用户名: 密码: 验证码:
土工问题的颗粒流数值模拟及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土是一种不同于一般材料的极其复杂的颗粒集合体,它既不是理想的弹性材料,也不是理想的塑性材料。岩土工程模拟研究的主要对象是松散的岩土材料,这种材料的典型特点就是其破碎性和流动性。尽管连续介质的假设与实际情况不相符合,目前大多的数值计算方法都是用连续介质力学的思路去分析和研究土的力学性状。人们早就认识到应当从微细观角度研究土这种具有独特的不同于金属等连续介质的应力—应变性状,但是由于这种研究相当复杂,而且依赖比较多的外界因素,比如计算机的处理能力和细观颗粒的本构理论等,故很难建立微观与宏观的定量关系。
     本文引入颗粒流理论PFC2D和PFC3D并开发颗粒流数值模拟技术,克服传统连续介质力学模型采用宏观连续性假设所导致的不足,建立了细观参数标定宏观参数的近似定量关系,并首次尝试用于模拟基坑开挖的动态过程。并且模拟了颗粒排列成的不同空间结构的力学性状和无粘性土三轴应力-应变关系曲线,将土体微细观结构与宏观力学反应紧密地联系起来,对土体剪切位移场形成和演化等渐进破坏过程有更深入的理解和发现。
     通过大量的参数试算与分析,建立起细观结构参数与宏观力学参数的函数关系式,近似标定了土体的摩擦角、变形模量和加固土的峰值强度,并在此基础上建立了模型模拟支撑开挖的动态过程,其中灌注桩和钢支撑用颗粒的平行粘结本构模型模拟,土体用线弹性接触本构模型模拟。分析得到了分布开挖的结构水平位移、弯矩、剪力、支撑轴力和作用在结构上的土压力变化和分布规律,并且与现场实测数据进行了比较。
     土的另一方面的复杂性还在于其空间结构性,研究颗粒的空间结构性问题可以从细观形态入手,研究颗粒排列的几何特征对材料力学特性的影响,有利于探讨颗粒世界的非均质性,各向异性。基于三维离散单元颗粒流理论,引入了颗粒的滑动接触本构模型,建立了金字塔和正交晶系两种典型空间排列结构的颗粒体试样,进行了三轴应力应变数值模拟和平面应力应变数值模拟,与物理实验结果吻合,数值试验基本再现了物理试验的力学宏观行为,峰值摩擦角与理论值之间的相对误差小于2.5%。分析不同典型空间排列结构试验过程中的细观织构(配位数、孔隙率和滑动摩擦接触数)的变化趋势和规律。
     引入了在极限剪力状态下滑动接触本构模型,建立颗粒体砂土试样,进行三轴应力应变数值模拟。通过大量的颗粒流数值试验,从细观力学角度对砂土的工程力学特性进行了模拟研究和分析;对砂土的室内常规三轴试验及其剪切带的形成和发展进行了数值模拟,分别对比不同围压下颗粒体试样与室内承德中密砂三轴试验的应力—应变关系曲线,基本再现了试样的加载曲线;分析颗粒法向刚度、法向和切向刚度比值、孔隙率,摩擦系数等细观结构参数变化对材料的宏观力学性状的影响;分析了细观织构在加载过程中的变化规律;并研究了围压对剪切位移场性状的影响。
Soil is not same general material, which has much complicated properties and highly nonlinear. It is neither perfect elastic material nor perfect plastic material. In geotechnical engineering field the material of modeling is geotechnical material, which has the typical properties of fragmentation, dispersing and flowage. In soil mechanics theory, the soils are regarded as continua as a rule after the substance morphology is fallen into gaseity, liquid and solid. Now the continuum theory is used in most of numerical methods. All soil is discontinuous to some extent. So it has been acquainted early to study the stress and distortion properties of soil form the point of microcosmic view, but such study is too complicated to build quantitative relations between microcosmic and macrocosmic and depend on the power of computer and particle model.
     Within PFC2D (Particle flow code in two dimensions) and PFC3D (Particle flow code in three dimensions) discrete materials such soils were simulated by disks or by spheres and overcame the defect of the continuum theory to establish the relationships of microcosmic parameters and macroscopical parameters; The excavation process was simulated by using PFC firstly in the paper; PFC simulated a series of triaxial tests on steel spheres with pyramid and rhombic packings and the stress-strain curve of sand. And It can be started with micromechanics to study structured properly of soil, and should be noted to disclose the geometry character of soil particle arranging and the mechanic characters of soil particle to study not only the generation of the shear band but also the stress-stain curve in a quite similar manner to those observed in natural granular soils.
     From the simulations with different physical tests, establishing the functions between microcosmic parameters and macroscopical parameters including of soil angle of internal friction, modulus of deformation, peak strength of soil reinforced and unconfined compression strength of clay. Based on these functions, the paper simulate the process of excavation, and the sheet pile wall and the strut are simulated by joining together a row of disks of equal radius with parallel bonds, and soil is simulated by particles. The resulting displacements, bending moments and shearing forces within the wall, axial forces of struts and earth pressures acting on the wall are studied as well as the behavior within the soils for subsequent excavation steps.
     The soil microcosmic spatial structure results in its more complexity. It can be started with micromechanics to study spatial structure properties of soil, and should be noted to disclose the geometry character of particle spatial arranging. At the same time, discuss the heterogeneity and anisotropy of different spatial structures. Numerical simulation of three-dimensional assembly of spheres was carried out based on discrete element method and the theory of particle flow where the slip model was used to constituted PFC mode of packing configurations. This paper simulated a series of triaxial tests on steel spheres with pyramid and rhombic packings corresponding with real laboratory compression test. Numerical simulations captured the observed laboratory response well and the relative difference between numerical and theoretical angle of mobilized does not exceed 2.5%. The microscopic fabric (the coordination number, the porosity and the slip fraction) evolve with the development of axial strain is studied
     The PFC3D model of the sand that is consistent with the lab results of Chengde middle close-grained sand have been formed via vast parameters trial-and-error process. Numerical simulation tests were carried out using the distinct element method (DEM) by paying much attention to the micro-deformation mechanism leading to the development of shear bands and the microscopic fabric (coordination number, porosity and slip fraction) evolved regularly with the development of axial strain. Contrasting the stress-strain curves of the PFC3D sand model with Chengde middle close-grained sand under various confining is done in this paper. Analyzing the influencing rules of the stress-strain curves as the microcosmic parameters, such as particle normal stiffness, ratio of normal stiffness to tangent stiffness, friction coefficient, and initial porosity of the PFC model is done in this paper. And the properties of the shear band are studying.
引文
[1]石根华.数值流形方法与非连续变形分析[M].裴觉民译.北京:清华大学出版社,1997.
    [2]石根华.岩体稳定分析的几何方法[J].中国科学,1978,(4):487-495.
    [3]RFeb_Manual_Chinese[M].东北大学岩石破裂与失稳研究中心,1998.
    [4]邢纪波、愈良群、王泳嘉.三维梁-颗粒模型与岩石材料细观力学行为模拟[J].岩石力学与工程学报,1999,18(6):627-630.
    [5]王泳嘉、邢纪波.离散元法及其在岩土力学中的应用[J].辽宁:东北工学院出版社,1991.60-89.
    [6]邢纪波,王泳嘉.离散元法的改进及其在颗粒介质研究中的应用[J].岩土工程学报,1990,12(5):51-57.
    [7]刘斯宏,卢廷浩.用离散单元法分析单剪试验中粒状体的剪切机理[M].岩土工程学报,2000,22(5):608-611.
    [8]张国新,李广信,郭瑞平.不连续变形分析与土的应力应变关系[M].岩土工程学报,2000,40(8):102-105.
    [9]朱万成,唐春安.岩板中混合裂纹扩展过程的数值模拟[M].岩土工程学报,2000,22(2):231-234.
    [10]Cundall P A.A computer model for simulating progressive large scale movements in blocky system.In:Muller Led,ed.Proc Symp Int Soc Rock Mechanics.Rotterdam:Balkama A A,1971,(1):8-12.
    [11]Strack O D L,Cundall P A.The distinct element method as a tool for reseach in granular media.Part 1.Report to the National Science Foundation,M innesota:University of Minnesota,1978.
    [12]Cundall P A.Strack O D L.The distinct element method as a tool for research in granular med ia,Part Ⅱ.Report to the National Science Foundation,Minnesota:University of Minnesota,1979.
    [13]Cundall P A.Strack O D L.A discrete numerical model for granular assembles.Geotechnique,1979,29(1):47-65.
    [14]Walton O R.Particle dynamics modeling of geological materials.1980,Lawrence Livermore Mational Lab.Report UCRL-52915.
    [15]Campbell C S,Brennen C E.Computer simulation of granular shear flows.J Fluid Mech.1985.151:167-d88.
    [16]Campbell C S,Brennen C E.Chute flows of granular materials:some computer simulations.J Appl Mech,1985.52:172-178.
    [17]Redjai F,Jean M,Moreau J J,Roux S.Force distributions in dense two-dimensional granular systems.Physical Review Letters,1996,77(2):274-277.
    [18]Moreau J J,Jean M ichel.Numerical treatment of contact and friction:the contact dynamics method.ASME.Petroleum Division,1996,76(4):201-208.
    [19]Bardet J P,Proubet J.A numeeerical investigation of stnlcture of persistent shear bands in granular media.Geotechnique,1991,41(4):599-613.
    [20]Bardet J P,Proubet J.Shear-band analysis in idealized granular material.J Engrg Mech,1992,118(8):397-415.
    [21]Huang H,Detoumay E Bellier B.Discrete Element modelling of rock cutting.Rock Mechanics for Industry,1999,1:123-130.
    [22]Dolezalová M,Czeme P Havel E.Micromechanical modeling of stress path effects using PFC2D code[A].In Konietzky H ed.Numerical Modeling in Micromechanics via Particle Methods[C].[s.l.]:[s.n.],2002.173-182..
    [23]Cleary P W.DEM simulation of industrial particle flows:case studies of dragline excavators,mixing in tumblers and centrifugal mills.Powder Technology,2000,109(1-3):83-104.
    [24]Oda M,1 washita K,eds.Mechanics of Granular Materials,An introduction.Rotterdam:Balkema A A.1999.147-223.
    [25]Hoda T,Towhata I.Flow deformation of ground due to liquefaction during earthquake[A].In Konietzky H ed.Numerical Modeling in Micromechanics via Particle Methods[C].[s.l.][s.n.],2002.141-150.
    [26]Biarrez J,Gourves R,eds.Powders and Grains,Proc.of an Int Conf on M icrom echanics of Granular Media,Rotterdam:Balkema A A,1989.
    [27]Thornton C,ed.Powders& G rains '93,Proc of 2nd Int Conf on M icrom echanics of Granular Media.Rotterdam:Balkema A A,1993.
    [28]Behring er R P,Jenkins J T,eds.Powders & Grains '97,Proc of 3th Int Conf on Micromechanics of Granular Media.Rotterdam:Balkem aA A,1997.
    [29]Kishino Y,ed.Powders an d Grains 2001,Proc of 4th Int Conf on Micro mechanics of Granular Media.Ro tte rdam:Balkema A A,2001.
    [30]李世海,高波,燕琳.三峡永久船闸高边坡开挖三维离散元数值模拟[J].岩土力学,2002,23(3):272-277.
    [31]王泳嘉著.离散单元法及其在岩土力学中的应用[M].沈阳:东北工学院出版社,1991.
    [32]池永.土的工程力学的细观研究-应力应变关系和剪切带的颗粒流模拟[D].同济大学博士学位论文,2002.
    [33]周建,池毓蔚,池永,徐建平.砂土双轴试验的颗粒流模拟[J].岩土工程学报,2000,22(6):701-704.
    [34]周建,廖雄华,池永,徐建平.砂、土的室内平面应变试验的颗粒流模拟[J].同济大学学 报,2002,30(9):1044-1050.
    [35]张洪武,秦建敏.基于非线性接触本构的颗粒材料离散元数值模拟[J].岩土工程学报,2006,28(11):1964-1969.
    [36]Walton O R,Braun R L.Stress calculations for assemblies of inelastic spheres in uniform shear.Acta M echanica,1985,63(1-4):73-86.
    [37]Williams J R,Rege N.The development of circulation cell structures in granular materials undergoing compression.Powder Technology,1997,90:187-194.
    [38]Williams J R,Rege N.Granular vortices and shear band formation.In:ASCE Proc.of Mechanics of Deformation and Flow of Particulate Materials,Evanston,Illinois,1997.62-76.
    [39]Iwashita K,Oda M.Micro-deformation mechanism of shear banding process based on modified distinct element method.Powder Technology,2000,109(1-3):192-205.
    [40]Thornton C,Antony S J.Quasi-static shear deformation of a soft particle system.Powder Technology,2000,109(1-3):179-191.
    [41]Thornton C,Antony S J.Quasi-static shear deformation of a soft particle system.Powder Technology,2000,109(1-3):179-191.
    [42]Zhang L,Thornton C.Numerical simulations of the direct shear test.In:The 4th World Congress of Particle Technology,No 473,2002,Sydney.
    [43]Kazuyoshi Iwashita,Masanobu Oda.Micro-deformation mechanism of shear banding process based on modified distinct element method.Powder Technology,2000,109:192-205.
    [44]Matuttls H G,Luding S,Herrmann H J.Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles.Powder Technology,2000,109(1-3):278-292.
    [45]Zhou Y C,Xu B H,Y.u A B,Zulli P An experimental and numerical study of the angle of repose of coarse spheres.PowderTechnology,2002,125(1):45-54.
    [46]黄晚清,陆 阳.散粒体重力堆积的三维离散元模拟[J].岩土工程学报,2006,28(12):2139-2143.
    [47]罗勇,龚晓南,吴瑞潜.流体与颗粒渗流效应的分析和颗粒流模拟[J].浙江大学学报,2007,41(12):2139-2143.
    [48]Yu A B,Bridgwater J,Burbidge A.On the modelling of the packing of fine particles.Powder Technology,1997,92:185-194.
    [49]Liu L F,Zhang Z P,Yu A B.Dynamic simulation of the centripetal packing of particles.Physica A,1999,268:433-353.
    [50]Yang R Y,Zou R P,Yu A B.Computer simulation of the packing of fine particles.Physical Review E,2000,62:3000-3009.
    [51]Zhang Z P,Liu L F,Yuan Y D,Yu A B.Numericai study of the effects of dynamic factors on the packing of particles.Powder Technology,2001,116:23-32.
    [52]左树春,杨全文,徐泳.用离散元法模拟散体在车辆紧急制动中的行为.过程工程学报,2002,2(增):79-83.
    [53]Walton O R.Numerical simulation of inclined chute flows of monodisperse inelastic,frictional spheres.Mechanics of Materials,1993,16:239-247.
    [54]Hanes D M,Walton O R.Simulations and physical measurements of glass spheres flowing down a bumpy incline.Powder Technology,2000,109(1-3):133-144.
    [55]Karion A.Hunt M L.Wall stresses in granular Couette flows of monosized particles and binary mixtures.Powder Technology,2000,109(1-3):145-163.
    [56]Langston P A,Tüzün U,Heyes D M.Discrete simulations of granular flow in 2D and 3D hoppers:dependence of discharge rate and wall stress on particle interactions.ChemEngng Sci,1995,50:967-987.
    [57]Langston P A,Tüzün U,Heyes D M.Discrete element simulations of internal stress and flow fields in funnel flow hoppers.Powder Technology,1995,85:153-169.
    [58]Kafui K D.Thornton C.Some observations of granular flow in hoppers and silos.ln:Behringer R P,Jenkins T J,eds.Powders & Grains 97.Rotterdam:Balkema,1997.511-514.
    [59]Masson S,Martinez J.Effect of mechanical properties on silo flow and stress from distinct element simulations.Powder Technology,2000,109(1-3):164-178.
    [60]余良群,邢继波,简仓装卸料时力场及流场的离散单元法模拟.农业工程学报,2000,16(4):15-19.
    [61]Xu Yong,Kafui K D,Thomton C,Lian G.Effects of Material Properties on Granular Flow in Silo Using DEM Simulation.Particulate Science and Technology,2002,20(2):109-124.
    [62]Tanaka H,Momotzu M,Oida A,Yamazaki M.Simulation of soil deformation and resistance at bar penetration by the Distinct Element Method.In:Qus Y,L Q,ed.Proc 12th Int Conf ISTVS.Beijing:China Machine Press,1996.21-28.
    [63]蒋鹏,李荣强,孔德坊.离散元法用于块石土强夯过程模拟.岩土力学,1999,20(3):29-34.
    [64]Nakashima H,Oida A.Algorithm and implementation of soil-tire contact analysis code based on dynamic FE-DE method.In:Proc 14th Conf of ISTVS,2002(光盘出版物).
    [65]Fujii H,Oida A,Nakashima H,etc.Analysis of Interaction between lunar terrain-wheel and treaded wheel by Distinct Element Method.In:Proc 14th Conf of ISTVS,2002(光盘出版物).
    [66]Momozu M,Oida A,Yamazaki M,Koolen A J.Simulation of soil loosing process by pendulum type blade by meas of modified distinct element method.In:Proc 13th Int Conf of ISTVS.1999.71-78.
    [67]Tanaka H,Inooku K,Momozu M,etc.Numerical analysis of soil loosening in subsurface tillage by a vibrating type subsoiler by means of Distinct Element Method.In:Proc13th Int Conf ISTVS.1999.791-798.
    [68]Tsuji Y,Kawaguchi T,Tanaka T.Discrete particle simulation of two-dimensional fluidized bed.Powder Technology,1993,77(1):79-87.
    [69]Kawaguchi T,Tanaka T,Tsuji Y.Numerical simulation of two-dimensional fluidized beds using the discrete element method(comparison between the two-and three dimensional models).Powder Technology,1998,96(1):129-138.
    [70]Kawaguchi T,Sakamoto M,Tanaka T,TsujiY.Quasi-three dimensional numerical simulation of spouted beds in cylinder.Powder Technology,2000,109(1-3):3-12.
    [71]Han K,Peric D,Owen D R J,Yu J.A combined finite/discrete element simulation of shot peening processes-Part Ⅱ:3D interaction laws.Engng Comp,2000,17(6-7):680-702.
    [72]Hun K,Owen D R J,Peric D.Combined finite/discrete element and explicit/implicit simulations of peen forming processes.Engng Comp,2002,19(1):92-118.
    [73]Owen D R J,Feng Y T.Parallelised Finite/Discrete Element Simulation of Multi.fracture Solids and Discrete Systems.Engng Comp,2001,18(3-4):557-576.
    [74]徐泳,孙其诚,张凌,黄文彬.颗粒离散元法研究进展[J].力学进展,2003,22(3):250-260.
    [75]Behringer R P.The Dynamics of flowing sand[J].Nonlinear Science Today,1993,3(3):2-15.
    [76]Jaeger H M,Nagel S R,Behringer R P.Granular solids,liquids,and gases[J].Reviews of Modem Physics,1996,68(4):1259-1273.
    [77]Liu C-H,Nagel S R,et al.Force fluctuation in bead packs[J].Science,1995,269:513-515.
    [78]Geng J,Longhi E,Behringer R P,Howell D W.Memory in two-dimentional heap experiments.[J].Physical Review E,2001,64(6):060301.
    [79]Smíd J,Novosad J.Proc Powtech Conferece 1981[R].IndChem Eng Symp,1981,D3V1.
    [80]Wittmer J P,et al.An explanation for the central stress mimimum in sand piles[J].Nature,1996,382:336-338.
    [81]刘源,缪馥星,苗天德.二维颗粒堆积体中力的传递与分布研究[J].岩土工程学报,2006,27(4):468-473.
    [82]朱焕春.PFC及其在矿山崩落开采研究中的应用[J].岩土工程学报,2006,25(9):1927-1931.
    [83]Itasca Consulting Group Inc..Particle Flow Code[R].Sudbury Itasca Consulting Group Inc. 2002.
    [84]Itasca Consulting Group,Inc.FLAC(Fast Lagrangian Analysis of Continua),Version 4.0.Minneapolis:ICG,2002.
    [85]Itasca Consulting Group,Inc.UDEC(Universal Distinct Element Code),Version 3.1.Minneapolis:ICG,2000.
    [86]Itasca Consulting Group,Inc.3DEC(3-Dimensional Distinct Element Code),Version 2.0.Minneapolis:ICG,1998.
    [87]Itasca Consulting Group,Inc.PFC2D(Particle Flow Code in 2 Dimensions),Version 2.0.Minneapolis:ICG,2002.
    [88]Itasca Consulting Group,Inc.PFC2D(Particle Flow Code in 3 Dimensions),Version 2.0.Minneapolis:ICG,2002.
    [89]SHI G H.Discontinuous deformation analysis:a new numerical model for the statics and dynamics of block systems[D].Berkeley:Department of Cilvil Engineering,University of California,1988.).
    [90]Lambe,T.W.,& R.V.Whitman.,1969.Soil Mechanics.New York:John Wiley & Sons,Inc.,
    [91]龚晓南.高等土力学[M].杭州,1998,pp.257-258.
    [92]W.F.Chen.Soil Plasticity Theory and Implementation[M].ELSEVLER Science Publishers B.V,1985,pp.1-2.
    [93]McGuire,W.and Gallagher,R.H.,Matrix Structural Analysis,John Wiley,USA,1979.
    [94]Rowe,P.W.The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[J].Proc.R.Soc.London,Ser.A,1962,269(1339),pp.500-527.
    [95]Rowe,P.W.,and Barden,L.Importance of free ends in triaxial testing[J].J Soil Mech.Found.Div.,1964,90(1),pp.1-27.
    [96]Thornton,C.The conditions for failure of a face-centered cubic array of uniform rigid spheres.Geotechnique[J].1979,29(4),pp.441-459.
    [97]Thornton,C.Numerical simulations of deviatoric shear deformation in granular media[J].Geotechnique,2000,50(4),pp.43-53.
    [98]Mitchell,J.K.Fundamentals of soil behavior,2nd Ed.,Wiley,New York.1993.
    [99]Catherine O'Sullivan,et al.Examination of the response of regularly packed specimens of spherical particles using physical tests and discrete element simulations[J].J.Eng.Mech.2004,140(4),pp.1140-1150.
    [100]李广信.高等土力学[M].北京.清华大学出版社,2004,32-113.
    [101]李广信.土的三维本构关系的探讨与模型验证:[博士论文].北京:清华大学,1985.
    [102]Cambou,B."Micromechanical approach in granular materials" behavior of granular materials,Number 385 in CISM Courses and Chang,C.S., and Cambou,ed., Springer,wien, Germany. 1998.
    
    [103] H.G.B. Allersma, Photo-elastic stress analysis and strain in simple shear, in: P.A. Vermeer, H.J. LugerEds.., IUTAM Conference on Deformation and Failure of Granular Materials,BaIkema, Rotterdam, 1982, pp. 345-353.
    
    [104]J.P. Bardet, Observations on the effects of particle rotations on the failure of idealized granular materials, Mechanics of Materials 18,1994.159-182, Elsevier, Amsterdam, Netherlands.
    
    [105] J.P. Bardet, J. Proubet, A numerical investigation of the structure of persistent shear bands in granular media, Geotechnique 41(4) ,1991, pp.599-613, London, UK.
    
    [106] J.P. Bardet, Q. Huang, Rotational stiffness of cylindrical particle contacts, in: C. Thornton (Ed.), Proc. Second Int. Conf. on Micromechanics of Granular Media, Birmingham, Balkema, Rotterdam,Netherlands, 1993, pp. 39-43.
    
    [107] R.J. Bathurst, L. Rothenburg, Observations on stress-force-fabric relationships in idealized granular materials, Mechanics of Materials 9,1990, pp.65-80, Elsevier, Amsterdam, Netherlands.
    
    [108] R.J. Bathurst, L. Rothenburg, Observations on stress-force-fabric relationships in idealized granular materials, Mechanics of Materials 9,1990, pp.65-80, Elsevier, Amsterdam, Netherlands.
    
    [109] F. Calvetti, G. Combe, J. Lanier, Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path, Mechanics of Cohesive-Frictional Materials 2,1997, pp.121-163.
    
    [110] P.A. Cundall, A computer model for simulating progressive, large scale movement in blocky rock systems, Proc. Symp. Int. Soc. Rock Mech., Nancy, France, Vol. 2, No. 8,1971.
    
    [110] J. Desrues, R. Chambon, M. Mokni, F. Mazerolle, Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography, Geotechnique 46(3), 1996, pp.529-546, London, UK.
    
    [111] A. Drescher, An experimental investigation of flow rule for granular materials, Geotechnique 26(4),1976, pp.591-601, London, UK.
    
    [112] R.J. Finno, W.W. Harris, M.A. Mooney, G. Viggiani, Strain localization and undrained steady state of sand, Journal of Geotechnical Engineering, ASCE 122 (6), 1996, pp.462-473.
    
    [113] K. Iwashita, K. Matsuura, M. Oda, Distinct element method with the effect of moment transfer at the contact points, Journal Geotechnical Engineering, Tokyo, Japan 529 (33) ,1995, pp. 145-154, in Japanese.
    
    [114] K. Iwashita, M. Oda, Rolling resistance at contacts in the simulation of shear band development by DEM, Journal of Engineering Mechanics, ASCE 124,1998,285-292.
    
    [115] K. Iwashita, M. Oda, Shear band development in modified DEM: Importance of couple stress, Scientific Bulletin of Academic Computer Center in Gdansk 2 (3), 1998, pp.443-460.
    
    [116] T.C. Ke, J.D. Bray, Modeling of particulate media using discontinuous deformation analysis, Journal of Engineering Mechanics, ASCE 121,1995, pp.1234-1243.
    
    [117] T.W. Lambe, R.V. Whitman, Soil Mechanics, SI Version, Wiley,1969.
    
    [118] H. Matsuoka, Stress-strain relationship of sands based on the mobilized plane, Soils and Foundations 14(2), 1974, pp. 47-61, Tokyo, Japan.
    
    [119] H.B. Mu hlhaus, I. Vardoulakis, The thickness of shear bands in granular materials, Geotechnique 37(3), 1987. 271-283, London, UK.
    
    [120] S. Nemat-Nasser, On behavior of granular materials in simple shear, Soils and Foundations 20 (3), 1980, pp. 59-73, Tokyo, Japan.
    
    [121] P.L. Newland, B.H. Allely, Volume changes in drained triaxial tests on granular materials, Geotechnique 7,1957, pp. 17-34, London, UK.
    
    [122] Thomas, P. A.Discontinuous deformation analysis of paniculate media.PhD thesis, Dept. of Civil Engineering, Univ. of California at Berkeley, 1997, Berkeley, Calif.
    
    [123]Thornton, C. The conditions for failure of a face-centered cubic array of uniform rigid spheres.Geotechnique, 29(4), 1979, pp.441-459.
    
    [123]Thornton, C. Numerical simulations of deviatoric shear deformation in granular media.Geotechnique, 50(4), 2000, pp.43-53.
    
    [124] Liu Sihong, Lu Tinghao Microscopic shearmechanism of granular materials in simple shear by DEM.[J]. 岩土工程学报,2000,22(5), pp.51~57.
    
    [125] M. Oda, Micro-fabric and couple stress in shear bands of granular materials, in: C. Thornton (Ed.), Proc. Second Int. Conf. on Micromechanics of Granular Media, Birmingham, Balkema, Rotterdam, Netherlands, 1993, pp. 161-166.
    
    [126] M. Oda, A micro-deformation model for dilatancy of granular materials, in: C.S. Chang et al.(Eds.), Symposium on Mechanics of Paniculate Materials in McNu Conference, ASCE, 1997, pp. 24-37.
    
    [127] M. Oda, K. Iwashita, Couple stress developed in shear bands (1); Particle rotation and couple stress in granular media, Engineering Mechanics, Proceedings of the 12th Engineering Mechanics Conference, 1998, pp. 1283-1286.
    
    [128] M. Oda, H. Kazama, Micro-structure of shear band and its relation to the mechanism of dilatancy and failure of granular soils,Geotechnique 48(4) ,1998, pp.465—481, London, UK.
    
    [129] M. Oda, J. Konishi, Microscopic deformation mechanism of granular material in simple shear, Soils and Foundations 14 (4), 1974, pp.25-38, Tokyo, Japan.
    
    [130] T. Yoshida, F. Tatsuoka, M.S.A. Siddiquee, Y. Kamegai, C.-S. Park, Shear banding in sands observed in plane strain compression, in: R.Chambonu, J. Desrues, I. Vardoulakis (Eds.), Symp. Localization and Bifurcation Theory for Soils and Rocks, Balkema, Rotterdam, Netherlands, 1994, pp. 165-179.
    
    [131] T. Wakabayashi, Photoelastic method for determination of stress in powdered mass, Proc. Seventh Japan Nat. Congr. Appl. Mech., Tokyo, Japan, 1957, pp. 153-158.
    
    [132] P.A. Vermeer, The orientation of shear bands in biaxial tests, Geotechnique 40 (2). _1990, pp.223-236, London, UK.
    
    [133] C. Thornton, C.W. Randall, Application of theoretical contact mechanics to solid particle system simulations, in: M. Satake, J.T. Jenkins _Eds.., Micromechanics of Granular Materials, Balkema, Rotterdam, Netherlands, 1988, pp. 254-252.
    
    [134] C. Thornton, J. Lanier, Uniaxial compression of granular media: Numerical simulations and physical experiment, in: R.P. Behringer, J. Jenkins (Eds.), Powder and Grains 97, Balkema,Rotterdam, Netherlands, 1997, pp. 223-226.
    [135]A.P.Thomas,J.D.Bray,T.C.Ke,Discontinuous deformation analysis for soil mechanics,First International Forum on Discontinuous Deformation Analysis,Berkeley,USA,1996.
    [136]F.Tatsuoka,S.Nakamura,C.C.Huang,K.Tani,Strength anisotropy and shear band direction in plane strain tests of sand,Soils and Foundations 30(1)1990,pp.35-54,Tokyo,Japan.
    [137]G.Scarpelli,D.M.Wood,Experimental observations of shear band patterns in direct shear tests,in:P.A.Vermeer,H.J.Luge(Eds.),Proc IUTAM Symp.Deformation and Failure of Granular Material,Delft,Balkema,Rotterdam,Netherlands,1982,pp.473-484.
    [138]O'Sullivan,C.,and Bray,J.D.Selecting a suitable time-step for discrete element simulations that use the central difference time integration approach.Eng.Comput,21(2-4),2004,pp.278-30.
    [139]O'Sullivan,C.,and Bray,J.D.Modified shear spring formulation for discontinuous deformation analysis of particulate media.J.Eng.Mech.,129(7),2003,pp.830-834.
    [140]Nemat-Nasser,S.,and Mehrabadi,M.."Stress and fabric in granular masses." Mechanics of granular materials:New models and constitutive relations,J.T.Jenkins and M.Satake,eds.,Elsevier,Amsterdam,The Netherlands,1983,pp.1-8.
    [141]Lin,X.,and Ng,T.-T.A three-dimensional discrete element model using arrays of ellipsoids.Geotechnique,47,1997,pp.319-329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700