB制成微修饰电极,在KCl溶液中用循环伏安法对修饰电极进行表征,实验证明PB成功地沉积到了铂微电极的表面。该修饰电极在pH 7.0的磷酸缓冲溶液(PBS)中具有良好的化学和电化学稳定性,对H_2O_2表现出强的电催化活性,安培法检测H_2O_2的线性范围为5.6×10~(-7)~3.2×10~(-4)M,检出下限为6.0×10~(-8)M。将所制得的超微电极用作扫描电化学显微镜(SECM)的探针,对自组装上膜过程进行了表征,并对(SECM)渐近线进行拟合,求得了酶催化反应的异相动力学常数。
Microelectrode has a lot of advantages for its small dimension,such as high mass transport,low iR drop,high signal to noise ratio,high current density,low time constant.Therefore,microelectrode is one of the front fields of electrochemistry and electroanalytical chemistry.Because of these properties of microelectrode,the applications in dynamics of electrochemistry,cyclic voltammetric detection,modified electrode,sensor,immaing tip and detection of single molecule of nanoelectrode show a wider potential future.Consequently,investigaton on microelectrode's fabrication and the application have the vital significance.There are four parts in this paper,main contents are as follows:
     In chapter one of this paper,the basic principle and characteristic,fabrication method,characterized method and application of microelectrode were first introduced briefly.Then the basic apparatus,operation mode and application of scanning electrochemical microscopy(SECM) were reviewed in detail.
     In chapter two,several different material(platinum,gold,carbon fiber) and dimensions ultramicroelectrodes were fabricated by the method of electrochemical plated insulated film and electrochemical etching.The microelectrodes are characterized by CV;they have the good volt-ampere response.We calculated the effective radius by limitted-current,its smallest effective radius to be possible to achieve 1.6μm.The influence factor on the shape of CV curve such as scanning rate is investigated.Finally,we have also observed their stability through contrast the steady current laying aside about four weeks;the results indicated that these microelectrodes have good stability.
     In chapter three,the PB-modified electrode is prepared in the single K_3Fe(CN)_6 solution containing HAuCl_4 by electrodeposition.Then,Influencing factors on deposited rate,such as concentration of K_3Fe(CN)_6,HAuCl_4,and PH,are investigated. Moreover,the PB-modified electrode is characterized by CV,the results shows the properties of the PB-modified electrode are improved obviously in present of Au particles.Finally,the L-cysteine and glucose are monitored by the PB-modified electrode,strongly electrocatalytic activities toward L-cysteine and glucose are observed.
     In chapter four,we prepared the PB modified platinum microelectrode using the optimum conditions which had been selected in chapter three.Moreover,the PB-modified electrode is characteri2ed by CV in KCl solution.The results indicated that PB deposited on the surface of platinum microelectrode,this PB modified microelectrode had strongly electrocatalytic activity toward the reduction of H_2O_2 in PH7.0 PBS,a linear dependence of the catalytic current versus H_2O_2 concentration was obtained in the range of 5.6×10~(-7)~3.2×10~(-4)M with a detection limit of 6.0×10~(-8)M. We also prepare the SECM tip by the microelectrode we fabricated.We characterize the self-assembled film on the gold electrode by SECM surface topography, furthermore;we useing the probe approaching curve of SECM calculated the kinetic constant of bimolecular interaction.
引文
[1]谢锦春,崔志立,薛峰等.超微电极技术与应用.分析测试技术与仪器,2004,10(92):101-106
    [2]蔡称心,鞠煜先,陈洪渊.纳米级微带金电极上葡萄糖氧化酶的固定、性质及应用,[J].化学学报,1995,53(3):281-285
    [3]汪云,周东美,陈洪渊.聚邻苯二胺固定葡萄糖氧化酶在微带金电极上的性质,[J].无锡轻工大学学报,1998,17(1):69-73
    [4]Kolb.D.M,Ullmann.R,Will.T,Nanofabrication of Small Copper Clusters on Gold(111)Electrodes by a Scanning Tunneling Micro-scope,[J],Science,1997,275:1097-1099
    [5]Bratten.C.D,Cobbold.P.H,Cooper.J.M,Single-cell measurements of purine release using a micromachined electroanalytical sensor,[J]Anal Chem,1998,70(6):1164-1170.
    [6]Fan,F F,Bard.A J,Electrochemical detection of single molecules,[J].Science,1995,267:871-874
    [7]Kong.J.L,Xue.KH,He.C.J,etal.Electrochemical redox behavior of Ni nanowire electrode and its application to catalysis of elec-trooxidation of ethanol,[J].Chinese Journal of Applied Chemistry,2001,8(6):462 - 465
    [8]Kong.J.L,Xue.KH,He.C.J,etal.AC impedance of a nickel nanowire electrode,[J].Chinese Journal of Applied Chemistry,2002,19(4):313 - 316
    [9]Bradford.D,Pendley,Hector.D,Abruna,Construction of Submicrometer Voltammertric Electrodes,Anal.Chem,1990,62,782-784
    [10]Bard,A.J,Fan.F-R.F,Kwak.J,Lev.O,Scanning electrochemical microscopy,introduction and principles,Anal.Chem.1989,61,132-138
    [11]Bard.A.J,Fan.F-R,Mirkin.M.V,Scamming Electrochemical Microsopy in Electroanalytical Chemistry,vol.18,Bard,A.J(Ed.),Marcel Dekker:NewYork,1994,p243-370
    [12]Bard.A J,Fan.F-R,and Mirkin.M,Scanning Electrochemical Microsopy in Physical Electrochemistry:Principles,Methods,and Application,Rubenstein,1.(Ed.)Aarcel Dekker:NewYork,1995,p209-242
    [13]Bard.A.J,Mirkin.M.V,Scanning Electrochemical Microscopy,New York,John Wiley&Sons,2001
    [14]Liu.H,Fan.Y,F.-R.F,Lin.C.W,Bard.A J,Scanning electrochemical and tunneling ultramicroelectrode microscope for high-resolution examination of electrode surfaces in solution,J Am.Chem.Soc,1986,108,3838-3839
    [15]张祖训.超微电极电化学.北京:科学出版社,1998:379-386
    [16]古宁宇,董绍俊.超微电极的新进展.大学化学,2001,16(1):26-31
    [17]Conyer.J.L,White.H.S,Electrochemical Characterization of Electrodes with Submicrometer Dimensions,Anal.Chem,2000,72(18),4441-4446
    [18]Osamu.N,Hisao.T,etal.Voltammetric measurements of reversible and quasi-reversible redox species using carbon film based interdigitated array microelectrodes.Anal.Chem,1994,66:285-289
    [19]赵崇军,鄂利海,微电极技术.抚顺石油学院学报,1998,18(2):15-21
    [20]梁汉璞,赵燕,张亚利,焦奎.纳米微电极研究进展.青岛大学学报,2003,16(2):67-72
    [21]Chou.SY,Krauss.P R,Renstrom P J,Imprint of sub225 nm vias and trenches in polymers.Appl.Phys.Lett,1995,67(21):3114-3116.
    [22]Schift.H S,Jaszewski.R.W,David.C,et al.Nanostructuring of polymers and fabrication of interdigitated electrodes by hot embossing lithography Microelectronic Eng,1999,46:121-124
    [23]张学记,万其进,张悟铭等,纳米超微电极的研究(Ⅳ)-超微金柱电极的制作与表征,高等学校化学学报,1994,15(12):1772-1774
    [24]Conyer,J.L,White,H.S.Electrochemical Characterization of Electrodes with Submicrometer Dimensions,Anal.Chem,2000,72(18),4441-4446
    [25]Heben.M.J,Dover.M.M,lewis.N.S,Penner.R.M,Quate C.F,Preparation of STM tips for insitu characterization of electrode surfaces,J Microsc,1998,152,651-661
    [26]Penner.R.M,Heben.M.J,Longin.T.L,Lewis.N.S,Fabrication and Use of Nanometer-Sized Electrodes in Electrochemistry,Science,1990,250,1118-1121
    [27]Slevin.C.J,Gray.N.J,Macpherson.J.V,etal.Fabrication and characterisation of nanometersired platinum electrodes for voltammetric analysis and imaging,[J],Electrochem Commun,1999,1:282-288
    [28]Strein.T.G,Ewing.A.G,Characterization of submicron-sized carbon electrodes insulated with a phenol-allylphenol copolymer,Anal.Chem,1992,64,1368-1373
    [29]Penner.R.M and Martin.C.R,Preparation and electrochemical characterization of ultramicroelectrode ensembles,Anal.Chem,1987,59,2625-2630
    [30]Menon.V.P and Martin.C.R,Fabrication and Evaluation of Nanoelectrode Ensembles,Anal.Chem,1995,67,1920-1928
    [31]Brunetti.B,Ugo.P,Moretto.L.M,Martin.C.R,Electrochemistry of phenothiazine and methylviologen biosensor electron-transfer mediators at nanoelectrode ensembles,J.Electroannal.Chem,2000,491:166-174
    [32]段艳林,张晓丽等.新型超微电极的制备及在微图形构建方面的应用.,中国优秀硕士学位论文全文数据库,2007.
    [33]Fan.F.R.Fand,Bard.A J,Nanofabrication of Small Copper Clusters on Gold(111) Electrodes by a Scanning Tunneling Microscope,Science,1997,275,1097-1099
    [34]Seibold.J.D,Scott.E.R,White.HS,Diffusional transport to nanoscopic band electrodes,J.Electroannal.Chem,1989,264,281
    [35]Turyan,I,Matsue,T,Mandler,D,Patterning and Characterization of Surfaces with Surfaces with Organic and Biological Molecules by the Scaning Electrochemical Microscope,Anal.Chem,2000,72,3431-3435
    [36]DesPic.A and Parkhutik.V.P,In Modern Aspects of Electrochemistry,J.O.Bockris,R.E.White and B.E.Conway,Eds,Plenum Press:New York,1989,Vol.20
    [37]Wipf.D.O,Bard.A.J,Tallman.D.E,Scanning electrochemical microscopy.21.Constant current imaging with an autoswitching controller,Anal.Chem,1992,65,1373-1377
    [38]Mirkin.M.V,Fan.F-R,F,Bard.A.J,Scanning electrochemical microscopy part 13.Evaluation of the tip shapes of nanometer size microelectrodes,J.Electroanal.Chem,1992,328,47-62
    [39]Shao.Y,Mirkin.M.V,Fish.G,Kokotov.S,Palanker.D,Lewis.A,Nanometer-Sized Electrochemical Sensors,Anal.Chem,1997,69,1627-1634
    [40]Sun.P,Zhang.Z Gao.J,Shao.Y,Fabrication of Nanometer-Sized Electrodes and Tips for Scanning Electrochemical Microscopy,Anal.Chem,2001,73,5346-5351
    [41]Spaine.T.W,Baur.J.E,A Positionable Microcell for Electrochemistry and Scanning Electrochemical Microscopy in Subnanoliter Volumes,Aal.Chem,2001,73,930-938
    [42]Selzer,Yoram,Mandler,Daniel,Scanning Electrochemical Microscopy.Theory of the Feedback Mode for Hemispherical Ultramicroelectrodes:Steady-State and Transient Behavior,Anal.Chem,2000,72,2383-2390
    [43]Lee.Y,Amemiya.S,Bard.A.J,Scanning Electrochemical Microscopy.41.Theory and Characterization of Ring Electrodes,Anal.Chem,2001,73,2261-2267
    [44]Liljeroth.P,Johans.C,Slevin.C.J,Quinn.B.M,Kontturi.K,High-Sensitivity Detection of DNA Hybridization on Microarrays Using Resonance Light Scattering,Anal.Chem,2002,74,1792-1798
    [45]Unwin.P.R,Bard.A.J,Scanning electrochemical microscopy.9.Theory and application of the feedback mode to the measurement of following chemical reaction rates in electrode processes,J Phys.Chem,1991,95,7814-7824
    [46]Zhou.F,Unwin.P.R,Bard.A.J,Infrared multiphoton decomposition of highly excited tertbutyl-d9bromide,J Phys.Chem,1992,96,4917-4924
    [47]Zhou.F,Bard.A.J,Detection of the electrohydrodimerization intermediate acrylonitrile radical anion by sc anning electrochemical microscopy,J.Am.Chem.Soc,1994,116,393-394
    [48]Treiehel.D.A,Mirkin.M.V,Bard.A.J,Scanning Electrochemical Microscopy.27. Application of a Simplified Treatment of an Irreversible Homogeneous Reaction following Electron Transfer to the Oxidative Dimerization of 4-Nitrophenolate in Acetonitrile,J.Phys.Chem,1994,98,5751-5757.
    [49]Unwin.P.R,Bard.A.J,Demaille.C,Characterization and Modeling of Cis-Trans Photoisomerization of a Trifluoromethoxy-Substituted Metacrylate Copolymer Monolayer at a Fluid Interface,J Phys.Chem,1996,100,14137-14143
    [50]Mirkin.M.V,Fan.F-R.F,Bard.A.J,Direct Electrochemical Measurements Inside a 2000Angstrom Thick Polymer Film by Scanning Electrochemical Microscopy,Science,1992,257,364-366
    [51]Fan.F-R.F,Mirkin.M.V,Bard.A.J,Polymer Films on Electrodes.25.Effect of Polymer Resistance on the Electrochemistry of Poly(vinylferrocene):Scanning Electrochemical Microscopic,Chronoamperometric,and Cyclic Voltammetric Studies,J Phys.Chem,1994,98,1475-1481
    [52]Shao.Y,Mirkin.M.V,Application of a wall jet disk electrode combined with an electrochemical quartz crystal microbalance to the study of the dissolution of copper in acidic chloride media,J Electroanal.Chem,1997,439,137-143
    [53]Shao.Y,Mirkin.M.V,Probing Ion Transfer at the Liquid/Liquid Interface by Scanning Electrochemical Microscopy(SECM),J Phys.Chem,1998,102,9915-9921
    [54]MacPherson.J.V,Webb.M.A,Unwin.P.R,Integrating an Ultramicroelectrode in an AFM Cantilever:Combined Technology for Enhanced Information,Anal.Chem,2001,73,550-557
    [55]Alpuehe-Aviles.M.A,Wipf.D.O,Impedance Feedback Control for Scanning Electrochemical Microscopy,Anal.Chem,2001,73,4873-4881
    [56]Macpherson.J.V,Jones.C.E,Barker.A.L,Unwin.P.R,Electrochemical Imaging of Diffusion through Single Nanoscale Pores,Anal.Chem,2002,74,1841-1848.
    [57]Swlzer.Y,Turyan.I,Mandler.D,Studying Heterogeneous Catalysis by the Scanning Electrochemical Microscope(SECM):The Reduction of Protons by Methyl Viologen Catalyzed by a Platinum Surface,J.Phys.Chem.B,1999,103,1509-1517
    [58]Maeda.H,Ikeda.K,Hashimoto.K,Ajito.K,Morita.M,Fujishima.A,Microscopic Observation of TiO_2 Photocatalysis Using Scanning Electrochemical Microscopy,J.Phys.Chem.B,1999,103,3213-3217
    [59]Treiehel.D.A.,Mirkin.M.V,Bard,A.J,Scanning Electrochemical Microscopy.27.Application of a Simplified Treatment of an Irreversible Homogeneous Reaction following Electron Transfer to the Oxidative Dimerization of 4-Nitrophenolate in Acetonitrile,J Phys.Chem.1994,98,5751-5757
    [60]MacPherson.J.V,Unwin.P.R,Combined Scanning Electrochemical-Atomic Force Microscopy,Anal.Chem,2000,72,276-285.
    [61]Fan.F.F,Cliffel.D,Bard.A J,Scanning Electrochemical Microscopy.37.Light Emission by Electrogenerated Chemiluminescence at SECM Tips and Their Application to Scanning Optical Microscopy,Anal.Chem,1998,70,2941-2948
    [62]Tsionsky.M,Zhou.J,Amemiya,S,Fan.F.F,Bard.A.J,Dryfe.R.A.W,Scanning Electrochemical Microscopy.38.Application of SECM to the Study of Charge Transfer through Bilayer Lipid Membranes,Anal.Chem.1999,71,4300-4305.
    [63]Haran,A.K,Bard,A.J.Scanning Electrochemical Microscopy.42.Studies of the Kinetics and Photoelectrochemistry of Thin Film CdS/Electrolyte Interfaces,J Phys.Chem.B,2001,105,8192-8195
    [64]Quin.B.M,Prieto.I,Haram.S.K,Bard.A.J,Electrochemical Observation of Metal/Insulator Transition by Scanning Electrochemical Microscopy,J.Phys.Chem.B,2001,105,7474-7476
    [65]Zhang.J,Slevin.C.J,Morton.C,Scott.P,Walton.D.J,Unwin.P.R,Scanning Electrochemical Microscopy.38.Application of SECM to the Study of Charge Transfer through Bilayer Lipid Membranes,J.Phys.Chem.B,2001,105,11120-11130
    [66]Williams.M.E.H,Joseph.T,Scanning Electrochemical Microscopy Assessment of Rates of Molecular Transport through Mesoporous Thin-Films of Porphyrinic "Molecular Squares",J.Phys.Chem.B.2001,105,8944-8950
    [67]Wijayawardhana,C.A,Wittstock,G,Halsall,H.B,Heineman,W.R,Spatially Addressed Deposition and Imaging of Biochemically Active Bead Microstructures by Scanning Electrochemical Microscopy,Anal.Chem,2000,72(2),333-338.
    [68]Kapui.I,Gyurcasanyi.R.E,Nagy.G,Toth.K,Arca.E,Investigation of Styrene-Methacrylic Acid Block Copolymer Micelle Doped Polypyrrole Films by Scanning Electrochemical Microscopy,J Phys.Chem.B,1998,102,9934-9939
    [69]Gyurcsanyi.R.E,Pergele.Nagy.R,Kapui.I,Lan.B.T.T,Toth.K,Bitter.I,Direct Evidence of Ionic Fluxes Across Ion-Selective Membranes:A Scanning Electrochemical Microscopic and Potentiometric Study,Anal.Chem,2001,73,2104-2111
    [70]Selzer.Y,Mandler.D,Probing the Coupling of Charge-Transfer Processes Across Liquid/Liquid Interfaces by the Scanning Electrochemical Microscope,J Phys.Chem.B,2000,104,4903-4910
    [71]Barker.A.L,Unwin.P.R,Amemiya.S,Zhou.J,Bard.A.J,Scanning Electrochemistry Microscopy(SECM) in the Study of Electron Transfer Kinetics at Liquid/Liquid Interfaces:Beyond the Constant Composition Approximation,J.Phys.Chem.B,1999,103,7260-7269
    [72]Liu.B,Mirkin.M.V,Potential-Independent Electron Transfer Rate at the Liquid/Liquid Interface,J.Am.Chem.Soc,1999,121,8352-8355.
    [73]Ding.Z,Quinn.B.M,Bard.A.J,Kinetics of Heterogeneous Electron Transfer at Liquid/Liquid Interfaces As Studied by SECM,J Phys.Chem.B,2001,105,6367-6374
    [74]Slevin.C.J.,Macperson.J.V,Unwin.P.R,Measurement of Local Reactivity at Liquid/Solid,Liquid/Liquid,and Liquid/Gas Interfaces with the Scanning Electrochemical Microscope:P rinciples,Theory,and Applications of the Double Potential Step Chronoamperometric Mode,J.Phys.Chem.B,1997,101,10851-10859
    [1]Edward.L,Ciolkowski,Bruce.R,Cooper,Jeffrey.A.Jankowski,James W.Jorgenson,R Mark.Wightman,Direct observation of epinephrine and norepinephrine cosecretion from individual adrenal medullary chromaffin cells,[J]J.Am.Chem.Soc,1992,114(8):2815-2821
    [2]王赬胤,陈玉静,王凤香,等.可控电化学沉积制备纳米碳纤维电极[J].扬州大学学报.自然科学版,2004,7(3):5-9
    [3]Michael.McNally and Danny K.Y.Wong.An in Vivo Probe Based on Mechanically Strong but Structurally Small Carbon Electrodes with an Appreciable Surface Area,[J].Anal.Chem,2001,73(20):4793-4798
    [4]Slevin.C.J,Gray.N.J,Macpherson.J.V,et al,Fabrication and Characterization of nanometersized platinum electrodes for voltammetricanalysis and imaging,[J]Electrochem Commun,1999,1:282 - 288.
    [5]Dryfe.R.A.W,Kralj.B,Voltammetric ion transfer in the presence of a nanoporous material [J].Electrochem Commun,1999,1:128 - 130.
    [6]Penner.R.M,Martin.C.R,Preparation and electrochemical characterization of ultramicroelectrode ensembles,[J].Anal.Chem,1987,59(21):2625 - 2630
    [7]Xue-ji Zhang,Wu-ming Zhang,Xing-yao Zhou.Fabrication,Characterization,and potential application of carbon fiber cone nanometer-size electrodes,[J].Anal Chem,1996,68(19):3338-3343
    [8]Woo.D H,Kan.G.H,Park.S.M,Fabricat ion of nano scale gold disk elect rodes using ult rashort pulse etching,[J].Anal.Chem,2003,75(23):6732-6736.
    [9]Menon.V.P,and Martin.C.R,Fabrication and evaluation of nanoelectrode ensembles,Anal.Chem.,1995,67,1920-1928
    [10]Kolb.D.M,Ullmann.R,Will.T,Nanofabrication of Small Copper Clusters on Gold Electrodes by aScanning Tunneling Microscope,Science,1997,275,1097-1099
    [11]Shengli.Chen,Anthony.Kucernak,Fabrication of carbon microelectrodes with an effective radius of lnm,[J].Electrochem Commun,2002,4(1):80-85.
    [12]段艳林,张晓丽等.新型超微电极的制备及在微图形构建方面的应用.,中国优秀硕士学位论文全文数据库,2007.
    [13]Montenegro.M.I,Queiros.M.A,Daschbach.J.L,Microelectrodes:theory and applications,[M].Dordrech t:Kluwer Academic Press,1991:259-263.
    [1].Monk.P.M.S,Mortimer.R.J,Rosseinsky D.R,Elecrtochromism Fundmaentals and Applications,VCH,Weinheim,1995,Ch.6
    [2].Kulesza.P.J,Malik.M.A,Miecznikowski.K,Wolkiewicz.A,Zamponi.S,Beerrttoni.M,Marassi.R,Countercation-sensitive electrochromism of cobalt Hexacyanoeferrate films,J.Electrochem.Soc,1996,143,L10
    [3]Kertesz V,Dunn.N.M,Berkel.G.J.V,Electrochemistry-electrospray-mass spectrometry study of cesium uptake in nickel hexacyanoferrate films,Electrochim.Acta,2002,47,:1035-1042
    [4]Kelly.M.T,Arbuckle-Keil.G.A,Johnson.L.A,Su.E.Y,Amos.L.J,Chun.J.K.M,Bocarsly.A.B,Nickel ferrocyanide modified electrodes active cation-exchange matrices:real time XRD evaluation of overlayers structure and electrochemical behavior,J.Eleeortnaal.Chem,2001,500:311-321
    [5]Lilga.M.A,Orth.R.J,Sukamto.J.P.H,Haihgt.S.M,SchwartzD.T,Metal ion separation using electrically switched ion exchange,Separation and Purification technology,1997,11:147-158
    [6]Cai.C.X,Xue.K.-H,Xu.S-M,Electrocatalytic activity of a cobalt Hexacyanoferrate modified glassy carbon electrode toward ascorbic acid oxidation,J.Electroanal.Chem,2000,486:111-118
    [7]Chen.S.M,Peng.K-T,Lin.K-C,Preparation of Thallium Hexacynaoferrate Film and Mixed- Film Modified Electrodes with Cobalt(11) Hexacyanoferrate,Electroanalysis,2005,4:319-326
    [8]Ohkoshi.S,Fujishima.A,Hashimoto.K,Transparent and colored magnetic thin films:(Fe_x~ⅡCr_(1-x)~Ⅱ)[Cr~Ⅲ(CN)_6]J.Am.Chem.Soc,1998,120:5349-5350
    [9]Sato.O,Einaga.Y,lyoda.T,Fujishima.A,Hashimota.K,Cation-driven electron transfer involving a spin transition at room temperature in a cobalt iron cobalt iron cyanide thin films,J.Phys.Chem.B,1997,101:3093-3095
    [10]Neff.V.D,Electrochemical oxidation and reduction of thin films of Prussian blue,J.Electrochem.Soc,1978,125:886-887
    [11]Itaya.K,Ataka.T,Toshima.S,Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes,J.Am.Chem.Soc,1982,104:4767-4772
    [12]Karyak in.A.A,Prussian blue and its analogues:dectrochemis try and analytical applications,Electroanalysis,2001,13(10):813-819
    [13]Ricci.F,Palleschi.G,Sensor and biosensor preparation,optimisation and applications of Prussian Blue modified electrodes,Biosens.Bioelectron.,2005,21:389-407
    [14]Karyakin.A.A.,Prussian Blue and its analogues:Electrochemistry and Analytical applications,Electroanalysis,2001,13:813-819
    [15]DeTacconi.N.R,Rajeshhwar.K,Lezna.R.O,Metal hexacyanoferrates:electrosynthesis,in situ characterization,and application,Chem.Mater,2003,15:3046-3062
    [16]Yang.R,Qian.ZB,Deng.J.Q,Electrochemical deposition of prussian blue from a single ferricyanide solution,J.Electrochem.Soc,1998,145:2231-2236
    [17]Koncki.R,Composite films of Prussian blue and N-substituted polyprroles:fabrication and application to optical determination of pH,Anaal.Chem,1998,70:2544-2550
    [18]Zhang.D,Wang.K,Su.D.C,Xia.X.H,Chen.H.Y,Ultrathin Layers of Densely Packed Prussian Blue Nanoclusters Prepared from a Ferricyanide Solution,Chem.Mater,2003,15:4163-4165
    [19]Minghui.Yang,Jianhui.Jiang,Yunhui.Yang,Xiaohua.Chen,Guoli.Shen and Ruqin.Yu,Electrochemical formation of Prussian blue films with a single ferricyanide solution on gold electrode,Biosens.Bioelectron,2006,21:1791-1897
    [20]Orlowski.M,Karkowsky.A,Glutathione metabolism and some possible functions of glutathione in the nervous system,Int.Rew.Neurobiol 1976.19.75-121
    [21]Cooper.A.J.L,Meister.A,Molecular andd Genetic basis of Neurological Diseases,Eds.I.Rosenberg),Butterworth-Heinemann,Boston,MA,1993,pp209-225
    [22]Slivka.A,Cohen.G,Brain is chaemia markedly elevates levels of the neurotoxic amino acid cysteine.Brain Res;1993,608,33-37
    [23]Oleney.J.W,Zorumski.C,Price.H.T,Labruyere.J,L-cysteine,a bicarbonate-sensitive endogenous excitotoxin,Science,1990,248,596-599
    [24]Amarnath.V,Amarnath.K,Specific determination of cysteine and penicillamine through cyclization to 2-thioxothiazolidine-4-carboxylic acids,Talanta,2002,56,745-751
    [25]Pelletier.S.C Lucy.A,High-performance liquid chromatographic separation and indirect fluorescence detection of thiols.J Chromatogr.A,2002,972,221-229
    [26]Perez-Ruiz T,Martinez-Lozano.C,Tomas.V,Martin.J,Flow injection chemiluminescent method for the successive determination of L-cysteine and L-cystine using photogenerated tris(2,2'-bipyridyl) ruthenium(Ⅲ),Talanta,2002,58,987-993
    [27]李金花,徐海红,曹旭妮,金利通,亚微米铂粒子修饰电极液相色谱电化学检测琉基化合物的研究.[J]化学传感器,2003,23:14-22
    [28]Itaya.K,Akahoshi.H,Toshima.S,Electrochemistry of Prussian Blue Modified Electrodes:An Electrochemical Preparation Method,J.Electrochem.Soc.1982,129:1498-1500
    [29]Abbaspour.A,Kamyabi.M A,Electrochemical formation of Prussian blue films with a single ferricyanide solution on gold electrode,J.Electroanal.Chem,2005,584:117-123
    [30]Zamponi.S,Berrattoni.M,Kulesza.P.J,Miecznikowski.K,Malik.M.A,Makowski O,Marassi R,Electrochem.Acta,2003,48:4261-4269
    [31]Itaya.K,Uchida.I,Neff.V.D,Electrochemistry of polynuclear transition metal cyanides:Prussian blue and its analogues,Acc.Chem.Res,1986,19:162-168
    [32]Kafi.A.K.M,Fan.Yin,Hoon-Kyu Shin,Young-Soo Kwon,Amperometric thiol sensor based on Prussian blue-modified glassy carbon electrode,[J]Current Applied Physics.2007,7,496-499.
    [33]王荣,郭晓明,吴霞琴,章宗穰,基于普鲁士蓝(PB)膜修饰铂电极的葡萄糖传感器的研究,[J]化学研究与应用,2001,13,380-383
    [1]Shao.Y.H,Mirkin.M.V,Fish.G,etal.Nanometer2sizedd Electrochemical sensors,[J].Anal Chem,1997,69(8):1627-1634.
    [2]Zhang.X.J,Wang.J,Ogorevc.B,etal.Glucose nanosensor based on Prussian-blue modified carbon2fiber cone nanoelectrode and an in-tegrated reference electrode,[J].Electroanalysis,1999,11(13):945-949.
    [3]Bratten.C.D,Cobbold.P.H,Cooper.J.M,Single2cell measurements of purine release using a micromachined electroanalytical sensor,[J].Anal.Chem,1998,70(6):1164-1170.
    [4]Menon.V.P,Martin.C.R,Fabrication and evaluation of nanoelectrode ensembles,[J].Anal.Chem,1995,67:1920-1928.
    [5]Slevin.C.J,Gray.N.J,Macpherson.J.V,etal.Fabrication and characterisation of nanometersired platinum electrodes for voltammetric,analysis and imaging,[J].Electrochem Commun,1999,1:282-288
    [6]Dryfe.R.A.W,Kralj.B,Voltammetric ion transfer in the presence of a nanoporous material,[J ].Electrochem Commun,1999,1:128-130
    [7]Penner.R.M,Martin.C.R,Preparation and electrochemical characterizat ion of ultramicroelectrode ensembles,[J].Anal Chem,1987,59(21):2625 - 2630
    [8]Chou.S.Y,Krauss.P.R,Renstrom.P.J,Imprint of sub225 nm vias and trenches in polymers,[J ].Appl Phys Lett,1995,67(21):3114-3116
    [9]Kolb.D.M,Ullmann.R,T.Will,Nanofabrication of Small Copper Clusters on Gold(111)Electrodes by a Scanning Tunneling Microscope,Science,1997,275,1097-1099
    [10]Fischer-Blass B,Heinze J,Foitzik S etal.Microsatellite analysis reveals strong but differential impact of a social parasite on its two host species,[J]Molecular ecology,2006,15:863-872
    [11]T.G.Strein,A.G.Ewing,Characterization of submicron-sized carbon electrodes insulated with a phenol-allylphenol copolymer,Anal Chem,1992,64,1368-1373
    [12]张学记,万其进,张悟铭等.纳米超微电极的研究(Ⅳ)-超微金柱电极的制作与表征.高等学校化学学报,1994,15(12):1772-1774
    [13]Kafi.A.K.M,Fan.Yin,Hoon-Kyu.Shin,Young-Soo.Kwon,Amperometric thiol sensor based on Prussian blue-modified glassy carbon electrode,[J]Current Applied Physics,2007,7,496-499.
    [14]韩素芳,万平玉,陈咏梅等.普鲁士蓝类化合物/碳纳米管修饰电极的制备及其性能研究,2007.中国优秀硕士学位论文全文数据库.
    [15]黎雪莲,袁若,柴雅琴等.基于静电吸附甲苯胺蓝和纳米金固定过氧化物酶生物传感器的研究,[J].分析化学,2006,3:389-392.
    [16]Sacks.V,Eshkenazi.I,Neufeld.T,etal.Immobilized parathion hydrolase:an amperometric sensor for parathion,Anal.Chem,2000,72(9):2055-2058
    [17]Ivanov.A.N,Evtugyn.G.A,Gyurcsanyi.R.E,etal.Comparative investigation of electrochemical cholinesterase biosensors for pesticide determination,Anal.Chim.Acta,2000,404(1):55-65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700