用户名: 密码: 验证码:
综放工作面采空区瓦斯运移规律数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十几年来,我国综放采煤方法得到了广泛的应用。由于综合机械化放顶煤开采具有高产、高效、推进速度快的特点,从而使瓦斯涌出更为集中且不均衡,常造成上隅角及回风巷瓦斯浓度超限,成为矿井安全生产的重大隐患。因此,综放工作面采空区瓦斯运移规律的研究,具有重要理论与现实意义。
     论文根据放顶煤开采时采空区瓦斯的运移规律和特点,通过FLUENT软件对采空区瓦斯运移规律进行数值模拟研究。较详细的分析了综放工作面的瓦斯涌出规律及其影响因素;阐述了采空区瓦斯运移的特征——升浮、扩散和聚集;应用上覆岩层在竖直方向形成垮落带、断裂带和弯曲下沉带的理论,结合成庄矿2311综放工作面的情况,确定了垮落带和断裂带的高度,为综放工作面采空区瓦斯运移物理模型的高度奠定了基础。
     通过质量守恒定律、动量守恒定律和扩散定律,建立了综放面采空区瓦斯运移数学模型。应用FLUENT软件对U型通风工作面采空区瓦斯运移进行数值模拟,得出采空区瓦斯浓度分布规律,即在走向方向上随着进深瓦斯浓度逐渐升高,在倾向方向上从进风侧到回风侧瓦斯浓度逐渐升高,在竖直方向上随着高度的增加瓦斯浓度逐渐升高,为采空区瓦斯治理提供了可靠的理论依据。通过数值模拟对比分析了U型、W型、U+L型、U+I型、双U型、U+I+走向高抽巷六种情况下以及U型、W型通风方式工作面不同风量下的综放工作面采空区瓦斯浓度分布规律,结果表明:W型通风方式在工作面风量为1440m3/min的情况下,工作面中部瓦斯浓度为10.4%,相比U型通风方式上隅角瓦斯浓度12.2%,瓦斯浓度有所降低;增加U型和W型通风方式工作面的风量能够降低上隅角和工作面中部的瓦斯浓度;U+L、U+I型通风方式可以降低采空区瓦斯浓度,明显降低回风巷和上隅角瓦斯浓度,但尾巷瓦斯浓度超限;双U型通风方式针对产量大、瓦斯涌出量大的高产高效综放工作面能有效的解决回风巷、上隅角瓦斯超限问题,回风巷、上隅角瓦斯浓度分别为0.45%和0.65%;U+I+走向高抽巷中内错尾巷和高抽巷的抽排作用使得综放面采空区内的高浓度瓦斯向抽采口运移,减少了采空区内瓦斯向工作面的涌出,能有效的解决综放工作面回风巷和上隅角瓦斯超限问题,回风巷、上隅角瓦斯浓度分别为0.6%和0.65%。
Over the recent decades, the caving mining has been widely applied in our country. As mechanized top coal caving is with the characteristics of high yield, high efficiency, and promoting at the fast speed so that the gas emissions are more concentrated and unbalanced, which often caused the gas overtime in the back air flow and the gas gauge on the corner, etc., which becomes the grave hazard for the safety production in the coal mines. Therefore, the research of the gas migration rules in the Caving goafs has greatly important theoretical and practical significance.
     According to the migration laws and characteristics of the goaf gas when the top coal is caved, through the FLUENT software the thesis researches on numerical simulation of the gas migration rules in the Caving goafs, and analyses the gas emission rules in the caving face and the influence factors in more detail, and expatiates the characteristics of the gas migration in goaf rising float, diffusion and aggregation; with the application of overlying strata theory, combining the situation of Cheng Colliery 2311 caving face, it confirms the height of the caving zone and fractured zone, establishes the foundation for the physical model of the gas migration in the Caving goafs.
     Through applying of the mass conservation rules, momentum conservation law and the diffusion law, using , the gas migration mathematics model is established in the caving goafs, by using FLUENT software the numerical value of the gas migration in U-ventilation face is simulated, the contribution rules of the gas concentration in goaf obtained, that is, towards the direction, the gas concentration increases gradually with much deeper distance, towards the tendency direction from the inlet side to the return air side the gas concentration gradually increases, in the vertical direction with the height increasing the gas concentration gradually increases, which provides a reliable theoretical gist for the gas control in goaf. By the numerical simulation and comparision, the six cases of U-type, W type, U + L-type, U + I, double U-, U + I + towards high Roadway and U-, W-type ventilation work face under different wind flow, the gas concentration distribution in caving face is comparatively analysed, the results show that: For the W-type ventilation on the face with air volume of 1440m3/min, the gas concentration on the middle face is 10.4%, comparing U-ventilation the gas concentration in the upper corner is 12.2%, while the gas concentration decreased. By increasing the air volume in U-and W type ventilation goafs, the gas concentration in the upper corner and the central goafs can be reduced; U + L, U + I-type ventilation can decrease the gas concentration of the goaf, significantly decreases the gas concentration in the return air Lane and the upper corner, but the gas concentration of Tail exceeds; Aimed at the Caving goafs with high production and high efficiency, which are large output and big gas emission, double U-ventilation can efficiently solve the gas exceeding problem in the back Wind Lane and the upper corner whose concentration are separately 0.45% and 0.65%.The function of taking out and in within the high end of Lane and Drainage Roadway of the U+I+high Roadway makes the high concentration gas in the caving goafs transport to the extraction port, which reduces the gas emission in the goaf towards working place and can effectively solve the gas exceeding problem in the air Lane and Upper Corner of the caving goafs whose concentration separately are separately 0.6% and 0.65%.
引文
[1]卢连宁,王秀山,于辉华等.瓦斯抽放是治理瓦斯的有效方法[J].煤矿安全,2001,5:1-2.
    [2]文光才,徐三民.煤矿瓦斯防治技术的新进展[J].矿业安全与环保,2000,27(1):8,9.
    [3]李学诚主编.中国煤矿安全大会[M].北京:煤炭工业出版社,1998:1-6.
    [4]起冰翠,张荣曾.关于煤孔隙特性的最新研究[J].媒质技术与科学管理,1997,3:25-27.
    [5]周世宁,孙辑正.煤层瓦斯流动理论及其应用[J].煤炭学报,1965,2(1):24-36.
    [6]周世宁.用电子计算机对两种测定煤层透气系数方法的检验[J].中国矿业学院学报,1984,2(3):46-51.
    [7]郭勇义.煤层瓦斯一维流场流动规律的完全解[J].中国矿业学院学报,1984,2(2):19-28.
    [8]孙培德.煤层瓦斯流动理论及其应用[C].中国煤炭学会1988年学术年会论文集.北京:煤炭工业出版社,1988.
    [9]余楚新,鲜学福.煤层瓦斯流动理论及渗流控制方程的研究[J].重庆大学学报,1989,12(5):1-9.
    [10]俞善炳.恒稳推进的煤与瓦斯突出[J].力学学报,1988,20(2):23-28.
    [11]丁晓良.煤在瓦斯渗流作用下持续破坏的机制[J].中国科学:A辑.1989(6):600-607.
    [12]黄运飞,孙广忠.煤一瓦斯介质力学[M].北京:煤炭工业出版社,1993.
    [13]彼特罗祥.煤矿沼气涌出.宋世钊译[M].北京:煤炭工业出版社.1983.
    [14]孙培德.煤层瓦斯流场流动规律的研究[J].煤炭学报,1987,(4):74-82.
    [15]罗新荣.煤层瓦斯运移物理模型与理论分析[J].中国矿业大学学报,1991,20(3):36-42.
    [16]Xinrong Lu,QixiangYu.Physical Simulation and Analysis of Methane Transport in Coal Seam.Journal of China University of Min.&Tech.,June 1994,4(1):24-31.
    [17]罗新荣.可压密煤层瓦斯运移方程与数值模拟研究[J].中国安全科学学报,1998,8(5):19-23.
    [18]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992,20-29,31-32.
    [19]L.N.Germanovich.Deformation of Nature Coals.Soviet Mining Science,1983,(5):377-381.
    [20]杨其銮,王佑安.煤屑瓦斯扩散理论及其应用[J].煤炭学报,1986.11(3):62,70.
    [21]聂百胜,何学秋,王恩元.瓦斯气体在煤层中的扩散机理及模式[J].中国安全科学学报,2000,10(12):24-28.
    [22]聂百胜,何学秋,王恩元.瓦斯气体在煤孔隙中的扩散模式[J].矿业安全与环保,2000,27(5):13-16.
    [23]郭勇义,吴世跃.煤粒瓦斯扩散规律及扩散系数测定方法的探讨[J].山西矿业学院学报,1997,(1):16-19.
    [24]郭勇义,吴世跃.煤粒瓦斯扩散规律与突出预测指标的研究[J].太原理工大学学报,1998,29(2):138-142.
    [25]孙培德.煤层瓦斯流场流动规律的研究[J].煤炭学报,1987,12(4):74-82.
    [26]Snghfi.A.煤层瓦斯流动计算机模拟及其在预测瓦斯涌出和抽放瓦斯中的应用[C].第22届国际采矿安全会议论文集.北京:煤炭工业出版社,1987.
    [27]段三明,聂百胜.煤层瓦斯扩散一渗流规律的初步研究[J].太原理工大学学报,1998,29(4):14-18.
    [28]吴世跃.煤层瓦斯扩散渗流规律的初步探讨[J].山西矿业学院学报,1994,(3):259-263.
    [29]吴世跃,郭勇义.煤层气运移特征的研究[J].煤炭学报,1999,24(1):65-70.
    [30]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999.
    [31]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999.
    [32]孙培德,鲜学福.煤层气越流的固气耦合理论及其应用[J].煤炭学报,1999,24(1):60-64.
    [33]孙培德,鲜学福.上保护层保护范围的固气耦合分析[J].煤,1999,8(1):36-39.
    [34]梁运培.邻近层卸压瓦斯越流规律的研究[J].矿业安全与环保,2000,27(2):32-35.
    [35]梁运培.岩石水平长钻孔抽放邻近层瓦斯[J].煤,2000,9(1):6-9.
    [36]孙培德,鲜学福.煤层瓦斯渗流力学的研究进展[J].焦作工学院学报,2001,24(3):16l-167.
    [37]Somerton W.H.Effect of stress on permeability of coal.Int.J.Rock Meck.Mech.Min.Sci.&Geomech.Abstr.1975,12(2):151-158.
    [38]Harpalani,S.&Mopherson,M.J.The effect of gas evacation on coal permeability tests peciments.Int.J.Rock.Meth.Min.Sci&Geomech.Abstr,1975,12(2):151-158.
    [39]J.R.E.Enever, A.Henning.The Relationship Between Permeability and Effectire Stress for Austral Jan Coal and Its Implication with Respect to Coalbed Methane Exploration and Reservoir Modeling. Proceedings of the 1997 Internat ionalCoalbed Methane Symposium.1997:13-22.
    [40]何学秋,周世宁.煤和瓦斯突出机理的流变假说[J].中国矿业大学学报,1990,19(2):1-9.
    [41]赵阳升,煤体一瓦斯祸合数学模型及数值解法[J].岩石力学与工程学报,1994,133:229-239.
    [42]章梦涛,潘一山,梁冰.煤岩流体力学[M].北京:科学出版社,1995.
    [43]梁冰,章梦涛,王泳嘉.煤和瓦斯突出的固流耦合失稳理论[J].煤炭学报,1995,20(5):492-496.
    [44]梁冰,章梦涛,王泳嘉.煤层瓦斯渗流与煤体变形的耦合数学模型及数值解法[J].岩石力学与工程学报,1996,15(2):135-142.
    [45]梁冰,章梦涛.从煤和瓦斯的耦合作用及煤盼失稳破坏看突出的机理[J].中国安全科学学报,1997,7(1):6-9.
    [46]李树刚.综放开采围岩活动影响下瓦斯运移规律及其控制[D].徐州:中国矿业大学,1998.
    [47]李树刚,林海飞,成连华.综放开采支承压力与卸压与瓦斯运移关系研究[J].岩石力学与工程学报,2004,23(21).
    [48]林海飞,李树刚,成连华.矿山压力变化的采场瓦斯涌出特征及其管理[J].西安科技学院学报,2004,24(1):15-18.
    [49]李树刚,徐精彩.软煤样渗透特性的电液伺服试验研究[J].岩土工程学报,2001,23(1):68-70.
    [50]李树刚,钱鸣高,石平五.煤样全应力应变中的渗透系数一应变方程[J].煤田地质与勘探,2001,29(1):22-24.
    [51]梁冰,刘建军,王锦山.非等温情况下煤和瓦斯固流耦合作用的研究[J].辽宁工程技术大学学报,1999,18(5):483-486.
    [52]梁冰,刘建军,范厚彬等.非等温情况下煤层中瓦斯流动的数学模型及数值解法[J].岩石力学与工程学报,2000,19(1):1-5.
    [53]Zhao Yang sheng.New advances of block—fractured medium rock fluid mechanics[A]. Proceedings of Im . Symp.On coupled Phenomenain civil mining&Petroleum engineering.Sanya,Hainan, China.Nov.1999.
    [54]章梦涛.采场空气流动状况的数学模型和数值方法[J].煤炭学报,1983(3).
    [55]黄伯轩.采场通风与防火[M].北京:煤炭工业出版社,1992.
    [56]丁广骧,邸志乾等.二维采空区非线性渗流流函数方程及有限元解法[J].煤炭学报,1993,18(2):19-24.
    [57]李宗翔,孙广义,王继波.回采采空区非均质渗流场风流移动规律的数值模拟[J].岩石力学与工程学报,2001,20(增2):1578-1581.
    [58]李宗翔.综放工作面采空区瓦斯涌出规律的数值模拟研究[J].煤炭学报,2002,(2):173-178.
    [59]李宗翔,纪书丽,题正义.采空区瓦斯与大气两相混溶扩散模型及其求解[J].岩石力学与工程学报.2005,24(16):2971-2976.
    [60]J . Pawinski . Flows with mass and momentum exchange in some problem of mineventilation.Se.Bull.Acad.Mining and Metallurgy,No34,197.
    [61]叶汝陵.矿井风量变化与瓦斯涌出量的关系[J].煤矿安全,1983,1.
    [62]章梦涛,王景琰,梁栋等.采场大气中沼气运移规律的数值模拟[J].煤炭学报,1987,12(3):23-30.
    [63]J.Roszkowski.The influence of ventilation parameters on the effectiveness of the methane drainage system.Fifth Intern.Mine Congress,Johannesburg,October,1992.
    [64]W.Dziurzyfiski,S.Nawart.Wplyw przewietrzania na odmetanowanie W scianieeksp- loatowanej z zawalem stropu.Archives of Mining Sciences,1993(2).
    [65]S .Nawart .Wplyw przewietrzania na odmetanowanie W scianie eksploatowanej zzawalem sopu.Gomictwo,1993(4).
    [66]丁广骧.三维采空区瓦斯、氮气的扩散运动及有限元解法[J].煤炭学报,1996,21(4):411-414.
    [67]梁栋,黄元平.采动空间瓦斯运动的双重介质模型[J].阜新矿业学院学报,1995,14(2):4-7.
    [68]吴强,梁栋.CFD技术在通风工程中的运用[M].徐州:中国矿业大学出版社,2001.
    [69]钱鸣高,许家林.覆岩采动裂隙分布的“O”形圈特征研究[J].煤炭学报,1998,23(5):466-469.
    [70]许家林,孟广石.应用上覆岩层采动裂隙“O”形圈特征抽放采空区瓦斯[J].煤矿安全,1995,26(7):2-4.
    [71]许家林,钱鸣高.地面钻井抽放上覆远距离卸压煤层气试验研究[J].中国矿业大学学报,2000,29(1):78-81.
    [72]钱鸣高,缪协兴,许家林等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2000.
    [73]叶建设,刘泽功.顶板巷道抽放采空区瓦斯的应用研究[J].淮南工业学院学报,1999,19(2):32-36.
    [74]刘泽功.开采煤层顶板抽放瓦斯流场分析[J].矿业安全与环保,2000,27(3):4-6.
    [75]李树刚,钱鸣高,石平五.煤层采动后甲烷运移与聚集形态分析[J].煤田地质与勘探,2000 28(4):3l-33.
    [76]李树刚,石平五,钱鸣高.覆岩采动裂隙椭抛带动态分布特征研究[J].矿山压力与顶板管理,1999,(3-4):44-46.
    [77]汪长明.地面钻孔抽采条件下半封闭采空区瓦斯运移及分布规律研究[D].北京:煤炭科学研究总院,2007.7.
    [78]李树刚.综放开采围岩活动及瓦斯运移[M].北京:中国矿业大学出版社,2000:68-69,147-148.
    [79]丁厚成.张集矿综采面采空区瓦斯运移规律及抽放技术研究[D].北京:北京科技大学,2008.
    [80]周世宁,林伯泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1998:47-48.
    [81]M.L.Ogilvie.Gas drainage in Australian underground coal mines.Mining Engineering,47(1),1995.50-52.
    [82]邹友峰,胡友健.采动损害与防护[M].北京:中国矿业大学出版社,1996:37-38.
    [83]王红刚.采空区漏风流场与瓦斯运移的叠加方法研究[D].西安:西安科技大学,2009.
    [84]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.
    [85]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [86]江帆,黄鹏.Fluent高级应用与实例分析[M].北京:清华大学出版社,2008.
    [87]邓德华,顾有富.山脚树矿21121综采面采空区远距离高抽巷治理瓦斯的实践[J].煤矿安全,2003,34(8):17-18.
    [88]朱建功,赵长春,祁建国.采用走向高抽巷治理综放面上邻近层瓦斯的研究[J].山西煤炭,1997,17(4):26-30.
    [89]孙文标,赵宏伟,刘辉.高位煤巷抽放瓦斯在三软煤层综放工作面的应用[J].中国矿业,2004,13(11):48-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700