用户名: 密码: 验证码:
东北东部林区花楸树天然更新的特征及影响因子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花楸树(Sorbus pohuashanensis)系蔷薇科花楸属植物,落叶乔木,产于东北山区、华北;单株散生或簇状分布于高海拔的山地暗针叶林内,是寒温带针叶林特有的伴生阔叶树种。该树作为我国北方重要的天然非木质资源树种,被开发的力度逐年加大,部分地区出现了种群衰退甚至是消失的迹象。因此,本项研究通过对其野生幼苗建成方式和种群年龄结构配置的调查以及对其更新过程中种子散布、土壤种子库及幼苗萌发出土等生态过程的研究,认识该树种的更新特征和更新过程的影响因素,为其野生资源扩大及合理开发提供科学依据。
     研究结果表明:
     在东北东部林区,花楸树以种子繁殖、桩蘖繁殖和根蘖繁殖3种方式更新。在未经破坏的天然林和恶劣生境下的天然林中,3种方式建成的幼苗数量比例各占1/3,无显著差异;但在破坏后形成的次生林中,桩蘖苗比例(16.5%)明显降低。实生苗和根蘖苗在3种生境下的建成比例差异不显著;而桩蘖苗在破坏后形成的次生林中的建成比例显著低于另2种生境下的比例(P<0.05)。
     在破坏后形成的次生林、恶劣生境下的天然林和未经破坏的天然林中,Ⅰ、Ⅱ级幼苗占各生境下总径级比例的76.0%、68.9%和75.8%。1.0~2.9 cm的Ⅱ径级向3.0~4.9cm的Ⅲ径级的转化率很低,在破坏后形成的次生林、恶劣生境下的天然林和未经破坏的天然林中,Ⅱ径级向Ⅲ径级的转化率分别为25.6%、45.3%和15.9%。
     花楸树的果实在9月上旬开始成熟散落,10月中下旬已基本完成散落,大约历时40 d左右。自然散落过程与风速、温度、降水量和空气湿度相关不显著。自然散落的花楸树果实96.1%分布于母株2 m范围内,凋落物层和土壤表层2 cm的种子占土壤种子库数量的97.0%。花楸树土壤种子库在时间分布上具有不连续性,散布当年11月上旬最大,为257.7±69.2粒·m-2;翌年7月下旬种子库数量最低或已消失,只为2.9±2.9粒·m-2。
     温度没有直接限制花楸树种子的萌发出土过程,0-5℃时幼苗就能出土,出苗率为(67.5±6.6)%;20℃时出苗率最高,为(81.5±1.9)%。但温度强烈调节着花楸树的出苗速率和幼苗的高生长,前7d和前21 d幼苗的最高高度均在25℃下,分别为2.5±0.1 cm和3.1±0.1 cm,随温度下降幼苗高生长明显下降,前7d和前21 d幼苗最低高度均出现在0~5℃,分别为0.6±0.1 cm和1.8±0.2 cm。土壤含水量不仅影响花楸树的出苗率,而且也调节花楸树出土幼苗的死亡率。花楸树种子在土壤含水量为50%时出苗率最高,为(74.7±4.2)%;在含水量为60%时幼苗死亡率最低,为(32.7±0.6)%。此外,种子埋藏深度对花楸树出苗率也有显著影响。种子播在土壤表层0cm处,出苗率最高,为(70.3±3.3)%;当埋藏深度达到或超过1.5 cm时,幼苗就不能萌发出土
     通过以上结果分析得出:生境对花楸树幼苗的建成方式具有影响,人为破坏能够明显减少桩蘖苗的建成;充足的幼苗库不是限制花楸树种群天然更新的因素,而Ⅱ径级往Ⅲ径级的转化是限制花楸树天然更新的关键环节;种子扩散过程对天然更新无显著影响,但种子库的时空格局对花楸树的天然更新具有显著影响;温度可能是通过密度制约影响花楸树幼苗群体出土与存活进而影响其实生更新,而不是通过限制个体幼苗萌发出土过程而影响其实生更新;土壤含水量及种子埋藏深度是影响花楸树实生更新的重要因素。
Sorbus pohuashanensis is deciduous tree in the genus Sorbus of Rosaceae native to northern China. It is an endemic accompanying broad-leaved species in boreal coniferous forest and mountain dark coniferous forest distributed in single-scattered or contagious patterns. As an important non-timber tree species in Northeast China, S. pohuashanensis has been over-developed recently and its population declined or even disappeared in some areas. In the paper, we investigated the wild seedlings establishment, population age structure, seed natural dispersal, soil seed bank and seedling emergence for the purpose of understanding the natural regeneration characteristics of this species and its influencing factors. The research results can provide scientific support for the rational protection and silviculture of the wild resources of Sorbus pohuashanensis.
     The results are as follows:
     S. pohuashanensis in eastern forest region of Northeast China regenerated by seed, stump sprouting and root sprouting. The line method of sampling indicated that roughly a third of the population was established by each regeneration method in S. pohuashanensis forests; in fact, there was no significant difference (P>0.05) among tree proportions established by these propagation methods whether in intact natural forests or in natural forests on stony sites. In secondary forests formed after damage, the frequency of stump sprouts (16.5%) was lower than in natural forests. Establishment ratio of seedling and root sprouts were no significant difference (P>0.05) among secondary formed forests after damage, intact natural forests and natural forests on stony sites; but significant difference (P<0.05) was detected for establishment ratio of stump sprouts between secondary forests formed after damage and intact natural forests or natural forests on stony sites.
     There was 76.0% of S. pohuashanensis whose diameter is less than 2.9 cm in secondary forests formed after damage; the result was 68.9% and 75.8% in natural forests on stony sites and intact natural forests respectively. The transfer rate from diameter classⅡ(1.0-2.9 cm) to diameter classⅢ(3.0-4.9 cm) was 25.6% in secondary forests formed after damage,45.3% in natural forests on stony sites and 15.9% in intact natural forests.
     The fruit ripening and natural dispersal of S. pohuashanensis last about 40 days that began in early September and ended in mid or late October. There was no significant correlation between the fruit dispersal of S. pohuashanensis and wind speed, air temperature, precipitation and air moisture content. Field tests found that there were 96.1% naturally dispersed seeds of S. pohuashanensis distributed within the range of 2 m around the stock tree.97.0% seeds in soil seed bank of S. pohuashanensis were distributed in the litter layer and 2 cm deep surface soil with a discontinuous temporal pattern, i.e., soil seed bank of S. pohuashanensis reached its maximum with 257.7±69.2 seeds per square meter in early November in current year of seed dispersal, and decreased to its minimum with less than 2.9±2.9 seeds per square meter in next July.
     Temperature had no obvious direct limitation effect on seedling emergence process of S. pohuashanensis, and seedling emergence can occurred at 0~5℃with (67.5±6.6)% seedling emergence percentage, the highest seedling emergence (81.5±1.9)% occurred at 20℃. But temperature strongly regulated seedling emergence rate and height growth of S. pohuashanensis. Maximum height of seedlings of S. pohuashanensis occurred under 25℃at the 7th day and the 21st day of germination tests with the seedling height of 2.5±0.1 cm and 3.1±0.1 cm respectively; and minimum height of seedlings of S. pohuashanensis occurred under 0~5℃at the 7th day and the 21st day of germination tests with the seedling height of 0.6±0.1 cm and 1.8±0.2 cm respectively. Soil moisture content not only affected seedling emergence percentage of S. pohuashanensis, but also adjusted the seedling mortality. The most proper soil moisture content for seedling emergence was 50%, seedling emergence percentage could reach (74.7±4.2)% in this situation; when soil moisture content was up to 60%, and seedling mortality was lowest to (32.7±0.6)%. Besides, the seed buried depth had a highly significant differences effect on seedling emergence (P<0.01). Seedling emergence of S. pohuashanensis decreased from (70.3±3.3)% to 0 with increasing soil depth from 0 to 1.5 cm.
     We conclude that habitats have certain effect on seedlings establishment types of S. pohuashanensis, and human disturbance could significantly reduce the establishment ratio of root sprouts. Adequate seedling bank was not a limiting factor of S. pohuashanensis natural regeneration, but the transfer rate from diameter class II to diameter class III was very lower and was the key limit factor for S. pohuashanensis natural regeneration. Seed dispersal process had no significant effect but the temporal and spatial pattern of soil seed bank had significant effect on S. pohuashanensis natural regeneration. Temperature may be a limiting factor for S. pohuashanensis natural regeneration through density-dependent effects on seedling emergence and survival, rather than by limiting individual seedling germination process effect natural regeneration. Soil moisture and burial depth were the crucial factor in S. pohuashanensis natural regeneration.
引文
[1]陈炳浩,陆静娴.我国主要林区天然林资源保护与可持续经营[J].林业经济,1999,2:9-16
    [2]杨玲.花楸种子生物学和体细胞胚发生体系研究[D].东北林业大学博士论文.2007:1-153
    [3]郑健,郑勇奇,吴超,张川红,宗亦尘,李伯菁,祝业平.花楸的地理分布及天然更新方式[J].林业科学,2007,43(12):86-93
    [4]彭闪江,黄忠良,彭少麟,欧阳学军,徐国良.植物天然更新过程中种子和幼苗死亡的影响因素[J].广西植物,2004,24(2):113-121
    [5]Webber BL, Woodrow IE. Cassowary frugivory, seed defleshing and fruit fly infestation influence the transition from seed to seedling in the rare Australian rainforest tree, Ryparosa sp.nov.l (Achariaceae) [J]. Functional Plant Biology,2004,31:505-516
    [6]Link A, Fiore AD. Seed dispersal by spider monkeys and its importance in the maintenance of neotropical rain-forest diversity [J]. Journal of Tropical Ecology,2006,22:235-246
    [7]Hester AJ, Mitchell FJQ Kirby KJ. Effects of season and intensity of sheep grazing on tree regeneration in a British upland woodland [J]. Forest Ecology and Management,1996,88:99-106
    [8]Bruun HH, Poschlod P. Why are small seeds dispersed through animal guts:large numbers or seed size per se [J]? Oikos,2006,113:402-411
    [9]李宏俊,张知彬.动物与植物种子更新的关系Ⅱ.动物对种子的捕食、扩散、贮藏及与幼苗建成的关系[J].生物多样性,2001,9(1):25-37
    [10]Ingle NR. Seed dispersal by wind, birds, and bats between Philippine montane rainforest and successional vegetation [J]. Oecologia,2003,134:251-261
    [11]Tachenberg O. Modeling long-distance dispersal of plant diasporas by wind [J]. Ecological Monograph,2003,73:173-189
    [12]Voigt FA, Bleher B, Fietz J, Ganzhorn JU, Schwab D, Bohning-Gaese K. A comparison of morphological and chemical fruit traits between two sites with different frugivore assemblages [J]. Oecologia,2004,141:94-104
    [13]陈帆,陈进,刘志秋,张玲,刘勇,白智林.蚂蚁对澜沧舞花姜种子散布及种苗空间分布格局的影响[J].植物生态学报,2004,28(2):210-217
    [14]苏瑞军,苏智先.珙桐种子散布、萌发及其种群龄级分配的关系研究[J].林业科学,2005,41(3):192-195
    [15]韩有志,王政权.天然次生林中水曲柳种子的扩散格局[J].植物生态学报,2002,26(1):51-57
    [16]张玉波,李景文,张吴,邹大林,武逢平,程春龙,李俊清,李帅英.胡杨种子散布的时空分布格局[J].生态学报,2005,25(8):1994-2000
    [17]Venable DL, Brown JS. The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments[J]. American Naturalist,1988,131:360-384
    [18]Greene DF, Johnson EA. Seed mass and dispersal capacity in wind-dispersed diaspores [J]. Oikos,1993,76:211-220
    [19]Leishman MR, Westoby M. Hypotheses on seed size:tests using the semi-arid flora of western New South Wales, Australia [J]. American Naturalist,1994,143:890-906
    [20]Nathan R, Muller-Landau HC. Spatial patterns of seed dispersal, their determinants and consequences for recruitment [J]. Trends in Ecology and Evolution,2000,15(7):278-285
    [21]Gomez-Aparicio L, Gomez JM, Zamora R. Spatiotemporal patterns of seed dispersal in a wind-dispersed Mediterranean tree (Acer opalus subsp. granatense):implications for regeneration[J]. Ecography,2007,30:13-22
    [22]Gomez JM, Valladares F, Puerta-Pinero C. Differences between structural functional environmental heterogeneity caused by dispersal [J]. Functional Ecology,2004,18:787-792
    [23]Vander Wall SB, Kuhn KM, Gworek JR. Two-phase seed dispersal:linking the effects of frugivorous birds and seed-caching rodents [J]. Oecologia,2005,145:282-287
    [24]Andresen E. Seed dispersal by monkeys and the fate of dispersed seeds in a peruvian rain forest [J]. Biotropica,1999,31 (1):145-158
    [25]Chapman IJ. Survival without dispersers:seedling recruitment under parents [J]. Conservation Biology,1995,9:675-678
    [26]Chambers JC, MacMahon JA. A day in the life of a seed:movements and fates of seeds and their implications for natural and managed systems [J]. Annual review of ecology and systematics,1994,25:263-292
    [27]Katrin BQ Gaese BH, Rabemanantsoa SB. Importance of primary and secondary seed dispersal in the malagasy tree Commiphora Guillaumini [J]. Ecology,1999,80 (3):821-832
    [28]Passos L, Oliveira PO. Ants affect the distribution and performance of seedlings of Clusia criuva, a primarily bird-dispersed rain forest tree [J]. Journal of Ecology,2002,90:517-528
    [29]Andresen E. Primary seed dispersal by red howler monkeys and the effect of defecation patterns on the fate of dispersed seeds[J]. Biotropica,2002,34 (2):261-272
    [30]Pearson KM, Theimer TC. Seed-caching responses to substrate and rock cover by two Peromyscus species:implications for pinyon pine establishment [J]. Oecologia,2004,141:76-83
    [31]Vander Wall SB. Dispersal of single leaf pinon pine (Pinus monophylla) by seed-caching rodents [J]. Journal of Mammalogy,1997,78 (1):181-191
    [32]Samuels IA, Levey DJ. Effects of gut passage on seed germination:do experiments answer the questions they ask [J]? Functional Ecology,2005,19:365-368
    [33]Paulsen TR, Lindtjφrn 0, Gjerdet NR, Hogstedt G Avian gut passage reduces seed exit costs in Sorbus aucuparia (Rosaceae) as measured by a diametral compression test [J]. Functional Plant Biology,2006,33:401-406
    [34]Traveset A, Bermejo T, Willson ME Effect of manure composition on seedling emergence and growth of two common shrub species of southeast Alaska [J]. Plant Ecology,2001,155:29-34
    [35]Paulsen TR, Hogstedt G Passage through bird guts increases germination rate and seedling growth in Sorbus aucuparia [J]. Functional Ecology,2002,16:608-616
    [36]Black HC. Fate of naturally seeded coniferous seeds [R]. Oregon State University, School of Forestry,1969,42-51
    [37]Herrera J. Acorn predation and seedling production in a low-density population of cork oak (Quercus suber L.)[J]. Forest Ecology and Managemen,1995,76:197-201
    [38]Gashwiller JS. Conifer seed survival in Western Oregon clearcuts[J]. Ecology,1967,48 (3): 431-438
    [39]Silvertown JW著.1982.祝宁,王义弘,陈文斌,等译.植物种群生态学导论[M].哈尔滨:东北林业大学出版社,1987,52-92
    [40]Martins AM, Engel VL. Soil seed banks in tropical forest fragments with different disturbance histories in southeastern Brazil [J]. Ecological Engineering,2007,31:165-174
    [41]Walck JL, Baskin JM, Baskin CC, Hidayati SN. Defining transient and persistent seed banks in species with pronounced seasonal dormancy and germination patterns [J]. Seed Science Research,2005,15:189-196
    [42]Harper JL. Population biology of plant [M]. London:Academic press.1977,256-263
    [43]Thorne ME, Young FL, Yenish JP. Cropping systems alter weed seed banks in Pacific Northwest semi-arid wheat region [J]. Crop Protection,2007,26:1121-1134
    [44]Batlla D, Roberto Luis BA. Predicting changes in dormancy level in weed seed soil banks: Implications for weed management[J]. Crop Protection,2007,26:189-197
    [45]Mayor MD, Boo RM, Pelaez DV, Elia OR. Seasonal variation of the seed bank of Medicago minima and Erodium cicutarium as related to grazing history and presence of shrubs in central Argentina [J]. Journal of Arid Environments,1999,43(3):205-212
    [46]Bossuyt B, Butaye J, Honnay O. Seed bank composition of open and overgrown calcareous grassland soils-a case study from Southern Belgium [J]. Journal of Environmental Management, 2006,79:364-371
    [47]Vecrin MP, Grevilliot F, Muller S. The contribution of persistent soil seed banks and flooding to the restoration of alluvial meadows[J]. Journal for Nature Conservation,2007,15:59-69
    [48]Decocq G, Valentin B, Toussaint B, Hendoux F, Saguez R, Bardat J. Soil seed bank composition and diversity in a managed temperate deciduous forest [J]. Biodiversity and Conservation,2004, 13:2485-2509
    [49]Du XJ, Guo QF, Gao XM, Ma KP. Seed rain, soil seed bank, seed loss and regeneration of Castanopsis fargesii (Fagaceae) in a subtropical evergreen broad-leaved forest [J]. Forest Ecology and Management,2007,238:212-219
    [50]Wade GL. Grass competition and establishment of native species from forest soil seed banks [J]. Landscape and Urban Planning,1989,17(2):135-149
    [51]Moles AT, Drake DR. Potential contribution of the seed rain and seed bank to regeneration of native forest under plantation pine in New Zealand [J]. New Zealand Journal of Botany,1999, 37:83-93
    [52]Russell SK, Schupp EW. Effects of microhabitat patchiness on pattern of seed dispersal and seed predation of Cercocarpus ledifolius (Rosaceae)[J]. Oikos,1998,81:434-443
    [53]Sakai A, Sato S, Sakai T. Kuramoto S, Tabuchi R. A soil seed bank in a mature conifer plantation and establishment of seedlings after clear-cutting in southwest Japan [J]. Journal of Forest Research,2005,10(4):295-304
    [54]韩有志,王政权.天然次生林中水曲柳种子库的空间格局与过程[J].植物生态学报,2002,26(2):170-176
    [55]Lavorel S, Debussche M, Lebreton JD, Lepart J. Seasonal patterns in the seed bank of Mediterranean old fields[J]. Oikos,1993,67:114-128
    [56]尚占环,任国华,龙瑞军.土壤种子库研究综述——规模、格局及影响因素[J].草业学报,2009,18(1):144-153
    [57]于顺利,蒋高明.土壤种子库的研究进展及若干研究热点[J].植物生态学报,2003,27(4):552-560
    [58]Leck MA, Parker VT, Simpson RL. Ecology of Soil Seed Bank [M]. London:Academic Press, 1989:118-122,257-282
    [59]Traveset A, Riera N, Mas RE. Ecology of fruit-colour polymorphism in Myrtus communis and differential effects of birds and mammals on seed germination and seedling growth [J]. Journal of Ecology,2001,89:749-760
    [60]Bollen A, Van Elsacker L, Ganzhorn JU. Relations between fruits and disperser assemblages in a Malagasy littoral forest:a community-level approach [J]. Journal of Tropical Ecology,2004, 20:599-612
    [61]Dessaint F, Chadoeuf R, Barralis G Nine years' soil seed bank and weed vegetation relationships in an arable field without weed control [J]. Journal of Applied Ecology,1997,34: 123-130
    [62]Kalamees R, Zobel M. Soil seed bank composition in different successional stages of a species rich wooded meadow in Laelatu, western Estonia [J]. Acta Oecologica,1998,19:175-180
    [63]Matlack GR, Good RE. Spatial heterogeneity in the soil seed bank of a mature Coastal Plain forest [J]. The Journal of the Torrey Botanical Society,1990,117:143-152
    [64]Olano JM, Caballero I, Laskurain NA, Loidi J, Escudero A. Seed bank spatial pattern in a temperate secondary forest [J]. Journal of Vegetation Science,2002,13(6):775-784
    [65]刘足根,朱教君,袁小兰,王贺新,谭辉.辽东山区长白落叶松(Larix olgensis)种子雨和种子库[J].生态学报,2007,27(2):579.587
    [66]刘济明,钟章成.梵净山栲树群落的种子雨、种子库及更新[J].植物生态学报,2000,24(4):402-407
    [67]唐勇,曹敏,盛才余.西双版纳热带森林土壤种子库的季节变化[J].广西植物,2000,20(4):371-376
    [68]朱雅娟,董鸣,黄振英.沙埋和种子大小对固沙禾草沙鞭的种子萌发与幼苗出土的影响[J].植物生态学报,2005,29(5):730-739
    [69]殷东生.风箱果传粉及种子萌发影响因子的研究[D].东北林业大学硕士论文.2007:1-37
    [70]Heinken T, Schmidt M, Oheimb G, Kriebitzsch WU, Ellenberg H. Soil seed banks near rubbing trees indicate dispersal of plant species into forests by wild boar [J]. Basic and Applied Ecology, 2006,7:31-44
    [71]刘济明.贵州茂兰喀斯特森林中华蚊母树群落种子库及其萌发特征[J].生态学报,2001,21(2):197-203
    [72]Yagihashi T, Hayashida M, Miyamoto T. Effects of bird ingestion on seed germination of Sorbus commixta [J]. Oecologia,1998,114:209-212
    [73]Aqulno-Aquino C, Willams-Linera G, Newton AC. Disturbance effects on the seed bank of Mexican cloud forest fragments [J]. Biotropica,2005,37(3):337-342
    [74]Urretavizcaya MF, Defosse GE. Soil seed bank of Austrocedrus chilensis (D. Don) Pic. Serm. et Bizarri related to different degrees of fire disturbance in two sites of southern Patagonia, Argentina [J]. Forest Ecology and Management,2004,187:361-372
    [75]Esposito A, Strumia S, Caporaso S, Mazzoleni S. The effect of fire intensity on soil seed bank in Mediterranean macchia [J]. Forest Ecology and Management,2006,234:207-234
    [76]Williams PR, Congdon RA, Grice AC, Clarke PJ. Germinable soil seed banks in a tropical savanna:seasonal dynamics and effects of fire [J]. Austral Ecology,2005,30:79-90
    [77]Bekker RM, Verweij GL, Bakker JP. Soil seed bank dynamics in hayfield succession[J]. Journal of Ecology,2000,88:594-607
    [78]Kirkham FK, Kent M. soil seed bank composition in relation to the aboveground vegetation in fertilized and unfertilized hay meadows on a Somerset peat moor [J]. Journal of Applied Ecology,1997,34:889-902
    [79]刘旭,程瑞梅,肖文发.土壤种子库研究进展[J].世界林业研究,2008,21(1):27-33
    [80]Whipple SA. The relationship of buried, germination seed to vegetation in an old-growth Colorado subalpine forest [J]. Canadian Journal of Botany,1977,56:1506-1509
    [81]Russi L, Cocks PS, Roberts EH. Seed bank dynamics in a Mediterranean grassland [J]. Journal of Applied Ecology,1992,29:763-771
    [82]周先叶,李鸣光,王伯荪,昝启杰.广东黑石顶自然保护区森林次生演替不同阶段土壤种子库的研究[J].植物生态学报,2000,24(2):222-230
    [83]王巍,李庆康,马克平.东灵山地区辽东栋幼苗的建立和空间分布[J].植物生态学报,2000,24(5):595-600
    [84]Uniyal RC, Nautiyal AR. Seed germination and seedling extension growth in Ougeinia dalbergioides Benth. under water and salinity stress [J]. New Forests,1998,16(3):265-272
    [85]许鸿源,钟文勇,陈建丽,郭华灵,邓惠文,黄仲春.几种因素对大花紫薇种子萌发的影响[J].种子,2005,24(9):57-61
    [86]黄振英,张新时,Yitzchak Gutterman,郑光华.光照、温度和盐分对梭梭种子萌发的影响[J].植物生理学报,2001,27(3):275-280
    [87]Paz H, Ramos MM. Seed mass and seedling performance within eight species of Psychotria (rubiaceae) [J]. Ecological society of America,2003,84(2):439-450
    [88]Khan MA, Gulzar S. Light, salinity, and temperature effects on the seed germination of perennial grasses [J]. American Journal of Botany,2003,90(1):131-134
    [89]何彦龙,王满堂,杜国祯.不同光照处理下青藏高原克隆植物黄帚橐吾(Ligularia virgaurea)种子大小对其幼苗生长的影响[J].生态学报,2007,27(8):3091-3098
    [90]陈志刚,樊大勇,张旺锋,谢宗强.林隙与林下环境对锐齿槲栎和米心水青冈种群更新的影响[J].植物生态学报,2005,29(3):354-360
    [91]Ellsworth JW, Harrington RA, Fownes JH. Seedling emergence, growth, and allocation of Oriental bitter sweet:effects of seed input, seed bank, and forest floor litter [J]. Forest Ecology and Management,2004,190:255-264
    [92]Rosenthal JP, Kotane PM. Terrestrial plant tolerance to herbivory [J]. Trends in Ecology and Evolution,1994,9(4):145-148
    [93]李媛,陶建平,王永健,余小红,席一.亚高山暗针叶林林缘华西箭竹对岷江冷杉幼苗更新的影响[J].植物生态学报,2007,31(2):283-290
    [94]樊传辉.红松幼苗对光环境适应性的研究[D].东北林业大学硕士论文.2007:1-39
    [95]张国盛,王哲,王林和,郝云龙,温国胜.毛乌素沙地天然臭柏居群有性更新幼苗动态研究[J].林业科学,42(5):62-67
    [96]郑万钧.中国树木志[M].北京:中国树木志编辑委员会编,1985,2:1021-1022
    [97]Gil-lzquierdo A, Mellenthin A. Identification and quantitation of flavonols in rowanberry (Sorbus aucuparia L.)juice [J]. European Food Research and Technology,2001,213(1):11-13
    [98]Rasmussen KK, Kollmann J. Low genetic diversity in small peripheral populations of a rare European tree(Sorbus torminalis) dominated by clonal reproduction [J]. Conserv Genet,2008, 9:1533-1539
    [99]Hamberg L, Malmivaara-Lamsa M, Lehvavirta S, Kotze DJ. The effects of soil fertility on the abundance of rowan (Sorbus aucuparia L.) in urban forests [J]. Plant Ecology,2009,204:21-32
    [100]吴超.花楸树群体遗传结构及种子催芽技术研究[D].中国林业科学研究院硕士论文.2007:1-58
    [101]姜雁,杨靖宇.花楸引种试验的阶段总结[J].河北林业科技,2001,6:17-19
    [102]庄倩,刘玮,李长海.花楸种子及嫩枝扦插繁殖技术[J].林业科技,2006,31(3):43-44
    [103]王爱芝.花楸不同外植体的茎丛增生和愈伤组织诱导及植株再生[D].东北林业大学硕士论文.2004:1-65
    [104]任军.不同种源花楸种苗生理生态特性的研究[D].东北师范大学硕士论文.2006:1-30
    [105]沈海龙,高翔翔,杨玲.甘露醇、蔗糖和低温预处理对花楸体细胞胚诱导的影响[J].植物生理学通讯,2008,44(4):667-681
    [106]Sargent RD, Ackerly DD. Plant-pollinator interactions and the assembly of plant communities [J]. Trends in Ecology and Evolution,2008,23 (3):123-130
    [107]Motta R. Ungulate impact on rowan (Sorbus aucuparia L.) and Norway spruce (Picea abies (L.) Karst.) height structure in mountain forests in the eastern Italian Alps [J]. Forest Ecology and Management,2003,181:139-150
    [108]Eycott AE, Watkinson AR, Hemami MR, Dolman PM. The dispersal of vascular plants in a forest mosaic by a guild of mammalian herbivores [J]. Oecologia,2007,154:107-118
    [109]曾德慧,尤文忠,范志平,刘明国.樟子松人工固沙林天然更新障碍因子分析[J].应用生态学报,2002,13(3):257-261
    [110]魏晓慧,殷东生,祝宁.自然条件下风箱果的克隆构型[J].植物生态学报,2007,31(4):625-629
    [111]徐振邦,代力民,陈吉泉,王战,戴洪才,李昕.长白山红松阔叶混交林森林天然更新条件的研究[J].生态学报,2001,21(9):1413-1420
    [112]何志斌,赵文智.黑河下游荒漠河岸林典型样带植被空间异质性[J].冰川冻土.2003,25(5):591-596
    [113]周以良.1986.黑龙江树木志[M].哈尔滨:黑龙江科学技术出版社,334-335
    [114]伊力塔,韩海荣,程小琴,康峰峰,张志杰.灵空山林区辽东栎(Quercus liaotungensis)种群空间分布格局[J].生态学报,2008,28(7):3254-3261
    [115]杨跃军,孙向阳,王保平.森林土壤种子库与天然更新[J].应用生态学报,2001,12(2):304-308
    [116]武高林,杜国祯,尚占环.种子大小及其命运对植被更新贡献研究进展[J].应用生态学报,2006,17(10):1969-1972
    [117]Husband BC, Barrett SCH. A metapopulation perspective in plant population biology [J]. Journal of Ecology,1996,86:854-865
    [118]Rasmussen KK, Kollmann J. Poor sexual reproduction on the distribution limit of the rare tree Sorbus torminalis[J]. Acta Oecologica,2004,25:211-218
    [119]朱万泽,王金锡,罗成荣,段学梅.森林萌生更新研究进展[J].林业科学,2007,43(9):74-81
    [120]高秀霞,陈进,周会平,白智林.养分供应对3种舞花姜属植物繁殖方式的影响[J].植物生态学报,2006,30(1):132-139
    [121]Ohkubo T. Structure and dynamics of Japanese beech(Fagus japonica Maxim.) stools and sprouts in the regeneration of the natural forests [J]. Vegetatio,1992,101:65-80
    [122]Hoebee SE, Menn C, Rotach P, Finkeldeya R, Holderegger R. Spatial genetic structure of Sorbus torminalis:The extent of clonal reproduction in natural stands of a rare tree species with a scattered distribution[J]. Forest Ecology and Management,2006,226:1-8
    [123]王仁卿,张淑萍,张治国,朱建中,吕以璞.昆嵛山天然赤松种群的数量特征及更新动态[J].生态学杂志,2000,19(3):61-65
    [124]Foster BL, Tilman D. Seed limitation and the regulation of community structure in oak savanna grassland [J]. Journal of Ecology,2003,91(6):999-1007
    [125]赵瑾,陈进,马绍宾.不同扰动生境中动物对酸苔菜种子的捕食和散布[J].生物多样性,2008,16(1):34-43
    [126]Schupp EW, Fuentes M. Spatial patterns of seed dispersal and the unification of plant population ecology [J]. Ecoscience,1995,2:267-275
    [127]Makarian H, Rashed Mohassel MH, Bannayan M, Nassiri M. Soil seed bank and seedling populations of Hordeum murinum and Cardaria draba in saffron fields [J]. Agriculture, Ecosystems and Environment,2007,120:307-312
    [128]Hall JB, Swaine MD. Seed stocks in Ghanaian forest soils [J]. Biotropca,1980,12:256-263
    [129]Myers J A, Vellend M, Gardescu S, Marks P L. Seed dispersal by white-tailed deer: implications for long-distance dispersal, invasion, and migration of plants in eastern North America [J]. Oecologia,2004,139:35-44
    [130]Pons J, Pausas J G Acorn dispersal estimated by radio-tracking [J]. Oecologia,2007,153: 903-911
    [131]曹林,肖治术,张知彬,郭聪.亚热带林区啮齿动物对樱桃种子捕食和搬运的作用格局[J].动物学杂志,2006,41(4):27-32
    [132]沈有信,刘文耀.长久性紫茎泽兰土壤种子库[J].植物生态学报,2004,28(6):768-772
    [133]张希彪,王瑞娟,上官周平,黄土高原子午岭油松林的种子雨和土壤种子库动态[J].生态学报,2009,29(4):1877-1884
    [134]尹华军,刘庆.川西米亚罗亚高山云杉林种子雨和七壤种子库研究[J].植物生态学报,2005,29(1):108-115
    [135]Thompson K. Small-scale heterogeneity in the seed bank of an acidic grassland [J]. Journal of Ecology,1986,74:733-738
    [136]Grime JP. Seed bank in ecological perspective. In:Leck MA, Parker VT, Simpson RL eds. Ecology of seed bark [M]. USA:Academic Press,1989,1-21
    [137]王友凤,马祥庆.林木种子萌发的生理生态学机理研究进展[J].世界林业研究,2007,20(4):19-23
    [138]Razanamandranto S, Tigabu M, Neya S, Oden PC. Effects of gut treatment on recovery and germinability of bovine and ovine ingested seeds of four woody species from the Sudanian savanna in West Africa [J]. Flora,2004,199:389-397
    [139]Hulme PE. Seedling herbivory in grassland:relative impact of vertebrate and invertebrate herbivores [J]. Journal of Ecology,1994,82:873-880
    [140]Leck MA, Brock MA. Ecological and evolutionary trends in wetlands:Evidence from seeds and seed banks in New South Wales, Australia and New Jersey, USA [J]. Plant Species Biology, 2000,15:97-112

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700