用户名: 密码: 验证码:
呼伦贝尔沙地天然樟子松林更新研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙地樟子松(Pinus sylvestris L. var. mongolica Litv.)天然分布在呼伦贝尔高原东部、海拉尔河中游及支流伊敏河、辉河流域和哈拉哈河上游一带的固定沙地上,具有抗寒、抗旱、耐贫瘠等优良特性,天然更新能力强,防风固沙作用显著。沙地樟子松在沙地上持续进行的天然更新对退化生态系统的植被恢复与重建,沙地生态系统各种效益的持续发挥,以及我国北方绿色生态屏障的建立都具有重要意义。进入21世纪以来,在全球变化背景和人为因素共同作用下,沙地樟子松的天然更新状况受到严重干扰,樟子松林天然更新的面积和速度明显减慢,有些地区甚至出现面积减少的趋势。因此,探析影响沙地樟子松天然更新的主导因素,寻求有效措施保证和促进其天然更新,使沙地樟子松林能够长期稳定发展,从而发挥出更大的生态作用,是广大林业工作者普遍关心的问题。
     本研究以森林培育学、种群生态学、地统计学和多元统计学等多学科的基础理论为依据,从沙地樟子松更新格局变化和年龄组成结构变化的角度,通过多种观测手段,解析呼伦贝尔沙地樟子松的天然更新过程,提出主导樟子松林天然更新过程的因素,阐明樟子松在林缘和林隙中的更新模式,并比较现有人工促进措施在植被自然修复过程中的作用,以期为该地区植被恢复、生态系统保护以及荒漠化防治等提供科学依据和技术支撑。主要研究结果包括以下5方面:
     (1)沙地樟子松种子更新可分成3个阶段和4个时期。3个阶段包括:母树、种子和幼苗;4个时期包括:母树的种子结实与生产、种实扩散、种子萌发和幼树生长。其中种实扩散过程包括第一扩散过程,即种子从植株到靠近植株的地面的运动过程;第二扩散过程,即水平(地面~地面)和垂直(地表~土壤)的种子再运动过程。
     对沙地樟子松更新的不同时期进行研究发现,樟子松母树约在20龄左右开始结实,丰年间隔期为3 ~ 4年,150 ~ 200龄的老龄木结实仍很频繁。在郁闭度为0.5 ~ 0.6的林分中,平均每公顷结实的林木株数约为230株,可采集球果约358 kg,除去30%的虫害和空粒外,可产纯种子约3.6 kg。在种实第一扩散过程中,受风向和重力的双重影响,种子多散布在母树周边0 ~ 8m距离内,且随与母树距离的增加种子数量逐渐减少,母树东、北向种子的数量明显高于西、南向。在种实第二扩散过程中,土壤种子库中完好种子的水平和垂直分布特征明显。在垂直分布上,种子大都分布在5 cm以上的土层和枯枝落叶层中,尤其以枯枝落叶层中种子分布较多;在水平分布上,种子密度呈抛物线形,在距母树约3 ~ 5 m处区域出现种子密度峰值,随与母树距离的增加,种子密度逐渐减少。在幼树生长过程中,沙地樟子松更新苗主要分布在母树周边,且集群分布在母树下北偏东方向的扇形区域内,随扇形区域向母树靠近,更新苗龄级增加。
     (2)对沙地樟子松林分中的更新苗种群进行调查发现,樟子松的更新苗种群是稳定型增长种群,种群中幼龄林所占的比例较大,林分年龄结构呈平稳增长的趋势。在莫和尔图地区平均每hm2樟子松天然林中约有1 ~ 30龄的更新苗2.30×104株,且随林分郁闭度的增加,更新苗密度呈减少趋势,疏林中樟子松更新苗的密度最大。
     (3)林隙更新是沙地樟子松重要的天然更新方式之一,林隙大小与更新状况关系密切。当林隙面积较小时(<1 hm2),林隙内的天然更新受周边母树的影响较大,表现为母树单株的更新特征,更新状况取决于周边母树;当林隙面积在4hm 2> t > 1hm2之间时,林隙的存在有利于更新苗的生长,对更新有利;当林隙面积较大时( t > 4hm2),除林隙边缘对更新产生影响外,林隙在沙地樟子松更新中的影响随面积增大而减弱,林隙效应逐渐消失。在沙地樟子松林分林隙内部,林隙西缘和南缘的更新状况明显好于东缘和北缘,形成了林隙西南方向的扩展速度高于东北方向的现象。一般来讲,在不计林隙面积的前提下,林隙南缘更新苗自南向北的扩展距离最远在100 ~ 125 m,而自北向南扩展的距离在25 ~ 50 m;林隙西缘更新苗自西向东的扩展距离最远在150 m左右,而自东向西扩展的最远距离在75 m左右。
     (4)沙地樟子松林分林缘区域有利于更新苗的生长,更新状况较好。更新苗在靠近林缘处呈为集群分布的格局,表现出明显的边缘效应,而随与边缘距离的增加,边缘强度减弱,更新苗表现为随机分布的格局。东北林缘和北林缘更新苗状况好于西林缘和南林缘,且北林缘处更新苗向外扩展的距离显著高于其他方向。研究还发现,与凸型和直线型林缘相比,凹型林缘拥有更有利于沙地樟子松更新和生长的优越条件,因此,凹型林缘外沙地樟子松更新带较长,生长状况较好,入侵扩展的速度也较快。
Mongol Scotch Pine distributes in the fixed sandyland at the east of Hulunbeier plateau and watershed which formed by Hailar River,Yimin River and Halakhah Rivernatively. It has good adaptability to cold, drought and barren environment, and a prominent advantage to wind control and shifting sand fixed with the notable regeneration ability. The natural regeneration process of Mongol Scotch Pine in the sandyland is important to vegetation rehabilitation and reconstruction of degraded ecosystems, sandy ecosystem benefit sustaining development, as well as the establishment of green ecological barriers in north of China. Since the 21st century, under the context of global change, the natural regeneration of Mongol Scotch Pine has been disturbed seriously. The expansion scale and speed has been slow down, and the trend in some areas has been adverse. Therefore, exploring the impact factors of natural regeneration, taking effective measures to ensure and promote the natural regeneration and making sure the long-term stable development to play a greater ecological benefit, which have been concerned by the forestry staffs.
     The natural regeneration process and character of Mongol Scotch Pine have been studied from the age pattern and spatial structural changes based on the multi-disciplinary theories and methodologies, including silviculture, population ecology, geo-statistics and multi-statistics in this study. By all kinds of observation means, the main impact factors in natural regeneration process, the regeneration model in forest edge and gap, the role of different artificially vegetation rehabilitation means were discussed and summarized to provide the scientific basises and technological supports to ecosystem protection and desertification combating. The main findings were as the following:
     Mature trees of Mongol Scotch Pine seed in twenty years old nearly, and the abundant year will be iterated in every 3 to 4 years. Mature trees of 150 ~ 200 years old still seed frequently. In the forest stands of canopy density is 0.5 ~ 0.6, the average amount of seeding-tree will be 230 per hm2, the cones collected will be 358 kg, the seeds produced will be 3.6 kg which 30% of the pest and empty seeds have been removed. Seeds of spread nearby the mature tree in the distance of 0 ~ 8m, and the density of seeds will decrease with the distance increase from the mature trees. The seeds density in east and north is significantly higher than that of in the west and south. Vertical distribution of soil seed banks is very distinct, and most of seeds lie in the surface litter layer more than soil. The seed density of level distribution in soil seed banks is highest in less than 3m from the observed tree. The seeding clusters near the observed tree in a fan-shaped region composed in the north east direction.
     The seedling population is stable growth type, which the proportion of young growth stocks is larger than the others, and the stand age structure shows as the steady growth trend. In research area, there are 2.30×104 seedlings in per hm2 natural forest and the density decrease with the forest canopy density increase, seedling density is largest in sparse stand.
     The relationship between the gap area and seeding density is quadratic curve function which means the seeding density increase with the area and then decrease. The natural regeneration status in west margin of gap is better than the eastern margin and it significantly better in the southern than the northern, which formed the south-west gap significantly better than in the northeast, eventually leading to south-west gap extension faster than the northeast. Generally speaking, the largest seeding spread distance from south to north is close to 100 ~ 125m, from north to south is 25 ~ 50 m, and the largest seeding spread distance from west to east is close to 150m, from east to west is nearly 75 m.
     The forest edge region is conducive to the growth of seedlings, which show as a greater seedlings density and better natural regeneration status. The seeding near the forest edge was the cluster distribution pattern, and with away from the edge, the seeding is in random distribution pattern. The seeding density in forest edge of north-east and north were significantly higher than that in the west and south, and the expansion distance in north forest edge was significantly higher than other directions. Compared with convex and linear forest edge, the concave edge has a greater natural regeneration status and more favorable conditions, which showed with a long spread distance, and a faster expand invasion to pasture.
引文
Gillet F. Modelling vegetation dynamics in heterogeneous pasture - woodland landscapes. Ecological Modelling, 2008, 217 (1): 1-18
    Goslee S C, Havstad K M, Peters D P C, et al. High-resolution images reveal rate and pattern of shrub encroachment over six decades in New Mexico, U.S.A.. Journal of Arid Environments, 2003, 54 (4): 755-767
    Haapanen R. Delineation of forest/nonforest land use classes using nearest neighbor methods. Remote Sensing of Environment, 2004, 89: 265-271
    Holmes P M. Shrubland Restoration Following Woody Alien Invasion and Mining: Effects of Topsoil Depth, Seed Source, and Fertilizer Addition. Restoration Ecology, 2001, 9 (1): 71-84
    Jimenez J C, Sobrino J A, Gillespie A, et al. Improved land surface emissivities over agricultural areas using ASTER NDVI. Remote Sensing of Environment, 2006, 103 (4): 474-487
    Jun C J, Sucharita G, Eric D K. On the choice of spatial and categorical scale in remote sensing land cover classification. Remote Sensing of Environment, 2005, 96 (1): 62-77
    Katra I, Blumberg D G, Lavee H, et al. Spatial distribution dynamics of topsoil moisture in shrub microenvironment after rain events in arid and semi-arid areas by means of high-resolution maps. Geomorphology, 2007, 86 (3): 455-464
    Katra I, Lavee H, Sarah P. Rainfall distribution around shrubs: Eco-geomorphic implications for arid hillslopes. Geomorphology, 2008, 95 (3): 544-548
    Latham R E. Shrubland longevity and rare plant species in the northeastern United States. Forest Ecology and Management, 2003, 185: 21-39
    Lufafa A, Diedhiou I, Samba S A N, et al. Carbon stocks and patterns in native shrub communities of Senegal's Peanut Basin. Geoderma, 2008, 146 (1): 75-82
    Makela H, Pekkarinen A. Estimation of forest stand volumes by Landsat TM imagery and stand-level field-inventory data. Forest Ecology and Management, 2004, 196: 245-255
    Marquardt P E, Epperson R K. Spatial and population genetic structure of microsatellites in white pine. Molecular Ecology, 2004, 13 (11): 3305-3310
    Okin G S, Murray B, Schlesinger W H. Degradation of sandy arid shrubland environments: observations, process modeling, and management implications. Journal of Arid Environments, 2001, (47): 123-144
    Robinson D T, Brown D G, Currie W S. Modelling carbon storage in highly fragmented and human-dominated landscapes: Linking land-cover patterns and ecosystem models. Ecological Modelling, 2009, 220 (9): 1325-1338
    Warren P S, Lerman S B, Charney N D. Plants of a feather: Spatial autocorrelation of gardening practices in suburban neighborhoods. Biological Conservation, 2008, 141 (1): 3-4
    Wulder M A, White J C, Coops N C, et al. Using local spatial autocorrelation to compare outputs from a forest growth model. Ecological Modeling, 2007, 209 (2): 264-276
    Hirzel, Lay A H. Habitat suitability modelling and niche theory. Journal of Applied Ecology, 2008, 45 (5): 1372-1381 Bell D.T..Ecological response syndromes in the flora of south western Australia Fire resprouters versus reseeders. Botanical Review,2001,67:417-440
    Bond W J,Midgley J J.Ecology of sprouting in woody plants:The persistence niche.Trends in Ecology & Evolution,2001.16:45-51
    Bond W J,Midgley J J.The evolutionary ecology of sprouting.International Journal of Plant Sciences,2003.164:103-114
    Bradstock RA,Myerscough P.J..The survival and population response to frequent fires of two woody resprouters Banksia serrata and Isopogon anemonifolius. Australian Journal of Botany,1988,36:415-431
    
    Brokaw N.V. Gap-phase regeneration in a tropical forest. Ecology. 1985,66 (3):682-687
    Cancino J.Modeling the edge effect in even-aged Monterey pine (Pinus radiate D.Don) stands.Forest Ecology Management,2005,210:159-172
    Chen J,Franklin J F,Spies T A.An empirical model for predicting diurnal air-temperature gradients from edge into old--growth Douglas-fir forest. Ecological Modeling,1993,67(2/4):179-198
    Denslow J S,NewellE,EllisonM. The effect to funder story palms and cyclanths on the growth and survival of Inga seedlings. Biotropica,1991,23:225-234
    Elliott K J,WhiteA S. Effects of light, nitrogen, and phosphorus on red pine seedling growth and nutrient use efficiency. Forest Scientistic,1994,40:47-58
    Falcelli J M,PickettS T A. Plant litter: its dynamics and effects on plant community structure. The Botanical Review,1991,57(1):1-32
    Falcelli J M,PickettS T A. Plant litter: light interception and effects on an old-field plant community. Ecology,1991,72:1024-1031
    Fensha R J,Fairfax R J,Cannell R J. The invasion of Lantana camara Lin FortyMile Scrub National Park, north Queensland. Austrilian Ecology,1994,19(3):297-303
    Gaucherel C. Neutral models for polygonal landscapes with linear networks. Ecological Modelling, 2008, 219 (1): 39-48
    Gracia M, Montane F, Pique J, et al. Overstory structure and topographic gradients determining diversity and abundance of understory shrub species in temperate forests in central Pyrenees. Forest Ecology and Management, 2007, 242 (2): 391-397
    Grubb P J.The maintenance of species richness in communities-the importance of the regeneration niche.Biological Reviews,1977.52:107—145
    Halil I C, Siamak K, Stacy A C. Correspondence analysis for detecting land cover change. Remote Sensing of Environment, 2006, 102 (3): 306-317
    Janet Silbernagel,陈吉泉.边缘效应对原始花旗松林冬季温度的影响.生态学报,2001,21(9):1403-1412
    Kaufman J B.Survival by sprouting following fire in tropical forests of the eastern Amazon.Biotropiea,1991,23:219-224
    Kerns B K, Ohmann J L. Evaluation and prediction of shrub cover in coastal Oregon forests. Ecological Indicators, 2004, (4): 83-98
    Kollman J,Schill H. Spatial patterns of dispersal seed predation and germination during colonization of abandoned grasslands by Quercu spetraea and Corylus avettana. Vegetation,1996,125:193-205
    Konstantinidis P,TsiourlisG,XofisP.Effect of fire season,aspect and pre-fire plant size on the growth of Arbutus unedo L. (strawberry tree) resprouts. Forest Ecology and Management,2006,225:359-367
    Krishna A, Junior G, Jordano, et al. A neutral-niche theory of nestedness in mutualistic networks. Oikos, 2008, 117 (11): 1609-1618
    Kruger L M, Midgley J J,Cowling R M. Resprouters vs reseeders in South African forest trees:a model based on forest canopy height. Functional Ecology,1997,11:101-105
    Larry L. Rockwood. Introduction to population ecology,Oxford:Blackwell Publishing,2006
    Ma J, Hasi B. Land-use classification using ASTER data and self-organized neutral networks. International Journal of Applied Earth Observation and Geoinformation, 2005, 7 (3): 183-188
    Malcolm J.R.Edge effects in central Amazonian forest fragments.Ecology,1994,75:2438- 2445
    Mallik AU. Conversation of temperate forests into health-role of ecosystem disturbance and ericaceous plants. Environmental Management,1995,19: 675-684
    Martens S N,Breshears D D,Meyer C W. Spatial distributions of understory light along the grassland/forest continuum:Effects of cover, height, and spatial pattern of tree canopies. Ecological Modelling,2000,126:79-93
    McGlynn I O, Okin G S. Characterization of shrub distribution using high spatial resolution remote sensing: Ecosystem implications for former Chihuahuan Desert grassland. Remote Sensing of Environment, 2006, 101 (4): 554-566
    McKenzie D, Halpern C B. Modelling the distributions of shrub species in Pacific Northwest forests. Forest Ecology and Management, 1999, 114: 293-307
    Miller D.R.,J.D.Lin.Canopy architecture of a red maple edge stand measured by a point drop method.In:Hutchinson B A and Hichks. Forest-Atmosphere Interaction.Boston,MA:D. Keidel Publishing Company,1985,59-70
    Milne B T. Measuring the fractal geometry of landscapes. Appl. Math. Compute, 1988, (27): 67-79
    Min X, Pakorn W, Pramod K V, et al. Decision tree regression for soft classification of remote sensing data. Remote Sensing of Environment, 2005, 97 (3): 322-336
    Monica G, Cecilio O, Luis V, et al. Monitoring land degradation risk using ASTER data: The non-evaporative fraction as an indicator of ecosystem function. Remote Sensing of Environment, 2008, 112 (9): 3720-3736
    Murali K S, Kavitha A, Harish R P. Spatial patterns of tree and shrub species diversity in Savanadurga State Forest, Karnataka. Current Science, 2003, 84: 808-813
    Muukkonen P, Heiskanen J. Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: A possibility to verify carbon inventories. Remote Sensing of Environment, 2007, 107 (4): 617-624
    Noble J C, Walker P. Integrated shrub management in semi-arid woodlands of eastern Australia: A systems-based decision support model. Agricultural Systems, 2006, 88: 332-359
    Nowak D J, Crane D E, Stevens J C. Air pollution removal by urban trees and shrubs in the United States. Urban Forestry & Urban Greening, 2006, 4 (3): 115-123
    Ohkubo T,Kaji M,Hayama T.Structure of primary Japanese beech (Fagus japonica Maxim) forests in the Chichibu mountains,central Japan,with special reference to regeneration processes.Ecological Research,1988,(3):101-116
    Overmars K P, Koning G H, Veldkamp A. Spatial autocorrelation in multi-scale land use models. Ecological Modeling, 2003, 164 (2): 257-270
    Pandit R, David N L. General and specific spatial autocorrelation: Insights from country-level analysis of species imperilment. Ecological Economics, 2007, 61 (1): 75-80
    Passera C B, Borsetto O, Allegretti L I. Short-term effects of shrub control on two different plant communities in Argentina. Journal of Arid Environments, 1996, 34: 415-420
    Pekkarinen A. Image segment-based spectral features in the estimation of timber volume. Remote Sensing of Environment, 2002, 82: 349-359
    Ritters K H, O' Neill R V, Hunsaker C T, et al. A factor analysis of landscape pattern and structure metrics. Landscape Ecology, 1995, 10 (1): 23-39
    Robert I M,Dean L U. Edge effects on species composition and exotic species abundance in the North Carolina Piedmont. Biological Invasion,2006(8):1049-1060
    Runkle J.R.. Synchrony of regeneration,gaps,and latitudinal differences in tree species diversity. Ecology,1989,70 (3):546-547
    Russell S K,Schupp K W. Effects of microhabitat patchiness on patterns of seed dispersal and predation of Cercocarpus ledi folius (Rosaceae). Oikos,1998,81(3):434-443
    Shaw W B, Burns B R. The ecology and conservation of the endangered endemic shrub in New Zealand. Biological Conservation, 1997, 81: 233-245
    Shrivastava R J, Gebelein J L. Land cover classification and economic assessment of citrus groves using remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 61 (5): 341-353
    Simposon R L.Ecology of soil seed bank.San Diego:Academic Press, 1989:149-209
    Stefanoni H, Dupuy J L, Manuel J. Mapping species density of trees, shrubs and vines in a tropical forest, using field measurements, satellite multispectral imagery and spatial interpolation. Biodiversity and conservation, 2007, 16 (13): 3817-3833
    Stefanoni H, Dupuy J L. Effects of landscape patterns on species density and abundance of trees in a tropical subdeciduous forest of the Yucatan Peninsula. Forest Ecology and Management, 2008, 255 (11): 3797-3805
    Stefanov W L, Netzband M. Assessment of ASTER land cover and MODIS NDVI data at multiple scales for ecological characterization of an arid urban center. Remote Sensing of Environment, 2005, 99 (1): 31-43
    Stow D, Hamada Y, Coulter L. Monitoring shrubland habitat changes through object-based change identification with airborne multispectral imagery. Remote Sensing of Environment, 2008, 112 (3): 1051-1061
    Sylvain D, Daniel C, Clementine G C. Niche separation in community analysis: A new method. Ecology, 2000, 81 (10): 2914-2927
    Theodorou Y, Drossos C, Alevizos P. Correspondence analysis with fuzzy data: The fuzzy Eigen value problem. Fuzzy Sets and Systems, 2007, 158 (7): 704-721
    Thomas K. A Comparison of Multispectral and Multitemporal Information in High Spatial Resolution Imagery for Classification of Individual Tree Species in a Temperate Hardwood Forest. Remote Sensing of Environment, 2001, 75: 100-112
    Vesk P A,Warton D l,Westoby M.Sprouting by semi-arid plants,testing a dichotomy and predictive traits.Oikos,2004,107:72-89
    Vesk P A , Westoby M . Sprouting ability across diveme disturbances and vegetation types worldwide.Journal of Ecology,2004,92:310-320
    Viedma O, Melia J. Monitoring temporal changes in the spatial patterns of a Mediterranean shrubland using Landsat images. Diversity and Distributions, 1999, (5): 275-293
    Waser L T, Baltsavias E, Ecker K, et al. Assessing changes of forest area and shrub encroachment in a mire ecosystem using digital surface models and CIR aerial images. Remote Sensing of Environment, 2008, 112 (5): 1956-1968 Watt A.S. Pattern and process in the community. Ecology,1947,35:1-22
    Wendy P.Seed size, number, and habitat of a fleshy-fruited plant;Consequences for seeding establishment. Ecology,2002,83(3):794-808
    Whelan C J, W illsonM F, Tuma C A, et al.Spatial and temporal patterns of post-dispersal seed predation. Canadian Journal of Botany, 1991, 69: 428-436
    Wilcox B P, Dowhower S L, Teague W R, et al. Long-Term Water Balance in a Semiarid Shrubland. Rangeland Ecology and Management, 2006, 59 (6): 600-607
    Williams Lincra. Vegetation structure and environmental conditions of forest edges in Panama. Journal of Ecology,1990,78:356-373
    Ze-Hao Shen,Yuan-Yuan Tang,Nan LüJun et al. Community Dynamics of Seed Rain in Mixed Evergreen Broad-leaved and Deciduous Forests in a Subtropical Mountain of Central China.植物学报:英文版,2007,49(9):1294-1303
    ZHU Jiao-jun,FAN Zhi-ping,ZENG De-hui et al.. Comparison of stand structure and growth between artificial and natural forests of Pinus sylvestiris var, mongolica on sandy land.林业研究:英文版,2003,14(2):103-111
    Zomeni M, Tzanopoulos J, Pantis J D. Historical analysis of landscape change using remote sensing techniques: An explanatory tool for agricultural transformation in Greek rural areas. Landscape and Urban Planning, 2008, 86 (1): 38-46
    安树青,林向阳,洪必恭.宝华山主要植被类型土壤种子库初探.植物生态学报,1996,(1):4l-50
    
    班勇,徐化成.原始老龄林内兴安落叶松种子命运的试验研究.生态学报,1996,16(5):541-547
    边才苗,金则新.云锦杜鹃的开花动态与繁育系统研究.广西植物,2005,25(2):169-173
    陈波,达良俊.常绿阔叶树种栲树开花物候动态及花的空间配置.植物生态学报,2003,27(2):249-255
    陈尔学,郭衡.鲁中南山地刺槐萌生更新林经济效果评价.林业科学研究,1997,10(1):6-12
    陈尔学,黄旭.刺槐萌生更新苗发生特性及年生长规律探讨.山东林业科技,1996,(1):45-46
    陈玉林,李埃新.贺兰山西麓干旱荒漠区樟子松引种试验.内蒙古林业科技,1993(4):6-12
    陈章和,罗洁源.几个气候区木本植物的开花结果物候.热带亚热带植物学报,1999,7(2):102-108
    樊后保,臧润国,李德志.蒙古栋种群天然更新的研究.生态学杂志,1996,15(3):15-20
    费世民,何亚平,王鹏等.二滩库区锥连栎林土壤种子库和幼苗格局初步研究.四川林业科技,2004,25(2):15-20
    费世民,何亚平,杨灌英等.攀枝花山地高山栲种群种子雨动态研究.四川林业科技,2005,26(4):1-8
    费世民,彭镇华,杨冬生等.川西南山地高山栲种群种子雨和地表种子库研究.林业科学,2006,42(2):49-55
    冯伟,汪小进,宣力等.森林土壤种子库研究方法综述.安徽农业科学,2008,36(9):3657-3659
    高崇华,李志忠.毛乌素沙地引种樟子松调查报告.内蒙古林业科技,1996(1):29-32
    高俊波,卢正茂,吴耀先等.樟子松人工林在辽东山区的生长评价.吉林林业科技,2007,36(1):31-33
    高贤明,杜晓军,王中磊.北京东灵山区两种生境条件下辽东栎幼苗补充与建立的比较.植物生态学报,2003,27(3):404-411
    高贤明,王巍.北京山区辽东栎林的径级结构、种群起源及生态学意义.植物生态学报,2001,25(6):673-678
    郭柯.山地落叶阔叶林优势树种米心水青冈幼苗的定居.应用生态学报,2003,14(2):161-164
    郭晋平,薛俊杰.庞泉沟自然保护区华北落叶松林土壤种子库的研究.武汉植物学研究,l998,16(2):131-136
    郭永堂.阿勒泰地区引种樟子松生长情况的调查.防护林科技,1994(3):52-53
    郭志华,张旭东,黄玲玲等.落叶阔叶树种蒙古栎对林缘不同光环境光能和水分的利用.生态学报,2006,26(4):1047-1056
    韩广,张桂芳.影响沙地樟子松天然更新的主要生态气候因子的定量分析.林业科学,1999,35(5):22-27
    韩景军,肖文发,罗菊春.不同采伐方式对云冷杉林更新与生境的影响.林业科学,2000,36(专1):90-96
    韩有志,王政权,谷加存.林分光照空间异质性对水曲柳更新的影响.植物生态学报,2004,28(4):468-475
    韩有志,王政权.森林更新与空间异质性.应用生态学报,2002,13(5):615-619
    何亚平,费世民,刘建全等.高山植物繁育系统研究进展初探.四川林业科技,2005,26(4):43-49
    贺金生,刘峰,陈伟烈等.神农架地区米心水青冈林和锐齿槲栎林群落干扰历史及更新策略.植物学报,1999,41(8):887-892
    胡海清,姜英烈.火烧对人工林松樟子松树木的影响.东北林业大学学报,1992,20(2):43-48
    
    胡连义,白景阳.红花尔基沙地樟子松林火烧迹地更新构想.内蒙古林业科技,1997,(4):44-44
    胡星明,蔡永立,李恺等.浙江天童常绿阔叶林栲树种子雨的时空格局.应用生态学报,2005,16(5):815-819
    黄忠良,彭少麟,易俗.影响季风常绿阔叶林幼苗定居的主要因素.热带亚热带植物学报,2001,9(2):123-128
    惠晓萍,洪涛.甘肃三北荒漠地区樟子松引种与推广.甘肃林业科技,1997,22(1):39-42
    焦树仁,曹文生.内蒙古赤峰市敖汉旗沙地引种樟子松造林研究.内蒙古农业大学学报:自然科学版,2002,23(1):70-73
    焦树仁,邢兆凯.辽宁省章古台樟子松固沙林更新的研究.辽宁林业科技,2001,(2):1-3,23
    酒云龙.土壤种子库的研究及其展望.山西林业科技,2008(2):36-38
    康宏樟,朱教君,李智辉等.沙地樟子松天然分布与引种栽培.生态学杂志,2004,23(5):134-139
    康宏樟,朱教君,许美玲.沙地樟子松人工林营林技术研究进展.生态学杂志,2005,24(7):799-806
    李存锋,冯建宏.樟子松在同朔半干旱地区生长调查.山西林业,2006(6):25-26
    李根前,黄宝龙.毛乌素沙地中国沙棘无性系种群林缘扩散规律.南京林业大学学报:自然科学版,2001,25(2):9-13
    李景文,石家琛,周晓峰等译.森林生态系统的格局与过程.北京:科学出版社,1985,109-144
    李俊清,李景文.中国东北小兴安岭阔叶红松林更新及其恢复研究.生态学报,2003,23(7): 1268-1277
    李小双,彭明春,党承林.植物自然更新研究进展.生态学杂志,2007,26(12):2081-2088
    李元红.闽北阔叶林的天然更新技术.福建林学院学报,1985,5(1):21-26
    李镇宇,王会强.秦皇岛地区樟子松引种及其对赤松毛虫抗性分析.北京林业大学学报,1997,19(4):39-44
    刘萍,崔克城.樟子松次生裸地天然更新生长的研究.林业勘查设计,2000,(1):68-68
    刘旭,程瑞梅,肖文发.土壤种子库研究进展.世界林业研究,2008,21(1):27-33
    刘金福,洪伟,李俊清.格氏栲林林窗更新特征的研究.北京林业大学学报,2006,28(3):14-19
    刘俊生,卢利军.黄土丘陵沟壑区樟子松引种造林初探.内蒙古林业,2005(4):17-17
    刘林德,李玮.刺五加、短梗五加的花蜜分泌节律、花蜜成分及访花者多样性的比较研究.生态学报,2002,22(6):847-853
    刘林德,祝宁.刺五加、短梗五加的开花动态及繁育系统的比较研究.生态学报,2002,22(7):1041-1048
    刘文杰,李庆军.西双版纳望天树林林窗小气候特征研究.植物生态学报,2000,24(3):356-361
    龙翠玲,余世孝.茂兰喀斯特森林林隙种子雨、种子库空间变异.云南植物研究,2007,29(3):327-332
    路纪琪,李宏俊,张知彬.山杏的种子雨及鼠类的捕食作用.生态学杂志,2005,24(5):528-532
    马世英,刘自忠.小五台山自然保护区樟子松引种林效果.河北林业科技,2000(5):8-9
    马友鑫,刘玉洪.西双版纳热带雨林片断小气候边缘效应的初步研究.植物生态学报,1998,22(3):250-255
    
    满多清,孙坤,刘世增等.干旱荒漠区樟子松幼苗的抗逆性分析.甘肃农业大学学报,2004,39(5):543-547
    毛磊,王冬梅,杨晓晖等.樟子松幼树在不同林分结构中的空间分布及其更新分析.北京林业大学学报,2008,30(6):71-77
    内蒙古植物志编辑委员会.内蒙古植物志(第一卷).内蒙古人民出版社,呼和浩特,1989
    彭军,李旭光,董鸣等.重庆四面山亚热带常绿阔叶林种子库研究.植物生态学报,2000,24(2):209-214
    彭闪江,黄忠良,彭少麟等.植物天然更新过程中种子和幼苗死亡的影响因素.广西植物, 2004,24(2):113-121
    任国俊.阴山北部沙化区可引种樟子松.内蒙古林业,1992(4):28-29
    尚占环,龙瑞军,马玉寿等.青藏高原“黑土滩”次生毒杂草群落成体植株与幼苗空间异质性及相似性分析.植物生态学报,2008,32(5):1157-1165
    邵青还.德国异龄混交林可持续经营的经验和技术.世界林业研究,1994,(3):62-67
    石培礼,李文华.长白山林线交错带形状与木本植物向苔原侵展和林线动态的关系.生态学报,2000,20(4):573-580
    宋新章,肖文发.林隙微生境及更新研究进展.林业科学,2006,42(5):114-119
    苏芳莉,尤文忠.影响沙地樟子松天然更新的主要气候因子的逐步判别分析.辽宁林业科技,2002,(6):1-3
    孙洪志,石丽艳.沙地樟子松的空间分布格局.东北林业大学学报,2005,33(1):93-94
    唐勇,曹敏,张建候等.西双版纳白背桐次生林土壤种子库、种子雨研究.植物生态学报,l998,22(6):505-512
    王凤林,韩玉生.吉林省西部干旱瘠薄沙地樟子松引种造林试验苗期初报.吉林林业科技,1994(3):8-10
    王希华,严晓,闫恩荣等.天童几种常绿阔叶林优势种在砍伐后萌枝更新的初步研究.武汉植物学研究,2004,22(1):52-57
    王志明,佟影.吉林省樟子松人工林大面积枯草现象的调查.吉林林业科技,1997(3):40-41
    王仲礼,刘林德,方炎明.黄河三角洲柽柳的开花特性及传粉生态学研究.热带亚热带植物学报,2005,13(4):353-357
    吴明荪,杨瑾.对我省北部丘陵风沙区发展樟子松的几点看法.山西林业科技,1992(4):22-24
    吴祥云.辽东山地樟子松人工林生长及立地质量的研究.辽宁林业科技,1992(4):16-18
    奚为民,钟章成.林窗植被研究进展.西南师范大学学报:自然科学版,1992,17(2):268-274
    肖宜安,何平,李晓红.濒危植物长柄双花木开花物候与生殖特性.生态学报,2004,24(1):14-21
    谢帆.井冈山常绿阔叶林更新动态的研究.应用生态学报,1991,2(1):1-7
    熊利民,钟章成,李旭光等.亚热带常绿阔叶林不同演替阶段土壤种子库的初步研究.植物生态学与地植物学学报,1992,16(3):249-257
    徐嘉,费世民,何亚平等.川西南山地云南松林窗更新特征.林业科学,2008,44(9):7-12
    徐海量,李吉玫,王增如等.塔里木河下游土壤种子库的空间分布特征分析.水土保持学报,2007,21(6):183-186.
    徐化成,班勇.大兴安岭北部兴安落叶松种子在土壤中的分布及其种子库的连续性.植物生态学报,1996,20(1):28-34
    徐树堂,宋晓东,尤国春等.章古台沙地樟子松嫁接红松技术的研究.防护林科技,2007(3):3-4,133
    徐振邦,代力民,陈吉泉等.长白山红松阔叶混交林森林天然更新条件的研究.生态学报,2001, 21(9):1413-1420
    杨喜林,郑金富.夏津沙地樟子松引种试验报告.山东林业科技,1993(4):15-19
    杨晓晖,喻泓,于春堂等.呼伦贝尔沙地樟子松林火烧后恢复演替的空间格局分析.北京林业大学学报,2008,30(2):44-49
    杨跃军,孙向阳,王保平.森林土壤种子库与天然更新.应用生态学报,2001,12(2):304-308
    尹华军,刘庆.川西米亚罗地区亚高山针叶林建群种云杉土壤种子库研究.应用与环境生物学报,2004,10(5):581-584
    尤文忠,田丹枫.沙地樟子松天然更新与降水因子的灰色关联度分析.辽宁林业科技,2002,(2):4-5
    于顺利,郎南军,彭明俊等.种子雨研究进展.生态学杂志,2007,26(10):1646-1652
    俞飞,侯平,陈全明等.天目山老龄柳杉林土壤种子库状态与更新.浙江林学院学报,2008,25(4):464-468
    袁莉,周自宗,王震洪.土壤种子库的研究现状与进展综述.生态科学,2008,27(3):186-192
    昝启杰,李鸣光.黑石顶针阔叶混交林演替过程中群落结构动态.应用生态学报,2000,11(1):1-4
    臧润国,刘静艳,董大方.林隙动态与森林生物多样性.北京:中国林业出版社,1999,11-12
    曾德慧,尤文忠.樟子松人工固沙林天然更新特征.应用生态学报,2002,13(1):1-5
    曾德慧,尤文忠.樟子松人工固沙林天然更新障碍因子分析.应用生态学报,2002,13(3):257-261
    张玲,方精云.太白山土壤种子库储量与物种多样性的垂直格局.地理学报,2004,59(6):880-888
    张晋英,白埃堤.太行山阳坡樟子松的生长表现及发展前景.山西林业科技,2000(3):32-35
    张敬丽,张长芹,吴之坤等.探讨种间传粉在杜鹃花属自然杂交物种形成中的作用.生物多样性,2007,15(6):658-665
    张奎璧,温国胜.阿拉善地区樟子松引种气候适宜性的分析.内蒙古林业科技,1990(4):13-17
    张水松,林光,陈长发等.次生常绿阔叶林抚育改造技术的研究.林业科学研究,1997,10(5):506-513
    赵兴梁,李万英.樟子松.北京:农业出版社,1963.79-84
    郑万钧.中国树木志.北京:中国林业出版社,1983.284-285
    周婷,彭少麟.边缘效应的空间尺度与测度.生态学报,2008,28(7):3322-3333
    周灿芳.植物群落动态研究进展.生态科学,2000,19(2):53-59
    周先叶.广东黑石顶自然保护区森林次生演替不同阶段土壤种子库的研究.植物生态学,2008,24(2):222-230
    朱教君,康宏樟,李智辉等.水分胁迫对不同年龄沙地樟子松幼苗存活与光合特性影响.生态学报,2005,25(10):2527-2533
    朱教君,康宏樟,许美玲.科尔沁沙地南缘樟子松人工林天然更新障碍.生态学报,2007,27(10):4086-4095
    邹莉,谢宗强,李庆梅等.神农架巴山冷杉种子雨的时空格局.生物多样性,2007,15(5):500-509

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700