用户名: 密码: 验证码:
铁路罐车罐体成形关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁路罐车罐体结构零部件是罐车关键承载零部件,其制造加工质量直接关系到罐车运行安全和可靠性。罐车罐体主要包括封头和筒节两大关键零件。罐体制造加工工艺主要包含封头冲压成形、筒节滚压成形等塑性加工成形过程,以及坯料制备过程中的对接焊接和罐体组装过程中的焊接加工工艺过程。目前,由于铁路罐车罐体尺寸大、材料厚度较厚,制造企业对罐体封头冲压、筒节滚压及其相关焊接工艺规程的制定基本还是依靠传统模式进行,即根据经验和实验试制调整工艺参数来开展新产品的开发和研制。该方法极大的提高了产品研制的成本,且生产效率极为低下。而且传统罐体制造工艺方法对罐体制造过程中可能出现的质量缺陷及其对罐体后期运行中的安全影响无法进行预测和控制。因此,在罐体制造加工中引入并使用先进的成形工艺研究手段十分必要。本文采用以罐体成形理论分析为基础,使用有限元数值模拟和实验相结合的方法,对罐体制造加工工艺过程展开系统而深入的研究。本文主要研究内容和研究结论如下:
     (1)进行罐体材质Q345R材料性能研究。Q345R材料是罐车罐体常用材料,其也是压力容器专用钢板。采用试验的方法对Q345R母材试样和对接焊试样材料进行拉伸试验、弯曲试验和冲击试验。试验表明,Q345R材料有良好的塑性成形性能。
     (2)试验对比研究罐体封头成形工艺。铁路罐车封头由于尺寸大、材料厚,其塑性成形加工难度大。为保证既能顺利成形封头,又能保证良好的产品性能和质量,采用试验的方法,分别使用冷冲压工艺、热冲压工艺和旋压工艺进行封头塑性成形加工。试验表明,热冲压封头成形方便,但成形后产品形状尺寸变化大,且需要加热等附属设备;旋压封头成形表面质量较差,成形效率较低,仅适合单件试制;冷冲压封头尺寸稳定,产品质量好,但成形载荷大。综合比较分析表明,采用冷压工艺进行铁路罐车封头加工能更好的保证罐车的加工质量和运行安全,因此采用冷拉延成形工艺进行罐车封头大批量制造。
     (3)对封头冷拉延成形过程进行有限元模拟分析。大型封头的冷拉延成形过程中,型面回弹和起皱是其主要成形缺陷,而拉延筋是控制其成形缺陷的重要工艺措施。根据椭圆形封头成形特性和要求,设计了圆形筋、矩形筋展开拉延成形分析,并和无拉延筋的成形工艺进行比较。对比分析表明,矩形拉延筋能更有效的保证封头成形质量。
     (4)展开封头拉延成形重要工艺参数,如摩擦系数、压边力、凸凹模间隙等对成形过程的影响进行了研究。封头成形工艺参数要既能保证产品成形质量,又能节约设备吨位,降低能耗。研究表明,压边力和模具间隙对成形载荷和成形质量影响明显。过小间隙使得成形载荷急剧上升,但成形后回弹较小,产品无明显起皱和鼓包成形缺陷;压边力过小则造成起皱明显,材料无法顺利转移到模内,亦使得成形载荷急剧上升。根据研究结果,得到封头成形时合理的压边力、凸凹模间隙等成形工艺参数。
     (5)筒节滚弯成形数值模拟分析。使用有限元法对筒节滚弯渐进塑性变形过程进行研究。研究表明,筒节成形过程中摩擦系数等工艺参数对成形有重要影响。
     (6)封头拉延模具磨损分析。封头拉延成形过程中,模具成形表面,尤其是小圆角型面的磨损是影响模具寿命的主要因素。对拉延模具成形过程中的模具受力及磨损的模拟分析表明,合理设置模具工艺参数能延长模具寿命,进而降低产品制造成本。
     (7)罐体制造中的焊接分析。罐体加工时,涉及的主要焊接问题是封头坯料制备时的厚板对接焊,筒节滚弯成形后的对接焊以及筒节、封头的组装焊接。封头制备时的对接焊,直接影响封头塑性冲压加工,尤其是焊后残余应力对冲压有一定的影响。筒节对接焊残余应力也对焊后滚弯校形有一定的影响。使用焊接数值模拟技术,对厚板焊接过程进行分析。研究表明,焊接焊后高残余应力区主要在焊缝区,可通过时效处理和退火来降低焊缝区残余应力。罐体总装时高残余应力也主要集中在焊缝区,其将对焊后变形有一定的影响。通过合理的焊接顺序的设置,可适当降低焊接残余应力和变形。
The structure parts of tank body for railway tank car are the key load bearing components, the quality of manufacturing of the parts directly affects the running safety and reliability of the tank car. The heads and shell sections are the two main impoertant parts of the tank. The manufacturing of the tank body mainly includes the plastic forming process such as the head stamping and shell section rolling, and the welding process in blank preparation and tank body assembly. Because of the large size and thickness of the tank body, the traditional manufacturing crafts that according to the experience and experiments are adopted for the forming of the heads and shell sections, and tank body welding. The traditional process leads to the high cost and inefficiency of the prduct development. And the tank body defects and the influence on operation safty can not been forecast and controlled using the traditional crafts. Therefore, it is very necessary to apply the advanced research methods to tank body manufacturing process. Based on the theoretic analysis of tank body forming, a systematical and profound study on tank body manufacturing process is undertaken using the combine method of the finite element simulations and experiments. The main research contents and conclusions are listed as follows.
     (1) The material properties of Q345R that used for tank body were studied. The Q345R is the material commonly used for tank car body and also is the special steel for pressure vessel. The experiments including tension test, bending test and impact test were implemented for the material property of Q345R. The experiments indicated that the Q345R material has good stamping formability.
     (2) The contrast experiments were implemented to study the stamping process for the ellipsoidal heads of tank car. Because of the large profile dimension and large thickness, it has some difficulties on the stamping process of tank body heads. In order to ensure the heads stamping quality, the forming experiments include cold stamping process, hot stamping process and spinning process were implemented. The experiments indicated that the heads can be conveniently formed with the hot stamping process, but the heads shape changed greatly after stamping, and heating equipment were needed for this process. The experiment also showed that the heads which formed with spinning process had poor surface quality and formed inefficiently. Thus the spinning process is only suitable to trial-producing of single head. The heads formed with cold stamping process had good dimensional stability and excellent product quality, but the stamping load was higher. The experiments and analysis indicated that cold stamping process can assure the quality and safety of the tank car, therefore, the cold stamping process was applied to heads stamping.
     (3) The cold stamping process of ellipsoidal heads was simulated with the finite element method. The spring-back of ellipsoid surface and crinkles are the main forming defects during the large heads drawing processing. While the draw-bead is the important and effective technical measures to avoid the forming defects. Thus the round draw-bead and rectangular draw-bead were designed based on the shape of the ellipsoidal heads, and the simulations were carried out for this drawing process. Then these simulation results were compared with the simulation results of no bead stamping process, which indicated that the rectangular draw-bead can effectively assure the stamping quality of the heads.
     (4) The main process parameters of drawing forming have great influence on the heads stamping process. The influences of process parameters have been studied. The process parameters consist of frictional coefficient, blank holding force, clearance between punch and die, and so on. The process parameters should ensure product quality and reduce forging equipment and energy usage. The study shows that the blank holding force and the clearance have significant effect on product quality. The small clearance can cause the forming load rising up rapidly, while the defects of wrinkles and blowups do not appear. The small blank holder force can cause wrinkles appearing and the forming load rising up rapidly because the material can not flow easily. According to the study results, the reasonable blank holding force and the clearance have been drafted for heads stamping.
     (5) The shell sections rolling process have been analyzed by using the numerical simulation method. The incremental forming process of the shell sections rolling was studied using the finite element method. The study shows that the frictional coefficient has great effect on the shell section rolling process.
     (6) The wear analysis of the drawing die was conducted. The wear at the die surface, especially at the little round surface is the main factor affecting the tools life. The stresses and the wear of tools were analyzed. The study indicates that the reasonable process parameters can prolong tools'life and reduce the product processing cost.
     (7) The welding process of tank body manufacturing was analyzed. The welding process during the tank body manufacturing includes the butt welding of thick blank plate, the butt welding of shell sections after rolling and the butt welding between shell sections and heads. The butt welding of heads blank, especially welding residual stresses directly affect the subsequent stamping process. The butt welding of shell sections after rolling also has some effects on its'adjustment process. Hence, the welding process was analyzed with numerical simulation technology. The study indicates that the high residual stress zone is distributed at the weld metal zone and the residual stress can be reduced by the aging treatment and annealing. The high welding residual stress of tank body assembly is also distributed at the weld metal zone and which has some influence on the distortion after welding. Therefore, the reasonable welding sequence could be drafted to reduce the welding residual stress and distortion.
引文
[1]姚建.危险化学品常压罐车罐体质量缺陷及处理[J].专用汽车,2012(8):71-73.
    [2]沈小燕,李小楠,谢培,谢陈江.886起危险品罐式车辆道路运输事故统计分析研究[J].中国安全生产科学技术,2012,8(11):43-48.
    [3]吴昌玉,李雨泓.浓硫酸铁道罐车罐体的腐蚀问题[J].全面腐蚀控制,2012,26(12):29-31.
    [4]吴昌玉,李雨泓.浓硫酸铁道罐车罐体的检验检测技术[J].能源研究与管理,2012(2):75-78.
    [5]Sara Brambilla, Roberto Totaro, Davide Manca. Simulation of the LPG release, dispersion, and explosion in the Viareggio railway accident[J]. Chemical Engineering Transactions,2010 (19):195-20.
    [6]Gabriele Landucci, Alessandro Tugnoli, Valentina Busini, Marco Derudi, Renato Rota, Valerio Cozzani. The Viareggio LPG accident:Lessons learnt[J]. Journal of Loss Prevention in the Process Industries,2011 (24):466-476.
    [7]何远新,侯军,韩志坚,郭小锋.无中梁铁路罐车罐体稳定性分析研究[J].铁道车辆,2012,50 (5):11-15.
    [8]李伟,张霞,钟智勇,羊彦伦.GHB70型黄礴罐车车体制造工艺[J].机车车辆工艺,2013(4):16-17.
    [9]杨旻栋.CAH64型柴油罐车车体制造工艺[J].机车车辆工艺,2012(6):24-25.
    [10]陈如欣,胡忠民.塑性有限元及其在金属成形中的应用[M].重庆:重庆大学出版社,1989年:20-25
    [11]曹洪飚.浅谈封头制作工艺及设备[J].化工设备与管道,2011,48(5):10-13.
    [12]何晓燕,钱红.大型封头成形新设备[J].锻压装备与制造技术,2007(2):32-34.
    [13]郭晓春,管云胜,邹华,薄丽燕.超级双相钢复合板16MnR+SAF2507热成型工艺[J].压力容器,2007,24(1):39-42.
    [14]周朝辉,曹海桥,吉卫.厚壁椭圆形封头热拉深成形[J].热加工工艺,2004(9):44-45.
    [15]刘帆.N10276复合板封头热压成型的分析[J].压力容器,2007,24(5):21-25.
    [16]姜桂荣.热旋封头工艺的研究与开发[J].热加工工艺,2003(2):32-34.
    [17]崔军,张海波,葛新生等.锆制封头成形方法的试验研究及其实践[J].压力容器,2009,26(7):42-45.
    [18]姜涛,杨运民,程巩固.基于DEFORM的大型封头整体锻造工艺数值模拟[J].压力容器,2009,26(2):26-29.
    [19]梁方杰.不锈钢椭圆封头热压制裂纹分析[J].石油化工设备,2005,34(3):65-67.
    [20]高焕丽,冯玉庆.25Cr-lMo钢热成型封头带状组织的消除[J].压力容器,2007,24(10):48-51.
    [21]陈志英,许树勤,孙文进.封头拉深成形工艺改进[J].锻压技术,2004(5):16-18.
    [22]翟德梅,司尧华,秦歌.封头拉延成形工艺研究[J].锻压技术,2003(4):13-15.
    [23]陆博福,陆平.压力容器封头整体冲压成形工艺[J].大型铸锻件,2008(6):19-21.
    [24]王妍娜.大直径球形封头冲压展开下料尺寸的计算[J].吉林化工学院学报,2011,28(9):46-48.
    [25]许树勤,付渊.封头成形力计算公式的分析与比较[J].大型铸锻件,1995(4):17-19.
    [26]魏承辉,覃虹桥,蔡安辉.封头非常规冷压工艺及模具设计[J].石油化工设备,2003,32(3):47-49.
    [27]王世东,陈文琳.空气罐封头的压形模具设计[J].锻压技术,2006(6):74-76.
    [28]吴伯杰,黄祥煜,谷志飞.封头零件拉深工艺的模拟和改进[J].现代制造工程,2005(1):1-3.
    [29]郭玉茹,安红萍,程巩固,刘建生.半球形封头拉伸成形工艺的有限元模拟及参数优化[J].矿山机械,2009,37(6):93-95.
    [30]朱向哲,谢禹钧,王晓华.半球形厚壁封头冲压成形有限元分析及优化[J].辽宁石油化工大学学报,2004,24(4):51-53.
    [31]安红萍,刘建生,郭玉茹,程巩固.大型厚壁半球形封头成形的模拟与试验研究[J].锻压技术,2009,34(5):135-138.
    [32]杨小强,孙家根,戴龙林,裴东,关海奎.球形封头不锈钢衬里冲压成形与回弹过程的数值模拟与分析[J].中国制造业信息化,2004,33(5):113-115.
    [33]冯晓九,陈德民,姜封国.球形封头冲压成形弹塑性变形分析[J].哈尔滨工程大学学报,2003,24(5):578-581.
    [34]王振安,于艳芬.大型双面复合板椭圆封头冲压工艺[J].压力容器,2006,23(6):47-48.
    [35]古创国,詹梅,杨合,吴统超等.椭球封头冷拉深缺陷分析[J].塑性工程学报,2010,17(3):85-92.
    [36]Y. J. Chao, M. A. Sutton. Stress concentration factors for nozzles in ellipsoidal pressure vessel heads due to thrust loads [J]. International Journal of Pressure Vessels and Piping,1985,19(1):69-81.
    [37]J. Chakrabarty. A theory of stretch forming over hemispherical punch heads [J]. International Journal of Mechanical Sciences,1970,12 (4):315-325.
    [38]王林红.封头旋压成形技术[J].模具制造,2007(11):9-11.
    [39]高东民.封头旋压工艺[J].机械工人,2000(7):16-17.
    [40]张艳秋,徐文臣,单德彬,吕炎.薄壁铝合金封头旋压成形工艺研究[J].机械工人,2006(3):74-78.
    [41]刘兴家,王佐民,孙明琦,贾薇.椭圆封头旋压控制参数确定的研究[J].热能动力工程,2003,18(104):187-190.
    [42]李文平,张涛,林刚.碟形封头冷旋压成形时的数值分析及旋压力计算[J].金属成形工艺,2003,21(1):7-9.
    [43]万晋,林悦.旋压成形近似椭圆封头有限元分析[J].福州大学学报,2000,28(2):94-98.
    [44]姜桂荣.影响封头成形的因素分析与设计[J].制造技术与机床,2003(5):26-27.
    [45]A. Fiorentino, E. Ceretti, A. Attanasio, L. Mazzoni, C. Giardini.Analysis of forces, accuracy and formability in positive die sheet incremental forming [J]. International Journal of Material Forming,2009,2 (1):805-80.
    [46]M. Durante, A. Formisano, A. Langella, F. Memola Capece Minutolo. The influence of tool rotation on an incremental forming process[J]. Journal of Materials Processing Technology,2009 (209):4621-4626.
    [47]T. J. Kim, D. Y. Yang. Improvement of formability for the incremental sheet metal forming process[J]. International Journal of Mechanical Sciences,2000 (42):1271-1286.
    [48]Minoru Yamashita, Manabu Gotoh, Shin-Ya Atsumi. Numerical simulation of incremental forming of sheet metal[J]. Journal of Materials Processing Technology, 2008 (99):63-72.
    [49]钱直睿,李明哲,黄晓燕.封头的多点成形工艺分析和数值模拟研究[J].塑性工程学报,2006,13(2):40-43.
    [50]Mingzhe Li, Yuhong Liu, et al. Multi-point forming:a flexible manufacturing method for a 3-D surface sheet [J]. Journal of Materials Processing Technology.1999 (87): 277-280.
    [51]Y. M. Hwang, et al. Analysis of super plastic low-forming in a conical closed die[J]. International Journal of Mechanical Sciences,1998,40 (9):867-885.
    [52]方月桂.筒体卷制新工艺在生产中的应用[J].轻工科技,2012(6):61-62.
    [53]董岚枫,钟约先,马庆贤,袁朝龙,马力深.大型筒体锻件的成形制造技术[J].锻压技术,2007,32(3):1-6.
    [54]马灿.大直径厚壁管的成型技术[D].合肥:合肥工业大学,2010.
    [55]来明山,贾平.盖板卷圆简易弯曲模[J].内江科技,2012(4):122.
    [56]魏正平,方晓勤.高罐身卷圆冲模设计的关键技术[J].南方农机,2005(3):36-37.
    [57]周养萍,方晓勤.飞机Z形型材滚弯回弹实验与研究[J].锻压装备与制造技术,2012(1):76-78.
    [58]邱海,熊树平,瞿世鹏.基于弹塑性变形理论的船体面板滚弯成形作业时间估算方法[J].哈尔滨工程大学学报,2012,33(8):948-955.
    [59]童春桥.薄板圆筒数控卷圆新工艺[J].机械工人,2005(4):28-30.
    [60]孟凡净,周哲波.大型卷板机的力学模型[J].矿山机械,2006,27(5):769-771.
    [61]张承谱,徐健,贾安东,杨君树.钢板卷制过程的数学模型[J].锻压技术,2011,36(2):39-43.
    [62]吕延茂.薄壁筒体卧置状态圆度的测量和计算[J].压力容器,2004,21(8):16-21.
    [63]苏君.探讨卷圆类冲件毛坯展开尺寸计算及模具设计应用[J].技术与市场,2009,16(12):29-30.
    [64]董小飞,崇凯.金属薄板两辊卷圆成形过程的理论分析[J].锻压装备与制造技术,2006(3):76-79.
    [65]乔波,雷步芳,付建华,赵康,牛婷.对称式三辊卷板机厚板压弯工艺参数分析[J].重型机械,2012(2):32-36.
    [66]郝泽龙.三辊卷板机上无剩余边卷圆[J].机械与电子,2009(23):837.
    [67]孙廷波.特大型四棍卷板机的研制[D].青岛:中国石油大学,2009.
    [68]黄自强.自动出料专用卷圆机的研制[J].装备维修技术,2007(4):51-57.
    [69]李强,高耀东,尚珂.对称式三辊卷板机的受力及驱动功率计算分析[J].锻压技术,2007,32(4):67-69.
    [70]崔远洋.螺旋埋弧焊管机组三辊弯板机的控制[J].焊管,2012,35(6):51-55.
    [71]魏忠才.三辊卷板机设计力学分析及主参数确定[J].中州煤炭,2006(6):26-27.
    [72]王凯,陈富林,许朝阳,李森,李斌.四辊卷板机中方圆卷制工艺的制定与数学模型的建立[J].锻压装备与制造技术,2011(6):56-60.
    [73]JangPing Wang, WeiChen Kao, HsienDer Lee, James Wang. Analysis of 3D rolling forming with generalized rigid-plastic boundaries approach[J]. Journal of materials processing technology,2008 (204):425-433.
    [74]Lianggang Guo, He Yang. Effect of sizes of forming rolls on cold ring rolling by 3D-FE numerical simulation [J]. Transactions of Nonferrous Metals Society of China,2006 (16): 645-651.
    [75]Hua Zhang, Guangsheng Huang, Hans Jogen Roven, Lifei Wang, Fusheng Pan. Influence of different rolling routes on the microstructure evolution and properties of AZ31 magnesium alloy sheets[J]. Materials and Design,2013 (50):667-673.
    [76]邓兆虎,罗杜宇.板料多次弯曲成形回弹的数值模拟研究[J].模具工业,2009,35(9):36-40.
    [77]邓兆虎,张祖军,胡卫才,阮锋.板料卷圆回弹分析及数值模拟[J].锻压装备与制造技术,2008(1):51-54.
    [78]范琦.超薄镀锌板辊弯成形回弹工艺分析[J].机械工程与自动化,2012(12):42-45.
    [79]樊曙天,孟苏飞.对称式三辊卷板机多次滚弯过程的有限元仿真[J].机械设计与制造,2007(6):82-84.
    [80]李国庆,胡大超,付泽民.大型U形板材工件渐进滚弯成形数值模拟[J].机械设计与制造,2012(5):214-216.
    [81]陈高翔,王亚锋.型材滚弯数值模拟及应力、应变分析[J].陕西科技大学学报,2012,30(3):94-97.
    [82]陈龙.柔性卷板成形时回弹的有限元分析[D].吉林:吉林大学,2010.
    [83]张勇,郭春林.卷圆机工作过程的有限元模拟方法[J].煤炭机电,2011(1):74-75.
    [84]T. Katayama, Y. Hayakawa, M. Hakotani. Application of roll forming to SMC forming[J]. Composite Structures,1997,38 (1-4):517-524.
    [85]V. Solod, R. Kulagin, Y. Beygelzimer. A local approach to simulating bar forming in pass rolling[J]. Journal of Materials Processing Technology,2007 (190):23-25.
    [86]H.H. Wisselink, J. Huetink.3D FEM simulation of stationary metal forming processes with applications to slitting and rolling[J]. Journal of Materials Processing Technology, 2004 (148):328-341.
    [87]A.Kawalek. Forming of band curvature in asymmetrical rolling process[J]. Journal of Materials Processing Technology,2004 (155-156):2033-2038.
    [88]Johnson, Robert E. Shape forming and lateral spread in sheet rolling[J]. International Journal of Mechanical Sciences,1991,33 (6):449-469.
    [89]A.A.Milenin, H.Dyja, S.Mroz. Simulation of metal forming during multi-pass rolling of shape bars[J]. Journal of Materials Processing Technology,2004 (153-154):108-114.
    [90]程敦华.板卷连续成型制造直缝埋弧焊管工艺介绍[J].焊管,2012,35(5):47-49.
    [91]王洪艳.薄壁大直径不锈钢筒体的焊接工艺设计[J].煤矿机械,2011,32(3):124-125.
    [92]陈茂军.薄壁容器快速加工成形及焊接工艺研究[J].热加工工艺,2012,41(7):173-174.
    [93]李新和,何霞辉,邓锐,刘燕平,秦清源.超薄壁大径厚比筒体旋压鼓形失稳机理与规律[J].塑性工程学报,2011,18(5):99-104.
    [94]吕延茂.薄壁筒体卧置状态圆度的探索[J].化学工业与工程技术,2004,25(1):49-54.
    [95]余时建,刘渝,石志云.辊弯成型中的纵向弯曲[J].塑性工程学报,2011,18(4):101-105.
    [96]宋成金.卷管焊接变形的控制[J].科技向导,2012(9):328.
    [97]方建国.柔性卷板成形中起皱和端部效应的数值模拟研究[D].吉林大学,2008.
    [98]王蕾,白冰,王立军,张麦仓,李昕.Q345R钢的热变形特性及组织演化规律研究 [J].热加工工艺,2013,42(1):8-11.
    [99]马琦,张玮,叶童虓,吴东阳.Q345R钢焊接热影响区在碳酸钠和硫化氢混合介质中的应力腐蚀行为[J].热加工工艺,2012,45(3):8-11.
    [100]李忠波,许少普,崔冠军,刘庆波.200mm厚压力容器用钢Q345R的工艺与组织性能研究[J].中国冶金,2011,21(7):29-32.
    [101]赵松岩.Q235B和Q345R钢板材的焊接性分析[J].农业装备与车辆工程,2013,51(2):58-60.
    [102]金水荣,陈伦.Q345R气电立焊工艺及组织性能研究[J].热加工工艺,2013,42(5):207-210.
    [103]罗淼,张凤武,刘陈新,李柏君.Q345R容器板延伸率不合的影响因素分析[J].宽厚板,2010,16(5):11-13.
    [104]赵蕾.Q345R压力容器板性能分析与研究[J].物理测试,2012,30(1):5-7.
    [105]杨正,杨思晟,凌祥.小冲孔能量法评价Q345R的屈服强度[J].塑性工程学报,2012,19(6):95-102.
    [106]俞翔,王晓梁.压力容器用Q345R钢窄间隙MAG焊研究[J].装备制造技术,2012(11):123-124.
    [107]蒋文春,王炳英,巩建鸣.焊接残余应力在热处理过程中的演变[J].焊接学报,2011(4):45-48.
    [108]蒋文春,冯晓亮,石风涛,闫风琴.焊缝强度不匹配对残余应力的影响[J].热加工工艺,2010,39(5):155-160.
    [109]芮营营.船用钢厚板焊接工艺探讨[J].科技创新导报,2012(10):75.
    [110]李畅,许毓成.厚板埋弧自动焊的焊接质量控制[J].云南科技管理,2012(5):172-173.
    [111]王淑华.00Cr19Ni10厚板焊接工艺的优化[J].金属加工,2012(2):69-70.
    [112]潘水标,贾宝华,曾祥文.钢结构厚板焊接操作技术[J].电焊机,2012,42(8):1-5.
    [113]王勇,喻萍,尹士科.厚板焊接时控气参数对熔敷金属氮含量的影响[J].焊接技术,2011,40(8):6-9.
    [114]王少海.厚板碳素钢制压力容器的焊接方法控制[J].化学工程与装备,2010(9):139-141.
    [115]邢淑清,陈重毅,麻永林,赵勇桃.60mm厚16Mn特厚板焊接接头组织及力学性能研究[J].热加工工艺,2009,38(19):21-27.
    [116]王元清,周晖,石永久,胡宗文,陈宏.钢结构厚板对接焊缝的低温断裂韧性试验[J].哈尔滨工业大学学报,2012,44(6):115-120.
    [117]黄晶,刘宇光,张涛,谢凡.厚板焊接残余应力的试验研究[J].中国船舶研究,2009,4(5):33-37.
    [118]曹玉林,宋育荣,方敏勇,王俊,许平玉.厚板焊接工艺及焊后热处理研究[J].金属加工,2012(16):55-57.
    [119]王艳飞,耿鲁阳,巩建鸣.热处理对超厚板焊接残余应力影响的数值分析[J].南京工业大学学报,2013,35(1):66-70.
    [120]迟露鑫,陈重毅,麻永林,邢淑清,方立新.焊后热处理对特厚板20MnNiMMo焊接残余应力的影响[J].材料热处理学报,2012,33(4):96-99.
    [121]周子业.16MnDR厚钢板焊接裂纹的分析与处理[J].金属加工,2012(6):63-64.
    [122]沈利民,巩建鸣,余正刚,涂善东.Q345R钢焊接接头不同部位补焊残余应力的有限元分析[J].焊接学报,2009,30(9):57-60.
    [123]李晋梅,雷毅,许俊成.20钢中厚板焊接过程温度场的数值模拟[J].石油化工设备,2007,36(3):26-28.
    [124]王晓军,刘天佐,夏天东,赵文军.厚板焊接温度场解析解分析[J].兰州理工大学学报,2007,33(4):27-30.
    [125]刘克田,王涛,朱宝良,黄宋斌.高炉底板用钢Q345中厚板焊接温度场模拟[J].热加工工艺,2011,10(11):182-184.
    [126]李义,蒋沧如.钢结构厚板焊接残余应力有限元分析[J].武汉理工大学学报,2007,29(5):78-81.
    [127]李慧娟,程方杰,李凌,李正任.厚板多层焊的数值模拟分析[J].焊接技术,2007,36(1):22-24.
    [128]黎鹏飞,陈思作.厚板焊接残余应力有限元分析[J].工业建筑,2007,37(增刊):1080-1083.
    [129]贾坤荣,刘军,岳珠峰.厚板焊接温度场和残余应力场的数值模拟[J].热加工工艺,2009,38(17):102-105.
    [130]罗金华,王晓熙,胡伦骥.基于NSYS的中厚板焊接有限元三维数值模拟[J].华中科技大学学报,2002,30(11):83-86.
    [131]曾露,朱文峰,刘海江.基于椭球热源的汽车车身中厚板焊接仿真[J].制造业自动化,2010,32(7):111-113.
    [132]严仁军,雷加静,李鹏,李周.特厚板多层多道焊的Marc有限元模拟[J].机械工程学报,2011,47(18):37-42.
    [133]郑腊梅,戴峰泽,张永康,任旭东,杭寿荣.中厚板多道焊接温度场和残余应力场的三维数值分析[J].热加工工艺,2013,42(3):137-142.
    [134]麻永林,陈重毅,邢淑清,方立新.约束控制对特厚板20MnNiMo钢焊接残余应力的影响[J].内蒙古科技大学学报,2012,31(2):143-147.
    [135]管建军,陈怀宁.爆炸消除中厚板焊接残余应力工艺数值模拟[J].焊接学报,2011,32(9):105-108.
    [136]邓德安,清岛祥一.焊接顺序对厚板焊接残余应力分布的影响[J].焊接学报,2011,32(12):56-58.
    [137]D. Rudland,A. Csontos,T. Zhang,G. Wilkowski. Welding residual stress solutions for dissimilar metal surge line nozzle welds[J]. Journal of Pressure Vessel Technology,2010, 132 (2):0212081-0212087.
    [138]Dean Deng, Hidekazu Murakawa. Prediction of welding residual stress in multi-pass butt-welded modified 9Cr-1Mo steel pipe considering phase transformation effects[J]. Computational Materials Science,2006 (37):209-219.
    [139]Dean Deng, Hidekazu Murakawa, Wei Liang. Numerical and experimental investigations on welding residual stress in multi-pass butt-welded austenitic stainless steel pipe[J], Computational Materials Science,2008 (42):234-244.
    [140]A.R.Lawrence, P.Michaleris. Effects of thermal transport in computation of welding residual stress and distortion[J]. Science and Technology of Welding and Joining,2011, 16(3):215-220.
    [141]Shoichi Kiyoshima, Dean Deng, Kazuo Ogawa, Nobuyoshi Yanagida, Koichi Saito. Influences of heat source model on welding residual stress and distortion in a multi-pass J-groove joint[J]. Computational Materials Science,2009 (46):987-995.
    [142]Tae-Kwang Song, Ji-Soo Kim, Chang-Young Oh, Yun-Jae Kim, Chi-Yong Park, Kyoung-Soo Lee. Through-wall welding residual stress profiles for dissimilar metal nozzle butt welds in pressurized water reactors [J]. Fatigue and Fracture of Engineering Materials and Structures,2011,34 (8):624-641.
    [143]F.Tolle, A.Gumenyuk, A.Backhaus, S.Olschok, M.Rethmeier, U.Reisgen. Welding residual stress reduction by scanning of a defocused beam[J]. Journal of Materials Processing Technology,2012 (212):19-26.
    [144]Katsuyama Jinya, Onizawa Kunio. Analytical study of the relaxation of welding residual stress by excessive loading for austenitic stainless steel piping welds [J]. Journal of Pressure Vessel Technology,2011,133 (3):1-9.
    [145]Jinxiang Wang, Nan Zhou. Damage mechanism and anti-penetration performance of explosively welded plates impacted by projectiles with different shapes[J]. Materials and Design,2013 (49):966-973.
    [146]R. Mendes, J.B. Ribeiro, A. Loureiro. Effect of explosive characteristics on the explosive welding of stainless steel to carbon steel in cylindrical configuration[J]. Materials and Design,2013 (51):182-192.
    [147]Wenchun Jiang, Yun Luo, Guodong Zhang, Wanchuck Woo, S.T. Tu.Experimental to study the effect of multiple weld-repairs on microstructure, hardness and residual stress for a stainless steel clad plate [J]. Materials and Design,2013 (51):1052-1059.
    [148]Dean Deng. Influence of deposition sequence on welding residual stress and deformation in an austenitic stainless steel J-groove welded joint[J]. Materials and Design,2013 (49):1022-1033.
    [149]Thomas Seldis. Measurement of the intrinsic attenuation of longitudinal waves in anisotropic material from uncorrected raw data[J]. Ultrasonics,2013 (53):1259-1263.
    [150]Wenchun Jiang, Wanchuck Wooa, Gyu-Baek An, Jeong-Ung Park. Neutron diffraction and finite element modeling to study the weld residual stress relaxation induced by cutting[J]. Materials and Design,2013 (51):415-420.
    [151]Qinghua Bai, Yuejin Ma, Weilian Sun. Numerical Simulation Research of Weld Stress Field after Welding Trailing[J].Advances in CSIE,2012,2(169):467-472.
    [152]M. Mirzaei, R. Arabi Jeshvaghani, A. Yazdipour, K. Zangeneh-Madar. Study of welding velocity and pulse frequency on microstructure and mechanical properties of pulsed gas metal arc welded high strength low alloy steel[J]. Materials and Design,2013 (51):709-713.
    [153]Qinghua Bai, Yuejin Ma. The Temperature and Stress Field Distribution of Muti-welding Seam Flat with Trailing Peening[J]. International Asia Conference on Informatics in Control, Automation and Robotics,2009 (51):118-120.
    [154]姜奎华.冲压工艺与模具设计[M].北京:机械工业出版社,2010年:121-123.
    [155]阳德森.基于可控拉深筋技术的高强度钢板拉深性能优化及回弹分析[D].重庆:重庆大学博士学位论文.2010:13-21.
    [156]刘劲松,张士宏,肖寒,李毅波MSC.MARC在材料加工工程中的应用[M].北京:中国水利水电出版社,2010年:11-13.
    [157]董湘怀.材料成形计算机模拟[M].北京:机械工业出版社,2010年:149-150.
    [158]曾珊琪,丁毅.模具寿命与失效[M].北京:化学工业出版社,2005年:16-30.
    [159]L.Geun-An, I.Yong-Taek. Finite element investigation of the wear and elastic deformation dies in metal forming[J]. Journal of Materials Processing Technology, 1999(89-90):123-127.
    [160]P. Podra, S. Andresson. Wear simulation with the Winkler surface model[J]. Wear, 1997,207 (1-2):79-85.
    [161]肖寒.轻量化结构件弯曲成形工艺研究[D].大连:大连理工大学博士学位论文.2010:5-6.
    [162]莫施宁.弯卷机和矫正机[M].北京:机械工业出版社,1958年:65-85.
    [163]D.拉达伊.焊接热效应温度场、残余应力、变形.熊第京等译[M].北京:机械工业出版社,1997年:72-83.
    [164]赵利华.机车构架侧梁焊接变形数值仿真与控制[D].成都:西南交通大学博士学位论文.2011:12-29.
    [165]汪建华.焊接数值模拟技术及其应用[M].上海:上海交通大学出版社,2003.
    [166]陈楚等.数值分析在焊接中的应用[M].上海:上海交通大学出版社,1985:80-82.
    [167]孔祥谦.热应力有限单元法分析[M].上海:上海交通大学出版社,1999.
    [168]Dean Deng, Hidekazu Murakawa. Prediction of welding distortion and residual stress in a thin plate butt-welded joint. Computational Materials Science,2008 (43):353-365.
    [169]ESI.SYSWORLD Welding Simulation-User's Guide, ESI Group,2011.
    [170]Bachorski, M.J. Painterl, A.J. Smailes, M.A. Wahab. Finite-element prediction of distortion during gas metal arc welding using the shrinkage volume approach[J]. Journal of Materials Processing Technology,1999 (92-93):405-409.
    [171]罗征志,曾京,方华伟.封头坯料拼焊成形焊接残余应力分析[J].机械工程学报,2013,49(10):127-133.
    [172]罗征志,曾京,秦胜谋.焊接顺序对筒节焊接质量的影响[J].热加工工艺,2013,42(11):183-185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700