用户名: 密码: 验证码:
Cu(OTf)_2催化的以卤代烃为原料的Ritter反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酰胺化合物的重要作用是不言而喻的。因酰胺键不仅存在于生命体的重要组成部分蛋白质中;且存在于日常生活用品的组成成份纤维中;同时在农业方面也扮演重要的角色,一些除草剂和除虫剂是酰胺类化合物;也是药物化学研究的重点,是一些药物分子的重要结构。
     鉴于此,构筑酰胺键也成为化学家研究的重点。现在,许多课题组已致力于酰胺键构筑的研究,并对酰胺键形成的反应进行了报道。但利用腈类化合物作为酰胺化试剂,仍然是一个挑战。那么基于腈类化合物作为起始原料的Ritter反应,也就成为了研究的重点。文献中关于Ritter反应的报道,主要集中在对其催化剂的改进,而且大部分是对腈和醇的Ritter反应催化剂的改进。
     基于此,我们选择金属化合物—Cu(OTf)_2作为催化剂,催化腈类化合物和文献中很少报道的卤代烃的Ritter反应。此方案在方法学上具有一定的创新性。在此系统下,我们合成了近20个酰胺类化合物。
     所有化合物的结构均经1H-NMR、13C-NMR确认,部分化合物经HRMS确认。
     本论文首次采用Cu(OTf)_2催化Ritter反应,同时是对文献中很少报道的卤代烃进行酰胺化。与文献报道的方法相比,该方法操作简单,产率高,为酰胺类化合物的合成提供了一种新方法。
The amide functionality-the unique structure-is an important building block of proteins, manynatural products and synthetic materials which has fascinated organic chemists for a long time.
     Despite numerous approaches for the formation of amides reported in the literature, the use ofnitriles as starting materials remains emerging area. A representative and important strategy within this fieldrelies on the Ritter reaction, which is based on the reaction of aliphatic-or aromatic-nitriles andcarbocations in the presence of strong acid. Considerable effort has been devoted to the development ofcatalysts (such as Lewis acids etc.) in the past decades.
     While, we are surprised to find that, to the best of our knowledge, halohydrocarbons have rarelybeen the subject of the Ritter reaction. Thus, new system utilizing metal catalyst with a new startingmaterial would be highly desirable. Herein, an efficient and general methodology was reported for thesynthesis of amides via the reaction of nitriles and halohydrocarbons employing Cu(OTf)_2as catalyst inwater and the target products were achieved in satisfactory yields.
     The structures of title compounds were confirmed by1H-NMR,13C-NMR, some of them wereconfirmed by HRMS.
     By this procedure, Cu(OTf)_2turned out to be economically efficient catalyst for the Ritterreaction, and a wide range of halohydrocarbons were employed to couple with nitriles instead of alcoholsor alkenes, which expanded the scope of the Ritter reaction by using halohydrocarbons as a startingmaterial.
引文
[1]李绍顺.天然产物全合成[M].化学工业出版社,2005:234-235.
    [2]边延林,杨玉雷,袁哲东.度他雄胺的合成工艺[J].中国新药杂志,2011,20(20):1972-1974.
    [3]王启海.医学化学[M].2008:103.
    [4]全国中等卫生学校统编教材《化学》编写组.化学[M].江苏科学技术出版社,1979:132.
    [5]杨宏建.天然药物化学[M].河南科学技术出版社,2007:254.
    [6]国家医药管理局科技教育司组织编写.药物分析[M].1996:117.
    [7]秦瑞香,于世涛,刘福胜,等.酰胺类除草剂的研究进展[J].青岛科技大学学报,2003,24:21-23.
    [8]葛前建,陈列忠,杜晓华.含吡唑杂环二酰胺类化合物的合成与杀虫活性研究[J].有机化学,2011,31(9):1510-1515.
    [9]王家银.除草剂作用原理及应用[M].云南科技出版社,2009:282-299.
    [10]孙晋良.纤维新材料[M].上海大学出版社,2007:74.
    [11](a)赵仕明,桑杰濡,马伟伟.聚丙烯酞胺在造纸干强剂方面的研究进展[J].造纸化学品,2011,42(4):54-56;(b)姜丽珠.聚丙烯酰胺的合成技术探析[J].科技创新导报,2011,(26):132;(c)董灵光.阴离子聚丙烯酰胺的合成[J].化学工程师,2011,(7):65-67.
    [12] Einhorn J., Einhorn C., Luche J-L. A Convenient Method for the Preparation of N-Methoxyamides[J].Synth. Commun.,1990,20(8):1105-1112.
    [13] Villeneuve G. B., Chan T. H. A rapid, mild and acid-free procedure for the preparation of acylchlorides including formyl chloride[J]. Tetrahedron Lett.,1997,38(37):6489-6492.
    [14] Fr yen P. Phosphorus in organic synthesis. Acyloxyphosphonium salts as chemoselective acylatingreagents[J]. Tetrahedron Lett.,1997,38(30):5359-5362.
    [15] Kunishima M., Kawachi C., Hioki K., et al. Formation of carboxamides by direct condensation ofcarboxylic acids and amines in alcohols using a new alcohol-and water soluble condensing agent:DMT-MM[J]. Tetrahedron,2001,57(8):1551-1558.
    [16] Comerford J. W., Clark J. H., Macquarrie D. J., et al. Clean, reusable and low cost heterogeneouscatalyst for amide synthesis[J]. Chem. Commun.,2009,(18):2562-2564.
    [17] Allen C. L., Chhatwal A. R., Williams J. M. J. Direct amide formation from unactivated carboxylicacids and amines[J]. Chem. Commun.,2012,48(5):666-668.
    [18]刘畅,罗艳,蔡帆,等.卢帕他定酰胺的合成[J].科学技术与工程,2011,11(24):1671-1815.
    [19]雍建平,赵巍.N-(4-羟基-苯基)-甘草次酸酰胺的合成[J].光谱实验室,2011,28(5):2241-2244.
    [20]何佳,金波,彭汝芳,等.1,1-二(2,4,6-三硝基苯甲酰胺基)-2,2-二硝基乙烯的合成[J].有机化学,2011,31(10):1643-1647.
    [21] Ragnarsson U., Grehn L. Novel Amine Chemistry Based on DMAP-Catalyzed Acylation[J]. Acc.Chem. Res.,1998,31(8):494-501.
    [22] Glynn D., Bernier D., Woodward S. Microwave acceleration in DABAL-Me3-mediated amideformation[J]. Tetrahedron Lett.,2008,49(39):5687-5688.
    [23] Cho S. H., Yoo E. J., Bae I., et al. Copper-Catalyzed Hydrative Amide Synthesis with Terminal Alkyne,Sulfonyl Azide, and Water[J]. J. Am. Chem. Soc.,2005,127(46):16046-16047.
    [24] Lee S. I., Son S. U., ChungY. K. Catalytic one-pot synthesis of N-phenyl alkyl amides from alkeneand aniline in the presence of cobalt on charcoal under carbon monoxide[J]. Chem. Commun.,2002,(12):1310-1311.
    [25] Schoenberg A., Heck R. F. Palladium-Catalyzed Amidation of Aryl, Heterocyclic, and VinylicHalides[J]. J. Org. Chem.,1974,39(23):3327-3331.
    [26] Uozumi Y., Arii T., Watanabe T. Double Carbonylation of Aryl Iodides with Primary Amines underAtmospheric Pressure Conditions Using the Pd/PPh3/DABCO/THF System[J]. J. Org. Chem.,2001,66(15):5272-5274.
    [27] Lin Y.-Sh., Alper H. A Novel Approach for the One-Pot Preparation of a-Amino Amides byPd-Catalyzed Double Carbohydroamination[J]. Angew. Chem. Int. Ed.,2001,40(4):779-781.
    [28] Nanayakkara P., Alper H. Asymmetric synthesis of α-aminoamides by Pd-catalyzed doublecarbohydroamination[J]. Chem. Commun.,2003,(18):2384-2385.
    [29] Jiang H., Liu B., Li Y., et al. Synthesis of Amides via Palladium-Catalyzed Amidation of ArylHalides[J]. Org. Lett.,2011,13(5):1028-1031.
    [30] Sasaki K., Crich D. Facile Amide Bond Formation from Carboxylic Acids and Isocyanates[J]. Org.Lett.,2011,13(9):2256-2259.
    [31] Chen Ch., Hong S. H. Oxidative amide synthesis directly from alcohols with amines[J]. Org. Biomol.Chem.,2011,9(1):20-26.
    [32] Gunanathan C., Ben-David Y., Milstein D. Direct Synthesis of Amides from Alcohols and Amineswith Liberation of H2[J]. Science,2007,317(5839):790-792.
    [33] Nordstr m L. U., Vogt H. Madsen R. Amide Synthesis from Alcohols and Amines by the Extrusion ofDihydrogen[J]. J. Am. Chem. Soc.,2008,130(52):17672-17673.
    [34] Ghosh S. C., Muthaiah S., Zhang Y., et al. Direct Amide Synthesis from Alcohols and Amines byPhosphine-Free Ruthenium Catalyst Systems[J]. Adv. Synth. Catal.,2009,351(16):2643-2649.
    [35] Ghosh S. C., Hong S. H. Simple RuCl3-Catalyzed Amide Synthesis from Alcohols and Amines[J]. Eur.J. Org. Chem.,2010,(22):4266-4270.
    [36] Muthaiah S., Ghosh S. C., Jee J.-E., et al. Direct Amide Synthesis from Either Alcohols or Aldehydeswith Amines: Activity of Ru(II) Hydride and Ru(0) Complexes[J]. J. Org. Chem.,2010,75(9):3002-3006.
    [37] SouléJ.-F., Miyamura H., Kobayashi S. Powerful Amide Synthesis from Alcohols and Amines underAerobic Conditions Catalyzed by Gold or Gold/Iron,-Nickel or-Cobalt Nanoparticles[J]. J. Am.Chem. Soc.,2011,133(46):18550-18553.
    [38] Chen Ch., Zhang Y., Hong S. H. N-Heterocyclic Carbene Based Ruthenium-Catalyzed Direct AmideSynthesis from Alcohols and Secondary Amines: Involvement of Esters[J]. J. Org. Chem.,2011,76(24):10005-10010.
    [39] Zhang Y., Chen Ch., Ghosh S. C., et al. Well-Defined N-Heterocyclic Carbene Based RutheniumCatalysts for Direct Amide Synthesis from Alcohols and Amines[J]. Organometallics,2010,29(6):1374-1378.
    [40] Yoo W.-J., Li Ch.-J. Highly Efficient Oxidative Amidation of Aldehydes with Amine HydrochlorideSalts[J]. J. Am. Chem. Soc.,2006,128(40):13064-13065.
    [41] Gao J., Wang G.-W. Direct Oxidative Amidation of Aldehydes with Anilines under Mechanical MillingConditions[J]. J. Org. Chem.,2008,73(7):2955-2958.
    [42] Liang J., Lv J., Shang Zh.-C. Metal-free synthesis of amides by oxidative amidation of aldehydes withamines in PEG/oxidant system[J]. Tetrahedron,2011,67(44):8532-8535.
    [43] Ekoue-Kovi K., Wolf C. Metal-Free One-Pot Oxidative Amination of Aldehydes to Amides[J]. Org.Lett.,2007,9(17):3429-3432.
    [44] Li J. M., F. Xu, Zhang Y., et al. Heterobimetallic Lanthanide/Sodium Phenoxides: Efficient Catalystsfor Amidation of Aldehydes with Amines[J]. J. Org. Chem.,2009,74(6):2575-2577.
    [45] Vora H. U., Rovis T. Nucleophilic Carbene and HOAt Relay Catalysis in an Amide Bond Coupling:An Orthogonal Peptide Bond Forming Reaction[J]. J. Am. Chem. Soc.,2007,129(45):13796-13797.
    [46] Chan W.-K., Ho Ch.-M., Wong M.-K., et al. Oxidative Amide Synthesis and N-Terminal r-AminoGroup Ligation of Peptides in Aqueous Medium[J]. J. Am. Chem. Soc.,2006,128(46):14796-14797.
    [47] Lang S., Murphy J. A. Azide rearrangements in electron-deficient systems[J]. Chem. Soc. Rev.,2006,35(2):146–156; Tani K., Stoltz B. M. Synthesis and structural analysis of2-quinuclidoniumtetrafluoroborate[J]. Nature,2006,441(7120):731-734.
    [48] Yao L., Aubé J. Cation-e Control of Regiochemistry of Intramolecular Schmidt Reactions en Route toBridged Bicyclic Lactams[J]. J. Am. Chem. Soc.,2007,129(10):2766-2767.
    [49](a) Gololobov Y. G., Kasukhin L. F. Recent advances in the staudinger reaction[J]. Tetrahedron,1992,48(8):1353-1406;(b) Saxon E., Bertozzi C. R. Cell Surface Engineering by a Modified StaudingerReaction[J]. Science,2000,287(5460):2007-2010;(c) Shangguan N., Katukojvala S., Greenberg R.,et al. The Reaction of Thio Acids with Azides: A New Mechanism and New Synthetic Applications[J].J. Am. Chem. Soc.,2003,125(26):7754-7755;(d) Nilsson B. L., Kiessling L. L., Raines R. T.Staudinger Ligation: A Peptide from a Thioester and Azide[J]. Org. Lett.,2000,2(13):1939-1941;(e)Merkx R., Brouwer A. J., Rijkers D. T. S., et al. Highly Efficient Coupling of β-SubstitutedAminoethane Sulfonyl Azides with Thio Acids, toward a New Chemical Ligation Reaction[J]. Org.Lett.,2005,7(6):1125-1128.
    [50] Saxon E., Armstrong J. I., Bertozzi C. R. A “Traceless” Staudinger Ligation for the ChemoselectiveSynthesis of Amide Bonds[J]. Org. Lett.,2000,2(14):2141-2143.
    [51] Soellner M. B., Nilsson B. L., Raines R. T. Staudinger Ligation of α-Azido Acids RetainsStereochemistry[J]. J. Org. Chem.,2002,67(14):4993-4996.
    [52] Damkaci F., DeShong P. Stereoselective Synthesis of α-and β-Glycosylamide Derivatives fromGlycopyranosyl Azides via Isoxazoline Intermediates[J]. J. Am. Chem. Soc.,2003,125(15):4408-4409.
    [53] K hn M., Breinbauer R. The Staudinger Ligation—A Gift to Chemical Biology[J]. Angew. Chem. Int.Ed.,2004,43(24):3106-3116.
    [54] Ramalingan C., Park Y.-T. Mercury-Catalyzed Rearrangement of Ketoximes into Amides and Lactamsin Acetonitrile[J]. J. Org. Chem.,2007,72(12):4536-4538.
    [55] Hashimoto M., Obora Y., Sakaguchi S., et al. Beckmann Rearrangement of Ketoximes to Lactams byTriphosphazene Catalyst[J]. J. Org. Chem.,2008,73(7):2894-2897.
    [56] Pan J., Devarie-Baez N. O., Xian M. Facile Amide Formation via S-Nitrosothioacids[J]. Org. Lett.,2011,13(5):1092-1094.
    [57] Bode J. W., Sohn S. S. N-Heterocyclic Carbene-Catalyzed Redox Amidations of α-FunctionalizedAldehydes with Amines[J]. J. Am. Chem. Soc.,2007,129(45):13798-13799.
    [58] Chen Zh.-W., Jiang H.-F., Pan X.-Y., et al. Practical synthesis of amides from alkynyl bromides,amines, and water[J]. Tetrahedron,2011,67(33):5920-5927.
    [59] Ishihara K., Yano T. Synthesis of Carboxamides by LDA-Catalyzed Haller Bauer and CannizzaroReactions[J]. Org. Lett.,2004,6(12):1983-1986.
    [60] Zhang L. J., Su S. P., Wu H. P., et al. Synthesis of amides through the Cannizzaro-type reactioncatalyzed by lanthanide chlorides[J]. Tetrahedron,2009,65(48):10022-10024.
    [61] Chiang P.-Ch., Kim Y., Bode J. W. Catalytic amide formation with α’-hydroxyenones as acylatingReagents[J]. Chem. Commun.,2009,(30):4566-4568.
    [62] Sawant D. N., Wagh Y. S., Bhatte K. D., et al. Palladium-Catalyzed Carbon-Monoxide-FreeAminocarbonylation of Aryl Halides Using N-Substituted Formamides as an Amide Source[J]. J. Org.Chem.,2011,76(13):5489-5494.
    [63] Shaabani A., Sarvary A., Ghasemi S., et al. An environmentally benign approach for the synthesis ofbifunctional sulfonamide-amide compounds via isocyanide-based multicomponent reactions[J]. GreenChem.,2011,13(3):582-585.
    [64] Bode J. W., Fox R. M., Baucom K. D. Chemoselective Amide Ligations by DecarboxylativeCondensations of N-Alkylhydroxylamines and α-Ketoacids[J]. Angew. Chem. Int. Ed.,2006,45(8):1248-1252.
    [65] Wu W. T., Zhang Zh. H., Liebeskind L. S. In Situ Carboxyl Activation Using a Silatropic Switch: ANew Approach to Amide and Peptide Constructions[J]. J. Am. Chem. Soc.,2011,133(36):14256-14259.
    [66] Mak X. Y., Ciccolini R. P., Robinson J. M., et al. Synthesis of Amides and Lactams in SupercriticalCarbon Dioxide[J]. J. Org. Chem.,2009,74(24):9381-9387.
    [67] Shen B., Makley D. M., Johnston J. N.‘Umpolung’ Reactivity in Semiaqueous Amide and PeptideSynthesis[J]. Nature,2010,465(7301):1027-1032.
    [68] Shackleford J. P., Shen B., Johnston J. N. Discovery of competing anaerobic and aerobic pathways inumpolung amide synthesis allows for site-selective amide18O-labeling[J]. PNAS,2012,109(1):44-46.
    [69](a) Ritter J. J., Kalish J. New reaction of nitriles. II. Synthesis of t-carbinamines[J]. J. Am. Chem. Soc.,1948,70(12):4048-4050;(b) Ritter J. J., Minieri P. P. New reaction of nitriles. I. Amides from alkenesand mononitriles[J]. J. Am. Chem. Soc.,1948,70(12):4045-4048.
    [70] Kacan M., McKillop A. Simple, High Yield Preparation of N-Benzylacetamides by LewisAcid-Catalyseed Reaction of Benzyl Chlorides or Benzyl Methyl Ethers with Acetonitrile[J]. Synth.Commun.,1993,23(15):2185-2189.
    [71] Firouzabadi H., Sardarian A. R., Badparva H. Highly Selective Amidation of Benzylic Alcohols withNitriles. A Modified Ritter Reaction[J]. Synth. Commun.,1994,24(5):601-607.
    [72] Reddy B. V. S., Reddy N. S., Madan Ch., et al. HBF4.OEt2as a mild and versatile reagent for theRitter amidation of olefins: a facile synthesis of secondary amides[J]. Tetrahedron Lett.,2010,51(37):4827-4829.
    [73] Martínez A. G., Alvarez R. M., Vilar E. T., et al. An improved modification of Ritter reaction[J].Tetrahedron lett.,1989,30(5):581-582.
    [74] Chen H. G., Goel O. P., Kesten S., et al. An novel modification of the Ritter reaction usingtrimethylsilyl cyanide[J]. Tetrahedron lett.,1996,37(45):8129-8132.
    [75] Lebedev M. Y., Erman M. B. Lower primary alkanols and their esters in a Ritter-type reaction withnitriles. An efficient method for obtaining N-primary-alkyl amides[J]. Tetrahedron Lett.,2002,43(8):1397-1399.
    [76] Gullickson G. C., Lewis D. E. Synthesis of N-Benzhydrylamides from Nitriles by Ritter Reactions inFormic Acid[J]. Synthesis,2003,(5):681-684.
    [77] Liu J., Ni Ch. F., Li Y., et al. Facile preparation of difluoromethyland monofluoromethyl-containingamides via Ritter reaction[J]. Tetrahedron Lett.,2006,47(38):6753-6756.
    [78] Callens E., Burton A. J., Barrett A. G. M. Synthesis of amides using the Ritter reaction with bismuthtriflate catalysis[J]. Tetrahedron Lett.,2006,47(49):8699-8701.
    [79] Sanz R., Martínez A., Guilarte V., et al. The Ritter Reaction under Truly Catalytic Br nsted AcidConditions[J]. Eur. J. Org. Chem.,2007,2007(28):4642-4645.
    [80] Anxionnat B., Guérinot A., Reymond S., et al. FeCl3-catalyzed Ritter reaction. Synthesis of amides[J].Tetrahedron Lett.,2009,50(26):3470-3473.
    [81] Rubenbauer P., Bach T. Diastereoselective Ritter reactions of chiral secondary benzylic alcohols[J].Chem. Commun.,2009,(16):2130-2132.
    [82] Brandt J. C., Elmore S. C., Robinson R. I., et al. Safe and efficient Ritter reactions in flow[J]. Synlett,2010,(20):3099-3103.
    [83] Olah G. A., Yamato T., Iyer P. S., et al. Nafion-HRcatalyzed baeyer-villiger oxidation and ritterreaction[J]. Mater. Chem. Phys.,1987,17(1-2):21-30.
    [84] Yamato T., Hu J. Y., Shinoda N. Perfluorinated sulfonic acid resin (Nafion-H) catalysed Ritter reactionof benzyl alcohols[J]. J. Chem. Res.,2007,(11):641-643.
    [85] Polshettiwar V., Varma R. S. Nafion-catalyzed microwave-assisted Ritter reaction: anatom-economic solvent-free synthesis of amides[J]. Tetrahedron Lett.,2008,49(16):2661-2664.
    [86] Salehi P., Motlagh A. R. Silica Gel supported ferric perchlorate: a new and efficient for one potsynthesis of amides from benzylic alcohols [J]. Synth. Commun.,2000,30(4):671-675.
    [87] Lakouraj M. M., Movassagh B., Fasihi J. Fe3+-Montmorillonite K10: an Efficient Catalyst forSelective Amidation of Alcohols with Nitriles Under Non-Aqueous Condition [J]. Synth. Commun.,2000,30(5):821-827.
    [88] Tamaddon F., Khoobi M., Keshavarz E.(P2O5/SiO2): a useful heterogeneous alternative for the Ritterreaction[J]. Tetrahedron Lett.,2007,48(21):3643-3646.
    [89] Yadav J. S., Reddy B. V. S., Pandurangam T., et al. PMA/SiO2catalyzed amidation of alcohols withnitriles: A simple, cost-effective and recyclable catalytic system for Ritter reaction[J]. Catal. Commun.,2008,9(6):1297-1301.
    [90] Ma’mani L., Heydari A., Sheykhan M. The Ritter reaction under incredibly green protocol: Nanomagneticallysilica-supported Br nsted acid catalyst[J]. Appl. Catal., A: Gen.,2010,384(1-2):122-127.
    [91] Tamaddon F., Tavakoli F. One-pot synthesis of N-tert-butyl amides from alcohols, ethers and estersusing ZnCl2/SiO2as a recyclable heterogeneous catalyst[J]. J. Mol. Catal. A: Chem.,2011,337(1-2):52-55.
    [92] Khalafi-Nezhad A., Foroughi H., Doroodmand M. M., et al. Silica boron–sulfuric acid nanoparticles(SBSANs): preparation, characterization and their catalytic application in the Ritter reaction for thesynthesis of amide derivatives[J]. J. Mater. Chem.,2011,21(34):12842-12851.
    [93] Katkar K. V., Chaudhari P. S., Akamanchi K. G. Sulfated tungstate: an efficient catalyst for the Ritterreaction[J]. Green Chem.,2011,13(4):835-838.
    [94](a)赵地顺,申晓冰,李倩,等.Br nsted酸离子液体催化合成N-叔丁基丙烯酰胺[J].化学工程,2010,38(5):42-45;(b)赵地顺,申晓冰,李洪胜,董兰芬,吕斌,Br nsted酸离子液体催化合成N-叔丁基苯乙酰胺[J].精细化工,2010,27(1):89-92.
    [95] Jiang F., Lin Y.-J., Duan H.-F., et al. Br nsted Acidic Ionic Liquids: Novel Efficient, Cost-effectiveand Reusable Solvent-catalysts for Ritter Reaction[J]. Chem. Res. Chin. Univ.,2010,26(3):384-388.
    [96] Kalkhambkar R. G., Waters S. N., Laali K. K. Highly efficient synthesis of amides via Ritter chemistrywith ionic liquids[J]. Tetrahedron Lett.,2011,52(23):867-871.
    [97] Theerthagiri P., Lalitha A., Arunachalam P. N. Iodine-catalyzed one-pot synthesis of amides fromnitriles via Ritter reaction[J]. Tetrahedron Lett.,2010,51(21):2813-2819.
    [98] Khaksar S., Fattahi E., Fattahi E. Organocatalytic synthesis of amides from nitriles via the Ritterreaction[J]. Tetrahedron Lett.,2011,52(45):5943-5946.
    [99] Bi N.-M., Ren M.-G., Song Q.-H. Photo-Ritter reaction of arylmethyl bromides in acetonitrile[J].Synth. Commun.,2010,40(17):2617-2623.
    [100] Khusnutdinov R. I., Shchadneva N. A., Mayakova Yu. Yu., et al. Ritter Reaction of OrganicNitriles with1-Bromo-and1-Hydroxyadamantanes Catalyzed by Manganese Compounds andComplexes[J]. Russ. J. Org. Chem.,2011,47(11):1682-1685.
    [101] Nair V., Rajan R., Rath N. P. A CAN-Induced Cyclodimerization Ritter Trapping Strategy for theOne-Pot Synthesis of1-Amino-4-aryltetralins from Styrenes[J]. Org. Lett.,2002,4(9):1575-1577.
    [102] Sakaguchi S., Hirabayashi T., Ishii Y. First Ritter-type reaction of alkylbenzenes usingN-hydroxyphthalimide as a key catalyst[J]. Chem. Commun.,2002,(5):516-517.
    [103] Nair V., Suja T. D., Mohanan K. A convenient protocol for C–H oxidation mediated by an azidoradical culminating in Ritter-type amidation[J]. Tetrahedron Lett.,2005,46(18):3217-3219.
    [104] Cazorla C., Métay E., Andrioletti B., et al. Ritter-type amidation of alkylboron derivatives withnitriles[J]. Tetrahedron Lett.,2009,50(49):6855-6857.
    [105] Cazorla C., Métay E., Lemaire M. Oxidative nucleophilic substitution: transformation ofalkylboronic derivatives[J]. Tetrahedron,2011,67(45):8615-8621.
    [106] Dos Santos M., Crousse B., Bonnet-Deldon D. Improved Ritter reaction with CF3-containingoxirane for an access to central units of protease inhibitors[J]. Tetrahedron Lett.,2009,50(8):857-859.
    [107] Valeur E., Bradley M. Amide bond formation: beyond the myth of coupling reagents[J]. Chem.Soc. Rev.,2009,38(2):606-631.
    [108] Mel a P., ajan M., Havlas Z., et al. Substituent Effect on exo Stereoselectivity in the1,3-DipolarCycloaddition Reaction of Tulipalin A with Nitrile Ylides[J]. J. Org. Chem.,2008,73(8):3032-3039.
    [109] Darbeau R. W., White E. H., Song F., et al. A Study of Essentially Free Carbocations Derived viaDiazonium and Oxo Diazonium Ions in the Liquid Phase[J]. J. Org. Chem.,1999,64(16):5966-5978.
    [110] Jo Y., Choe J. Ju. J., Song K. Ho., et al. The Scope and Limitation of Nickel-CatalyzedAminocarbonylation of Aryl Bromides from Formamide Derivatives[J]. J. Org. Chem.,2009,74(16):6358-6361.
    [111] Rolfe A., Probst D. A., Volp K. A., et al. High-Load, Oligomeric Dichlorotriazine: A VersatileROMP-Derived Reagent and Scavenger[J]. J. Org. Chem.,2008,73(22):8785-8790.
    [112] Fisher L. E., Muchowski J. M., Clark R. D. Heteroatom-directed metalation. Lithiation ofN-propenylbenzamides and N-propenyl-o-toluamides. Novel routes to ortho-substituted primarybenzamide derivatives and N-unsubstituted isoquinolin-1(2H)-ones [J]. J. Org. Chem.,1992,57(9):2700-2705.
    [113] Atanassov P. K., Zhou Y., Linden A., et al. Synthesis of Bis(2,4-diarylimidazol-5-yl) Diselenidesfrom N-Benzylbenzimidoyl Isoselenocyanates[J]. Helv. Chim. Acta.2002,85(4):1102-1117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700