用户名: 密码: 验证码:
轨道交通系统随机振动特性及其动力可靠性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轨道交通以其速度快、运量大、能耗低、污染轻、占地少以及安全舒适等综合优势,在世界各国得到了迅速发展。我国在跟踪研究国外先进技术的同时,通过新建快速客运专线、大力加强既有线路的技术改造等措施大幅度地提高了列车的运行速度。但是,随之而来的轮轨系统的动力作用以及行车的安全性与舒适性等问题也越发突出,在这方面我国尚缺乏足够的理论研究与工程实践。因此,列车与轨道的动态相互作用问题和行车的安全性问题已成为我国铁路实现跨越式发展急需解决的基础性研究课题之一。
     本文在国内外学者的研究基础之上,针对机车车辆和轨道结构的相互作用问题,将车辆和轨道作为一个大的耦合系统,以车辆动力学和轨道动力学为理论基础,运用随机振动谱分析方法和数值积分方法来研究系统的动力特性,使用多刚体系统动力学软件ADAMS进行动力学仿真分析,并且提出了钢轨的动力可靠性和疲劳可靠性分析方法,为研究车辆一轨道系统的动力特性、行车的安全性和舒适性提供了新的思路。
     车辆—轨道模型的正确性和完善程度对计算结果的可靠性和准确性起着决定性的作用。为此,本文根据机车车辆运行的特点和轨道结构的实际情况,建立了比较合理的四轴机车车辆模型和轨道模型。在模型中,将机车车辆视为多刚体系统,考虑了车体、转向架的沉浮和点头以及车轮的垂向共计10个自由度,将钢轨模拟成离散弹性点支承基础上的Euler梁,截取模态阶数为30,将轨枕以及离散后的道床视为刚性质量块,共计114个自由度,整个车辆一轨道系统总共具有154个自由度。在使用ADAMS/Rail进行动力仿真的过程中,将机车车辆模型进一步完善,车辆具有车体、前后构架和轴箱的纵移、横移、沉浮、侧滚、点头与摇头,4个轮对纵移、横移、沉浮、侧滚与摇头总共86个自由度,并且充分考虑了车辆悬挂系统的各种非线性因素。轮轨关系是车辆和轨道之间相互作用的联系纽带,在仿真中采用轮轨非线性弹性接触模型,使仿真过程更加符合实际情况。
     列车运行的安全性和舒适性的评价标准将直接影响轨道结构设计的质量和经济性。本文对车辆、轨道的动力性能评价指标如车辆垂向加速度、车辆横向加速度、轮重减载率、轮轨垂向力、轮轨横向力、脱轨系数等进行了综合分析和归纳。
     结构可靠度设计是目前国内外结构设计的主要发展方向。实现轨道设计由定值设计向可靠度设计的转变,不仅符合结构设计和我国铁路技术发展的大方向,同时也是当前铁路运输的迫切需要。钢轨是轨道结构的重要组成部分,本文对钢轨的动力可靠性计算方法进行了探讨,对各重要参数如轨下胶垫弹性系数、道床垂向刚度、路基离散刚度、列车运行速度以及超越界限等进行了敏感性分析,由此可以确定各参数的合理取值范围,进而对轨道结构进行整体优化设计。
     疲劳问题是轨道结构中一个古老而又基础的问题,本文将疲劳理论运用于结构动力可靠度分析中,采用Monte-Carlo方法对钢轨的疲劳寿命进行预测,并对钢轨的疲劳损伤与防治提出了相应的建议。
With its comprehensive advantages such as the high speed, large transportcapacity, low energy consumption, light pollution, less occupation of the land, highsafety and comfort performance, the rail transit has been developed rapidly all overthe world. The train speed has been improved greatly in China by following andstudying the technology abroad, building new fast Passenger Dedicated Line andstrengthening technological alteration of existing railway. However, the correspondingproblems like the interaction forces between trains and tracks, the safety and comfortof the running train, the reliability of tracks are even more conspicuous and theseproblems still lack enough theoretical research and engineering practice in China.Therefore, the study on the dynamic interaction between trains and tracks is one of thebasic research subjects to meet the need of achieving great-leap-forward developmentof railway in China.
     On the foundation of the domestic and abroad technical development of therailway, the vehicle and tracks are regarded as a whole system in this thesis. Based onthe vehicle dynamics and the track dynamics, using the random vibration spectralanalysis and numerical integrate method, using the dynamic simulation softwareADAMS, a new method is proposed in this thesis to analyze the dynamic reliabilityand the fatigue reliability of rails and study the dynamic characteristics of thevehicle-track system and the safety and comfort of the running train.
     The validity and perfection degree of the vehicle-track coupling dynamics modelplays a decisive role in the dependability and accuracy of the simulation result. Afour-axle rolling stock dynamics model is set up in this thesis according to thecharacteristics of the running train and the actual instance of the track. In this model,the rolling stock is regarded as the multiple rigid body system, in which vertical androlling motion for car body and bogie and vertical motion for wheel sets areconcerned; rails are modeled as Euler beams laid on elasticity supports, in which thecut-off mode number is 30; sleepers and discrete ballast blocks are modeled as rigidbodies. In total, there are 154 DOF in the whole vehicle-track system. In the processof using ADAMS/Rail, the rolling stock model is relatively more perfect than before,in which all kinds of movements of car body, bogie and wheel sets and various sortsof non-linear factors in vehicle suspension system are fully considered, and the DOFof vehicle totaled up to 86. The wheel/rail interaction is the connection between therolling stock and the track, and the wheel/rail non-linear elastic contact model is used in the simulation, which corresponds to the facts.
     The evaluation standards of the dynamic safety and comfort of the vehicleinfluence the quality and economy of track directly. The dynamic evaluation index ofthe rolling stock and track are summed up in this thesis such as the verticalacceleration of car body, lateral acceleration of car body, reduction rate of wheel load,wheel/rail vertical force, wheel/rail lateral force and derailment coefficient etc.
     The reliability method is a major developmental trend in the field of structuraldesign. Converting the deterministic design method into reliability design method isnot only in the direction of the railway technology development in our country, butalso can meet the needs of current railway transportation. The rail is an importantcomponent of track structures. The method for calculating the dynamic reliability ofrail is discussed in this thesis, and the sensitivity analysis is done for some importantparameters such as elastic modulus of cushion, vertical stiffness of bed, discretestiffness of sub grade, overcrossing limit and train speed etc. From this, the reasonablevalues of the parameters are able to ascertain, and then the entirety optimization of thetrack structures can be carried out.
     Fatigue is an ancient and basic problem of the track structures. The fatiguetheory is applied to analyze the dynamic reliability of structures in this thesis. Monte-Carlo method is used to predict the fatigue life of rails, and some correspondingadvices are put forward to control the damage of rails.
引文
[1] A. Dieterman and A. V. Metrikine. Steady-state displacements of a beam on an elastic half-space due to a uniformly moving constant load[J], European Journal of Mechanics, A/Solids, Vol.16, No.2, pp.295-306, 1997.
    [2] H. A. Dieterman and A. V. Metrikine. The equivalent stiffness of a half-space interacting with a beam. Critical velocities of a moving load along the beam [J], European Journal of Mechanics, A/Solids, Vol. 15, No. 1, pp.67-90, 1996.
    [3] J. T. Krnney, Pasadena, Calif. Steady-State Vibrations of Beam on Elastic Foundation for Moving Load[J], Transactions of the ASME. Ser. E, Journal of applied mechanics, pp.359-364, 1954.Vol.21
    [4] Jorge E. Hurtado1 and Diego A. Alvarez. Classification Approach for Reliability Analysis with Stochastic Finite-Element Modeling [J]. Journal of Structural Engineering, ASCE(2003)129: 8(1141).
    [5] Ferhat Akgul and Dan M. Frangopol. Bridge Rating and Reliability Correlation: Comprehensive Study for Different Bridge Types [J]. Journal of Structural Engineering ASCE(2004) 130:7(1063).
    [6] John W. van de Lindt and Ginhuat Goh. Earthquake Duration Effect on Structural Reliability [J]. Journal of Structural Engineering, ASCE(2004)130:5(821).
    [7] Watts GR. Case Studies of the Effects of Traffic Induced Vibrations on Heritage Buildings, [Technical Report].Berkshire, Transport and road research laboratory, 1987
    [8] Rajesh Deoliya and T. K. Datta. Fatigue Reliability Analysis of Microwave Antenna Towers Due to Wind[J]. Journal of Structural Engineering, ASCE(2001)127: 5(1221).
    [9] KurzweilL G. Ground Borne Noise and Vibration from Underground Rail Systems[J]. Journal of Sound and Vibration, 1979, 66(3): 363~370.
    [10] BataMiloslav. Effects on Buildings of Vibrations Caused by Traffic[J]. Journal of Buildings and Science, 1977, (6): 221~246
    [11] Hayakawa K. Reduction Effects of Ballast Matsand EPS Blocks on Ground Vibration Caused by Trainandits Evaluation. Proc. Inter Noise'92, 1992, 233~240
    [12] Mark G. Stewart. Effect of Construction and Service Loads on Reliability of Existing RC Buildings [J]. Journal of Structural Engineering, ASCE, 2001, No. 10, 1232~1235.
    [13] Degrande G. A special and Finite Element Method for Wave Propagation in Dry and Saturated Porto elastic Media, [Ph. D thesis].Belgium, K. U. Leuven, 1992.
    [14] Richart F. E. and Woods R. D. Vibration of Soils and foundations. New Jersey, Prentice Hall, INC, Englewood Cliffs, 1987
    [15] Allen C. Estes and Dan M. Frangopol. Load Rating Versus Reliability Analysis [J]. Journal of Structural Engineering, ASCE(2005)131: 8(843).
    [16] John W. van de Lindt and John M. Niedzwecki. Methodology for Reliability-Based Design Earthquake Identification[J]. Journal of Structural Engineering, ASCE (2000)126:8(1420).
    [17] Cameron R. Franchuk. Robert G. Driver and Gilbert Y. Grondin. Reliability Analysis of Block Shear Capacity of Coped Steel Beams [J]. Journal of Structural Engineering, ASCE, 2004, 130: 12.
    [18] Seung Y. Lee and Achintya Haldar. Reliability of Frame and Shear Wall Structural Systems. Ⅱ: Dynamic Loading. Journal of Structural Engineering, ASCE (2003) 129: 2(233).
    [19] D. Rosowsky; D. S. Gromala and P. Line, M. Reliability-Based Code Calibration for Design of Wood Members Using Load and Resistance Factor Design [J]. Journal of Structural Engineering, ASCE, 2005, 131: 2(338).
    [20] Allen C. Estes and Dan M. Frangopol. Repair Optimization of Highway Bridges Using System Reliability Approach [J]. Journal of Structural Engineering, ASCE, 1999, 125: 2(766).
    [21] Mark G. Stewart and Dimitri V. Val. Role of Load History In Reliability-Based Decision Analysis of Aged Bridges [J]. Journal of Structural Engineering, ASCE, 1999, 125:7(776).
    [22] Yan-Gang Zhao;Tetsuro Ono and Masahiro Kato. Second-Order Third-Moment Reliability Method[J]. Journal of Structural Engineering, ASCE, 2002, 128: 8(1087).
    [23] J. W. van de Lindt and J. M. Niedzwecki. Structural Response and Reliability Estimates: Slepian Model Approach [J]. Journal of Structural Engineering, ASCE, 2005, 131: 10(1620).
    [24] Yan-Gang Zhao and Alfredo H-S. Ang Hon. System Reliability Assessment By Method of Moments[J]. Journal of Structural Engineering, ASCE, 2003, 129: 10 (1341).
    [25] Yan-Gang Zhao and Tetsuro Ono. Third-Moment Standardization For Structural Reliability Analysis [J]. Journal of Structural Engineering, ASCE, 2000, 126: 8 (724).
    [26] Ming Liu and Dan M. Frangopol. Time-Dependent Bridge Network Reliability: Novel Approach [J]. Journal of Structural Engineering, ASCE, 2005, 131:2 (329).
    [27] H.J.Dagher; Q.Lu and A.H.peyrot. Reliability of Transmission Structures Including Nonlinear Effects[J]. Journal of Structural Engineering, ASCE, 1998, 124:8 (966).
    [28] Cesar Crespo-Minguillon and Juan R.Casas. Fatigue Reliability Analysis of Prestressed Concrete Bridges [J]. Journal of Structural Engineering, ASCE, 1998, 124:12 (1458).
    [29] M.R.Chowdhury and A.Haldar. Reliability Assessment of Pile-Supported Structural Systems [J]. Journal of Structural Engineering, ASCE, 1998, 124:1 (80).
    [30] William G.byers and Mark J.Marley. Fatigue Reliability Reassessment Applications: State-of-the-Art Paper [J]. Journal of Structural Engineering, ASCE, 1997, 123:3 (277).
    [31] Juan R.Casas. Reliability-Based Partial Safety Factors In Cantilever Construction of Concrete Bridges[J]. Journal of Structural Engineering, ASCE, 1997, 123:3(305).
    [32] Jun Zhang and Bruce Ellingwood. SFEM for Reliability of Structures With Material Nonlinearities[J]. Journal of Structural Engineering, ASCE, 1996, 122:6(701).
    [33] Timothy H.J.Yao and Y.K.Wen. Response Surface Method For Time-Variant Reliability Analysis[J]. Journal of Structural Engineering, ASCE, 1996, 122:2(193).
    [34] Jungwon Huh. Dynamic Reliability Analysis For Nonlinear Structures Using Stochastic Finite Element Method [D]. The University of Arizona, 1999.
    [35] Terje Haukaas. Finite Element Reliability and Sensitivity Methods for Performance-Based Engineering [D]. The University of California, Berkeley.2003.
    [36] Chien-Tsun Chu. Random Vibration of Nonlinear Building-Foundation System[D]. The University of Illinois, 1985.
    [37] Alexandra Kardara. Response Analysis of Stochastic Structures Reliability of Offshore Structures [D]. Columbia University, 1988.
    [38] Dimitrios Vamvatsikos. Seismic Performance, Capacity and Reliability of Structures As Seen Through Incremental Dynamic Analysis [D]. Stanford University, 2002.
    [39] Hasan Ugur Koyluoglu. Stochastic Response and Reliability Analyses of Structures With Random Properties Subject to Stationary Random Excitation [D]. Princeton University, 1995.
    [40] Manuel Lancelot. A Study of the Nonlinearities, Dynamic, and Reliability of A Drag Dominated Marine Structure [D]. Stanford University, 1993.
    [41] Ahmad Rahimian. Reliability Analysis of Shear Wall Structure With Soil-Structure Interaction [D]. The Polytechnic Institute of New York, 1986.
    [42] 翟婉明:车辆—轨道耦合动力学[M],北京:中国铁道出版社,1997
    [43] 朱位秋:随机振动[M],北京:科学出版社,1992
    [44] 罗林:轨道随机干扰函数[J],中国铁道科学,1982,13(1):74-110
    [45] 长沙铁道学院随机振动研究室:关于机车车辆/轨道系统随机激励函数的研究[J],长沙铁道学院学报,1985,(2):1-36
    [46] 夏学文,谢世浩:用时序分析法建立轨道谱[J],铁道学报,1981,第3期
    [47] 王澜:轨道结构随机振动理论及其在轨道结构减振中的应用[D],铁道部科学研究院博士学位论文,1988年5月
    [48] 铁建所:轨道不平顺动力响应计算机模拟分析[S],北京,1987
    [49] 罗文灿,朱开明,罗林:干线轨道不平顺速度管理标准建议值的研究[J],中国铁道科学,1994,第1期
    [50] 张格明:线路轨道不平顺管理标准的研究[J],中国铁道科学,1995,16(4):31-40
    [51] P. J. Remington, Wheel/Rail noise Part Ⅰ. Characterization of the wheel/rail dynamic system [J], Journal of sound and vibration, 1976, Vol. 45, No.3
    [52] E. K. Bender and P. J. Remington, The influence of rails on train noise[J], Journal of sound and vibration, 1974, No.3
    [53] S. L. Grassie, R. W. Gregory and K. L. Johnson, The behavior of railway wheelsets and track at high frequency of excitation [J], Mech. Eng. Sci., 1982, Vol.24, No.2
    [54] 李成辉,万复光:轨道结构随机振动[J].铁道学报,1998,20(3):97-101.
    [55] 陈果,翟婉明:铁路轨道不平顺随机过程的数值模拟[J].西南交通大学学报,1999,34(2):138~142.
    [56] 翟婉明:车辆/轨道相互作用理论研究进展及发展趋势[J].力学进展,1998,28(3):339~348.
    [57] 陈果,翟婉明,左洪福:轨道随机不平顺对车辆/轨道系统横向振动的影响[J].南京航空航天大学学报,2001,33(3):227~232.
    [58] 翟婉明:铁路轮轨冲击振动模拟与试验,计算力学学报,1999,16(1)
    [59] Rice S. O. Mathematical analysis of random noise [J]. Bell System Technical Journal, Vol.23, 1944, pp. 282~332, and Vol. 24, 1945, pp. 52~162.
    [60] Siegert A. J. F.and Darling D. A. The first page problem for a continuous Markov process [J]. Annal of Mathematics Statistics, Voi.24, pp. 624, 1951.
    [61] Coleman J. J. Reliability of aircraft structures in resisting chance failure [J]. Operation Research, 1959, 7(5): 639~645.
    [62] Miles J. W. On structural fatigue under random loading [J]. Journal of Aeron Science, Vol. 21, 1954, pp. 753~768.
    [63] Powell A. On the fatigue of structures due to vibration [J]. Acoust. Soc. Am., Vol.30, 1958, pp. 1130.
    [64] Crandall S. H. Some first page problem in random vibration [J]. Journal of Applied Mechanics, Vol.33, pp. 532~538, 1966.
    [65] Crandall S. H. and Mark W. D. Random vibration mechanical systems [M]. Academic Press, New York, 1963.
    [66] Cramer H. Stationary and related stochastic process [M]. John Wiley and Sons Inc. 1967.
    [67] Shinozuka M. Probability of structural failure under random loading [J]. EM. ASCE, Vol.90, 1964.
    [68] Shinozuka M. and Yao J. T. P. On the two-sided time dependent barrier problem [J]. Study of Fatigue and Reliability, Tech. Rept. 21, June, 1965.
    [69] Shinozuka M. On the first excursion probability in stationary narrow band random vibration Ⅱ [J]. Journal of Applied Mechanics, Vol.39, 1972, pp. 733~738.
    [70] Iyenger R. N. First page probability during random vibration [J]. Journal of Sound and Vibration, Vol.32(2), 1973, pp. 185~193.
    [71] Vanmarcke R. H. and Deestrada M. B. Response of simple hysteretic system to random excitation [J]. Report R70~66, Department of Civil Engineering, M.I.T. Cambridge, Mass. 1970.
    [72] 王光远:论时变结构力学[J].土木工程学报,2000,33(6):105~108.
    [73] 王光远等:工程结构及系统的模糊结构可靠性分析[M],南京:东南大学出版社,2001.
    [74] 欧进萍,王光远:结构随机振动[M],北京:高等教育出版社,1998.
    [75] 张俊芝,李桂青:界限为随机过程的工程结构时变动力可靠度[J].工业建筑,2001,31(10):24~27.
    [76] 李桂青:结构可靠度[M],武汉:武汉工业大学出版社,1989.
    [77] 李桂青,李秋胜:工程结构时变可靠度理论及其应用[M],北京:科学出版社,2001.
    [78] 李桂青,曹宏,李秋胜,霍达:结构动力可靠性理论及其应用[M],北京:地震出版社,1993.
    [79] 李桂青,李秋胜:工程结构时变可靠度理论及其应用[M],北京:科学出版社,2001.
    [80] 夏禾,陈英俊:风和列车荷载同时作用下车桥系统的动力可靠性[J].土木工程学报,1994,27(2):14~21.
    [81] 赵永翔:铁道车辆结构强度可靠性和安全性技术展望[J].铁道学报,2003,25(2):92~97.
    [82] 李秋义,陈秀方:高速铁路无缝线路动力稳定性概率分析理论研究[J],中国铁道科学,2004,25(4):135~137.
    [83] 李秋义,陈秀方:结构可靠度理论在无缝线路稳定性研究中的应用[J],铁道学报,2001, 23(5):102~106.
    [84] 韦树军:高速铁路钢轨疲劳寿命研究[D], 同济大学博士学位论文,2006
    [85] 铁道科学研究院铁道建筑研究所.我国干线轨道不平顺功率谱的研究,TY-1215,北京:铁道科学研究院,1999
    [86] 吴斌,欧进萍,张纪刚,吕大刚:结构动力可靠度的重要抽样法[J],计算力学学报,2001,4:478~481.
    [87] 方从严,刘宁,卓家寿:结构可靠度优化的敏感性分析[J],应用力学学报,2005,22(1):63~66.
    [88] 李杰,陈建兵:随机结构动力可靠度分析的概率密度演化方法[J],振动工程学报,2004,17(2):121~125.
    [89] 董鹏,韩渭,戴征宇:土与结构相互作用下的动力可靠性分析[J]:工业建筑,2004,34(5):44~49.
    [90] 罗乃东,董安正:可靠度分析中的荷载问题[J],工业建筑,2003,33(2):25~28.
    [91] 武清玺,卓家寿:结构可靠度分析的变f序列响应面法及其应用[J],河海大学学报,2001,29(2):75~78.
    [92] 王春光,石永久,王元清,李少:结构可靠度计算中的敏感性因素分析[J],清华大学学报,2000,40(6):108~111.
    [93] 赵国藩,贡金鑫,赵尚传:我国土木工程结构可靠性研究的一些进展[J],大连理工大学学报,2000,40(3):253~258.
    [94] 潘际炎:铁路桥梁设计中的疲劳可靠性理论[J],钢结构,1995,10(27):1~8
    [95] 叶梅新,陈玉骥:铁路钢板梁的可靠度研究[J],长沙铁道学院学报,1995,13(3):1~8
    [96] 刘宏伟,吴胜兴:结构可靠度理论的应用现状及发展趋势[J],河海大学学报
    [97] 裴永刚,谭文辉:工程结构时变可靠度理论的发展与应用[J],工业建筑增刊,2005,35:135~138.
    [98] 陈英俊:论在桥梁工程中应用可靠性理论的几个问题[J],工程力学增刊,2005,22:78~81.
    [99] 毕忠伟,丁德馨:地下工程可靠性分析方法与进程[J].地下空间,2004,24(4):522~525.
    [100] 桂劲松,康海贵:结构可靠度分析的响应面法及其Matlab实现[J].计算力学学报,2004,21(6):683~687。
    [101] 贡金鑫,仲伟秋,赵国藩:工程结构可靠性基本理论的发展与应用(1)[J].建筑结构学报,2002,23(4):2~9.
    [102] 贡金鑫,仲伟秋,赵国藩:工程结构可靠性基本理论的发展与应用(2)[J].建筑结构学报,2002,23(5):2~10.
    [103] 贡金鑫,仲伟秋,赵国藩:工程结构可靠性基本理论的发展与应用(3)[J].建筑结构学报,2002,23(6):2~9.
    [104] 杨平:结构可靠性综述[J].连云港化工高等专科学校学报,2001,14(4):30~32.
    [105] 董聪:结构系统可靠性理论:进展与回顾[J].工程力学,2001,18(4):79~88.
    [106] 姜海波,车惠民:既有铁路混凝土梁疲劳与承载力可靠性评估[J].土木工程学报,2000,33(1):27~31.
    [107] 蔡成标,翟婉明:机车—轨道—桥梁垂向耦合动力学分析[J].西南交通大学学报,1997,32(6):628~632.
    [108] 李德建,曾庆元:列车一直线轨道空间耦合时变系统振动分析[J].铁道学报,1997,19(1):101~107.
    [109] 陈艳,刘宁,杨海霞,胡爱宇:我国结构可靠性设计及目标可靠指标的发展现状[J].水利水电科技进展,2004,24(4):61~64.
    [110] 张艳红,杜修力:结构可靠度对系统参数敏感性分析的简便算法[J].同济大学学报,1996,24(6):475~480.
    [111] 陈建兵,李杰:复合随机振动系统的动力可靠度分析[J],工程力学学报,2005,22(3):52~57.
    [112] 王恒,杨艳平,解伟:结构动力可靠度中相关性问题的研究[J].武汉大学学报,2004,37(3):61~65.
    [113] 张建仁,秦权:现有混凝土桥梁的时变可靠度分析[J].工程力学,2005,22(4):90~95.
    [114] 朱平华,陈华建,蒋沧如:砼梁时变结构可靠度计算及其敏感性分析[J].武汉理工大学学报,2004,26(5):55~57.
    [115] 曹晖,赖明,白绍良:基于小波分析的结构动力可靠度估计[J].世界地震工程,2000,16(4):70~77.
    [116] 武清玺,卓家寿:结构可靠度分析的变f序列响应面法及其应用[J].河海大学学报,2001,29(2):75~78.
    [117] 贡金鑫,赵国藩:国外结构可靠性理论的应用与发展[J].土木工程学报,2005,38(2):1~7.
    [118] 贡金鑫,陈晓宝,赵国藩:结构可靠度计算的Gauss—Hermite积分方法[J].上海交通大学学报,2002,36(11):1625~1629.
    [119] 贡金鑫,何世钦,赵国藩:结构可靠度模拟的方向重要抽样法[J].计算力学学报,2003,20(6):655~661.
    [120] 赵国藩,赵尚传,贡金鑫:随机反复荷载下钢筋混凝土受弯构件变形的计算及可靠度分析[J].工业建筑,2002,32(2):24~27.
    [121] 贡金鑫,赵国藩:相关荷载效应组合及结构可靠度计算[J].工程力学,2001,18(4):1~6.
    [122] 贡金鑫,赵国藩:考虑抗力随时间变化的结构可靠度分析[J].建筑结构学报,1998,19(5):43~51.
    [123] 贡金鑫,赵国藩:结构体系可靠度分析中的最小方差抽样[J].工程力学,1997,14(3):29~35.
    [124] 贡金鑫:工程结构可靠度计算方法[M],大连:大连理工大学出版社,2003.
    [125] 陈英俊:结构随机振动[M],北京:人民交通出版社,1989.
    [126] 赵国藩,金伟良,贡金鑫:结构可靠度理论[M],北京:中国建筑工业出版社,2000.
    [127] 李国强,黄宏伟,郑步全:工程结构荷载与可靠度设计原理[M],北京:中国建筑工业出版社,1999.
    [128] 庄表中:结构随机振动[M],北京:国防工业出版社,1995.
    [129] 纽兰:随机振动与谱分析概论[M],北京:机械工业出版社,1980.
    [130] 张建仁等:结构可靠度理论及其在桥梁工程中的应用[M],北京:人民交通出版社,2003.
    [131] 李德武:列车振动荷载的数定分析[J],甘肃科学学报,1998年第10卷第2期
    [132] 朱平华:绿色高性能混凝土的性能研究与混凝土结构可靠度的敏感性分析[D], 武汉理工大学博士学位论文,2004
    [133] GB50153—92,工程结构可靠度设计统一标准[S].北京:中国计划出版社,1992.
    [134] GBJ 68—84,建筑结构设计统一标准[S].北京:中国建筑工业出版社,1984.
    [135] GB50216—94,铁路工程结构可靠度设计统一标准[S].北京:中国计划出版社,1994.
    [136] GB/T 50283—1999,公路工程结构可靠度设计统一标准[S].北京:中国计划出版社,1999.
    [137] 南京工学院数学教研组:积分变换[M].北京:人民教育出版社,1978.
    [138] 练松良:轨道动力学[M].上海:同济大学出版社,2003.
    [139] 吴业森、罗明廉:随机振动[M].北京:机械工业出版社,1989.
    [140] 徐昭鑫:随机振动[M],北京:高等教育出版社,1990.
    [141] 胡津亚,曾三元:现代随机振动[M],北京:中国铁道出版社,1989.
    [142] 何成慧,陈文良,严济宽:随机振动概论[M],上海:上海交通大学出版社,1985.
    [143] 何朝明,赵永翔,杨冰等:LZ50车轴钢随机S-N关系的概率模型[J].工程力学,2005,24(2).
    [144] 李洪涛:货车动力学性能仿真及脱轨原因分析[D].大连铁道学院博士论文,2003
    [145] 蔡成标:高速铁路列车—线路—桥梁耦合振动理论及应用研究[D].西南交通大学博士学位论文,2004
    [146] 李秋义:高速铁路无缝线路动力稳定性概率分析理论研究[D].中南大学博士学位论文,2003
    [147] 王成国:MSC.ADAMS/Rail基础教程[M].北京,科学出版社,2005
    [148] 郝红伟:MATLAB6实例教程[M].北京,中国电力出版社,2001
    [149] 周金萍等:MATLAB6实践与提高[M].北京,中国电力出版社,2001
    [150] 陈立平等:机械系统动力学分析及ADAMS应用教程[M].北京,清华大学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700