用户名: 密码: 验证码:
高芥酸甘蓝型油菜资源的创制及相关基因的克隆研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蓝型油菜是世界上广泛种植的一种油料作物,它在植物分类上属于十字花科(Cruciferae)芸苔属(Brassica)。我国油菜种植面积约为7.0×10~6公顷,面积和总产占世界1/3,居油菜生产国首位。油菜种子的脂肪酸组成决定了菜油的品质和用途,其中芥酸含量的高低对油菜作为食用和工业用途起着决定作用。芥酸可以作为油漆、化妆品、塑料、医药品及润滑剂等一系列工业用途产品的生产原料,高芥酸含量油菜因具有重要的工业用途,被称为21世纪的化工原料。
     本研究以甘蓝型油菜M13(芥酸含量48%)和742(芥酸含量1.6%)为试验材料,对M13和742进行辐射处理;M13和742的F_2群体进行SSR标记分析;742、M13及其高芥酸突变体H27的FAE1与FAD2基因进行了克隆测序分析。主要研究结果如下:
     (1)以800、1000、1200Gy ~(60)Coγ射线处理M13和742的风干种子。结果表明,800~1000Gy辐照处理使油菜种子含油量有不同程度提高,脂肪酸中芥酸和油酸含量变异较大,低芥酸材料辐射后代出现高油酸突变体,高芥酸材料辐射后代出现高芥酸突变体。
     (2)M13经800Gy辐射的M_2中出现55.51%(06A-8)、55.21%(06A-991)、55.09%(06A-1256)的高芥酸突变体,对筛选到的3个高芥酸突变体按株系种植,M3群体中检测其高芥酸突变体的稳定性。发现06A-991和06A-1256株系的芥酸含量回复到了48%左右,只有高芥酸突变系06A-8芥酸含量平均在55.8%,并在此群体中筛选到一株芥酸含量57.9%的高芥酸突变体H27,用气相色谱法对芥酸含量进行了鉴定。
     (3)M13与742杂交F_2代群体单株芥酸含量分离情况得出:芥酸含量由两对基因控制,其中一对起主导作用;众多学者把控制芥酸的QTL定位在N3、N8、N11、N13连锁群上,搜索4个连锁群上的SSR标记76个,在F_2代群体中用BSA法进行筛选,找到1个能区分芥酸含量<6%和>36%的SSR标记CB10364。
     (4)M13、H27、742中扩增出的FAE1与FAD2测序分析表明:3个材料的FAE1基因扩增片段测序的图谱峰单一,测序能准确地反映出材料的原始信息,它们的扩增长度均为1521bp,核苷酸序列相似度达99%以上,M13与H27有3个核苷酸的变异,但两者氨基酸序列完全相同;M13与742有4个核苷酸的差异,氨基酸序列也存在4个位点的不同。3个材料的FAD2基因扩增片段测序图谱出现双峰,表明在同一个位点出现2个碱基以上的可能,序列比对发现它们的DNA序列和氨基酸序列均存在着巨大的差异,FAD2基因扩增片段直接测序不能准确反映它们之间的差异。
     (5)M13、H27、742的FAD2扩增产物经克隆测序表明:3个材料中均存在2个FAD2基因拷贝,一个长度为1155bp(FAD2.1),一个长度为1140bp(FAD2.2);3个材料的FAD2.1的核苷酸序列相似度达98.99%,M13与H27的FAD2.1的核苷酸序列没有发生变化,M13与742的FAD2.1的核苷酸存在35个单核苷酸的差异,有3个氨基酸位点不同。3个材料的FAD2.2与FAD2(1155bp)相比,在230至244位点缺失15个核苷酸序列(TCCCTCACCCTCTCT),M13与H27的FAD2.2核苷酸系列在409位点的A变成了T导致H27的FAD2.2在此位点形成了终止密码子(TGA)。M13与742的FAD2.2存在21单核苷酸的不同,氨基酸序列存在11个位点的不同。M13与742的FAD2.1与FAD2.2在DNA序列与氨基酸序列上均存在不同,由此说明芥酸含量不同FAD2基因存在差异。
     (6)综合FAE1与FAD2基因的测序结果进行推测,H27芥酸含量的升高是FAD2.2基因发生无义突变而失活,使油酸向亚油酸转化受阻;FAE1发生的同义突变可能增强了脂肪酸延长酶FAE1的活性,在两者共同作用下H27芥酸含量得到提高。
Rapeseed(Brassica napus L.,genome AACC,2n=38) is today the most widely cultivated crop species in crucifer(Brassicaceae) family.As one of the most important oil crops,rapeseed is annually planted 7.0×10~6 hectares in China which takes the first place in planting area and yield among rapeseed-growing countries. Rapeseed fatty acid composition determines the quality and the use of vegetable oil, the level of erucic acid content playing a key role in rapeseed edible consumption and industrial use.Erucic acid can be used as paints,cosmetics,plastics,pharmaceuticals and industrial lubricants,and other products.High erucic acid rapeseed is known as the 21st century chemical raw materials because of the importance of industrial uses.
     The seeds of Brassica napus M13(erucic acid content 48%) and 742(erucic acid content 1.6%) were irradiated by ~(60)Coγray.SSR markers were used for analysis of the F_2 populations from the cross M13×742.The genes FAE1 and FAD2 were cloned from 742,M13 and a high erucic acid mutant H27.The main results were as follows:
     (1) Seeds of Brassica napus lines M13 and 742 were irradiated by ~(60)Coγray at doses of 800,1000 or 1200Gy.The treatment of 800~1000Gy irradiation increased oil content to various degrees,with erucic acid and oleic acid content of rape seeds having greater variability.Increased oleic acid variants were found in advanced progenies of irradiated 742 line while increased erucic acid mutants in M_3 progenies of irradiated M13 line.
     (2) Three high erucic acid mutants 55.51%(06 A-8),55.21%(06A-991),55.09% (06A-1256)) were found in M_2 population of M13 irradiated by 800 Gy;Their stability in erucic acid content was detected in M_3 population.Although the erucic acid content of 06 A-991 and 06 A-1256 reverted to 48%,06A-8 is 55.8%on average. H27,a mutant highest in erucic acid content in this group(06A-8),had erucic acid content of 57.9%,as confirmed by gas chromatography analysis.
     (3) Segregation of erucic acid content in the F_2 generation from M13×742 showed that the erucic acid content is controlled by two loci,which one locus playing a major role.QTLs for erucic acid content have been previously mapped on the linkage groups N3,N8,N11 and N13 and therefore the 76 SSR markers were chosen for mapping from these four linkage groups.It is found that the SSR marker CB10364 can distinguish the plants with<6%erucic acid content from the plants with>36%in the F_2 population.
     (4) FAE1 and FAD2 fragments amplified by PCR using the genomic DNA extracted from leaves of M13,H27 or 742 were sequenced.Comparison of FAE1 sequences showed that each sequencing map had a single peak,indicating that direct sequencing can accurately reflect the original information.The amplified FAE1 fragments were 1521 bp long and had homology of 99%in nucleotide sequence among the three lines.M13 and H27 had three nucleotide substitutions,but no amino acid change.M13 and 742 not only had four nucleotide substitutions but also four amino acid changes.Sequencing maps FAD2 fragments were bimodal,meaning that two kinds of base likely exist at the same position.FAD2 direct DNA sequencing will not accurately reflect the differences between materials.
     (5) The FAD2 amplified products of M13,H27 and 742 were cloned with T-vector and then sequenced.Analysis showed that there are two FAD2 copies in each line.Their lengths were 1155(FAD2.1) and 1140 bp(FAD2.2).The three lines shared the nucleotide sequence of 98.99%in FAD2.1 copy,without difference between M13 and H27.However,35 single nucleotide substitutions and three amino acid changes have been found in FAD2.1 between M13 and 742.Comparison of FAD2.2 sequence with FAD2(1155bp) published in NCBI database showed loss of 15 nucleotides(TCCCTCACCCTCTCT) from nt230 to nt244 in all the three lines. Substitution of T for A at nt409 of FAD2.2 of the line H27 nucleotide 409 produced a premature stop codon(TGA).Nucleotide have 21 single-nucleotide and 11 amino acid differences have been found in FAD2.2 between M13 and 742.The two copies of FAD2 had difference in nucleotide and amino acid sequence of M13 and 742,which may indicate that different erucic acid content will be differences in FAD2.
     (6)It can be speculated from the above results that the increase of erucic acid content in the mutant H27may be due to both non-sense mutation of FAD2.2 leading to FAD2.2 gene inactivation and block of conversion of oleic acid into linoleic acid, and synonymous mutation of FAE1 enhancing FAE1 activity which converts more oleic acid into erucid acid.
引文
1.常致成.芥酸及其衍生产品的开发应用.日用化学工业,2000,30(6):26-30.
    2.陈光尧,王国槐.高芥酸油菜利用研究.作物研究,2004,5:366-368.
    3.陈柳,毛善婧.导人LPPAT和KCS基因对油菜种子芥酸含量的影响.作物学报,2006,32(8):1174-1178.
    4.Clark M S等.植物分子生物学——实验手册(中文版).北京:高等教育出版社,1998.
    5.陈莹.油菜芥酸含量的遗传育种研究概况.种子,1995(2):40-43.
    6.戴朝曦.遗传学.北京:高等教育出版社,1998,237-238.
    7.戴晓峰.油菜脂肪酸合成关键基因的克隆与脂肪酸积累模式研究.中国农业科学院硕士学位论文,2006.
    8.戴晓峰,肖玲,武玉花,吴刚,等.植物脂肪酸去饱和酶及其编码基因研究进展.植物学通报,2007,24(1):105-113.
    9.邓定辉.高、低芥酸菜籽油的开发利用.农牧产品开发,1997,(5):16-17.
    10.董遵,刘敬阳,马红梅,等.离子束在油菜育种中的诱导效应初报.上海农业学报,2003,19(1):15-18.
    11.傅寿仲,张洁夫,戚存扣,等.工业专用型高芥酸油菜新品种选育.作物学报,2004,30(5):409-412.
    12.傅廷栋,杨光圣,涂金星,等.中国油菜生产的现状与展望.中国油脂,2003,28(1):11-13.
    13.干滟,曾凡亚,赵云,等.甘蓝型油菜“79.7”细胞核雄性不育基因RAPD分子标记初步研究.西南农业学报,1999,12:111-115.
    14.官春云主编.气相色谱法测定芥酸含量.见:油菜品质改良和分析方法.长沙:湖南科学技术出版社,1985,213-216.
    15.官春云,王国槐.油菜品质育种的研究-Ⅱ:湘油5号油菜芥酸含量的基因分析.湖南农学院学报,1986,12(1):21-25.
    16.官春云.油菜遗传育种研究进展.中国科学基金,1995,31-17.
    17.官春云主编.植物育种的理论和方法.上海:上海科技出版社,2004.
    18.官春云,刘春林,陈社员,等.辐射育种获得油菜(Brassica napus)高油酸材料.作物学报,2006,32(11):1625-1629.
    19.官梅.~(12)C重离子束辐照对油菜(B.napus)的影响.长沙:湖南农业大学硕士学位论文,2005.
    20.官梅,李栒.~(12)C重离子束辐照对油菜(Brassica napus)的影响.作物学报,2006,32(6):878-884.
    21.顾宏辉,张冬青,张国庆,等.油菜离体小孢子诱导育种研究进展.浙江农业学报,2003,15(5):318-322.
    22.顾伟株,汪延祥.多元线性回归法分析油菜籽含油量的近红外光谱数据.中国粮油学报,1995,10(2):57-64.
    23.贺源辉,王信家,杨瑞芳,等.甘蓝型油菜M_1辐照效应的研究,中国油料作物学报,1982,4:15-20.
    24.胡中立.有关突变育种的若干数量遗传问题.核农学通报,1987(4):36-39.
    25.黄永菊,李云昌,陈军,等.新疆野生油菜芥酸含量的遗传分析.中国油料作物学报,1999,21(4):15-17.
    26.蒋梁材,蒲晓斌,王瑞,等.甘蓝型油菜核不育基因的RAPD标记.中国油料作物学报,2000,22(2):1-4.
    27.李桂英.辐射促成植物异源基因转移的研究与进展.核农学通报,1997(4):182-186.
    28.李浩杰,蒲晓斌,张锦芳,等.甘蓝型油菜辐射诱变初探.中国农学通报,2005,21(11):102-105
    29.李晓丹.油料作物种子脂肪酸累积模式及相关基因的克隆与序列比较研究.中国农业科学院博士学位论文,2007.
    30.李佳,沈斌章,韩继祥,等.一种有效提取油菜叶片总DNA的方法.华中农业大学学报,1994,13(5):521-523.
    31.李加纳,邱厥.甘蓝型油菜芥酸数量性状的基因效应分析.中国油料,1987,1:9-14.
    32.李雅志.无性繁殖植物辐射育种的新方法.北京:原子能出版社,1991.
    33.李延莉,孙超才,钱小芳,等.油菜籽品质测定方法(近红外反射光谱法与传统化学方法)的比较,上海农业学报,2003,19(1):11-14.
    34.廖伯寿.论WTO挑战与中国油菜产业发展,中国作物学会油料作物专业委员会.迎接21世纪的中国油料科技.北京:中国农业科学技术出版社,2002,9-15.
    35.刘春林,官春云,李栒,等.油菜分子图谱构建及抗菌核病性状的QTL定位.遗传学报,2000,27(10):918-924.
    36.刘定富,刘后利.甘蓝型油菜数量性状遗传变异的研究.遗传学报,1987,14(1)31-36.
    37.刘定富,刘后利.芥菜型油莱芥酸和二十碳烯酸的遗传.遗传,1989,11(5):17-20.
    38.刘定富,刘后利.甘蓝型油菜芥酸含量的双列杂交分析.中国油料,1990,2:14-19.
    39.刘定富,刘后利.甘蓝型油菜芥酸和二十碳烯酸含量的基因效应.遗传学报,1990,17(2):103-109.
    40.刘定富,刘后利.甘蓝型油菜脂肪酸成份的基因作用形式和效应.作物学报,1990,16(3):193-199.
    41.刘定富,刘后利.甘蓝型油菜芥酸含量的三重测交分析.作物学报,1992,18(1):1-7.
    42.刘定富,刘后利.甘蓝型油菜芥酸基因的等位性和同一性分析.湖北农学院学报,1992,12(2):1-6.
    43.刘后利主编,油菜的遗传和育种.上海:上海科学技术出版社,1985.
    44.刘后利主编.实用油菜栽培学.上海:上海科学技术出版社,1987.
    45.刘后利.中国油菜品质育种的现状和问题.见:傅廷栋主编,刘后利科学论文集,北京:北京农业出版社,1994,136-146.
    46.刘后利.油菜品质育种.见:刘后利主编,油菜遗传育种学.北京:中国农业大学出版社,2000,199-227.
    47.刘录祥,郑企成.农作物空间诱变的生物效应及其育种应用研究.航天育种论文集,1995,202-206.
    48.刘兴媛.我国油菜品种资源的脂肪酸含量.中国油料,1981,(4):38-41.
    49.刘雪平.人工合成甘蓝型油菜种皮色泽、芥酸含量和花色的遗传研究.武汉:华中农业大学博十学位论文,2005.
    50.罗鹏.油菜遗传文献纪要.成都:四川大学出版社,1985,16-17.
    51.蒲定福,袁代斌,蒙大庆,等.甘蓝型高芥酸油菜新品种绵油13号高产栽培技术研究.西南农业学报,2004,17(2):174-176.
    52.蒲定福,袁代斌,蒙大庆,等.工业专用高芥酸油菜新品种绵油15号选育.中国油料作物学报,2005,27(4):38-40.
    53.蒲晓斌,张锦芳,李浩杰,等.甘蓝型油菜太空诱变后代农艺性状调查及品质分析.西南农业学报,2006,19(3):373-375
    54.戚存扣.我国油菜品种芥酸含量的变异及其地理分布状况初析.中国油料,1985,(2):6-10.
    55.戚存扣,盖钧镒,张元明.甘蓝型油菜芥酸含量的主基因+多基因遗传.遗传学报,2001,28(2):182-187.
    56.邱丹.甘蓝型油菜DH作图群体的构建和重要农艺性状及品质性状的QTL分析.武汉:华中农业大学博士学位论文,2007.
    57.瞿凤林.作物品质育种.北京:农业出版社,1991,499-500.
    58.谌利,李加纳,王瑞,等.~(60)Co-γ对不同遗传背景甘蓝型黄籽油菜种子发芽力的影响.中国油料,1997,19(4):7-10.
    59.石东乔,周奕华,张丽华,等.农杆菌介导的油菜脂肪酸调控基因工程研究.高技术通 讯,2001,251:1-7.
    60.石东乔,周奕华,胡赞民,等.基因枪法转移反义油酸脱饱和酶基因获得转基因油菜.农业生物技术学报,2001,9(4):359-362.
    61.苏振喜,邱怀珊.云南省芥菜型油莱高芥酸、商芳香油、高蛋白的开发利用.农牧产品开发,1997,(2):3-5.
    62.涂金星,傅廷栋,郑用琏,等.甘蓝型油菜隐性核不育遗传标记的初步研究Ⅱ.紫茎基因与可育基因连锁的分子证据.作物学报,1999,25(6):669-673.
    63.王俊霞.甘蓝型油菜Pol CMS育性恢复基因图谱定位及其抗菌核病恢复系的分子标记辅助选择.武汉:华中农业大学博士学位论文,2000.
    64.王琳清.我国辐射育成的农作物品种.原子能农业应用,1985,(1):1-9.
    65.王琳清.突变育种对作物品种改良的贡献.核农学通报,1990,11(6):283-286.
    66.王幼平,曾宇,罗鹏.植物脂肪酸代谢工程研究进展.中国油料作物学报,1998,20(4):88-92.
    67.王长泉,刘峰,李雅志.果树诱变育种的研究进展.核农学报,2000,14(1):61-64.
    68.王兆木,李艺.芥菜型芥酸遗传规律初探.新疆农业科学,1989(4):7-8.
    69.邬贤梦,官春云,李栒.油菜脂肪酸品质改良的研究进展.作物研究,2003,17(3):152-157.
    70.吴江生.甘蓝型油菜芥酸含量的遗传研究.湖北农业科学,1989(7):16-18.
    71.吴关庭,郎春秀,陈锦清.工业用高芥酸油菜育种与应用.核农学报,2007,21(4):374-377.
    72.武玉花,卢长明,吴刚,等.植物芥酸合成代谢与遗传调控研究进展.中国油料作物学报,2005,27(2):82-86.
    73.西北农学院主编.作物育种学.北京:农业出版社,1981.
    74.西北农科院.作物育种学.北京:农业出版社,1984,627-628.
    75.肖玲,卢长明.油菜脂肪酸延长酶基因FAE1片段的克隆与SNP分析.中国农业科学2005,38(5):891-896.
    76.熊兴华,官春云,李栒,等.甘蓝型油菜FAD2基因片段的克隆和反义表达载体的构建.中国油料作物学报,2002,24(2):97-99.
    77.徐华军,贺源辉,陈秀芳.~(60)Co-γ射线对双低甘蓝型油菜(Brassica napus L.)的辐射效应.核农学报,1992,6(4):199-206。
    78.徐华军,陈秀芳,贺源辉.油菜突变育种研究进展与趋向.核农学通报,1992,13(1):44-47.
    79.张大卫,陈正华,张丽华,等.油菜离体培养与芥酸微量测定相结合的育种新技术:I芥 菜型油菜花粉胚状体芥酸含量的变化.遗传学报,1988,15(4):254-259.
    80.周芳菊.芸薹属与萝卜属间杂种的获得用SSR分子鉴定.长沙:湖南农业大学硕士学位论文,2005,32.
    81.张红军.EMS处理对甘蓝型油菜的影响及FAD2基因的克隆和序列分析.长沙:湖南农业大学硕士学位论文,2007.
    82.张圣喜,官春云.电离辐射对油菜影响的研究.作物研究,1992,6(1):21-26.
    83.张书芬,傅廷栋,朱家成,等.甘蓝型油菜产量及其构成因素的QTL定位与分析.作物学报,2006,32(8):1135-142.
    84.周奕华,陈正华.植物种子中脂肪酸代谢途径的遗传调控与基因工程.植物学通报,1998,15(5):16-23
    85.周永明,刘后利.甘蓝型油菜种子中几种主要脂肪酸含量的遗传.作物学报,1987,13(1):1-10
    86.周永明,谭亚玲,刘蒙.等.甘蓝型油菜辐射诱变研究.中国油料作物学报,1998,20(4):1-5.
    87.Anand I J and Downed R K.A study of erucic acid alleles in digenomic rapeseed(Brassica napus L.).Can J Plant Sci.,1981,11:199-203.
    88.Appelqvist,R Jonsson.Lipids in Cruciferous:Ⅶ.Variability in erucic acid content in some high erucic acid species and efforts to increase the content by plant breeding.Z.Pflanzeneiichtg,1970,64:340-356.
    89.Ashok Jadhav,Vesna Katavic,Elizabeth-France Marillia,et al..Increased levels of erucic acid in Brassica carinata by co-suppression and antisense repression of the endogenous FAD2gene.Metabolic Engineering,2005,7:215-220
    90.Banilas G.,Moressis A.,Nikoloudakis N.,et al..Spatial and temporal expressions of two distinctoleate desaturases from olive(Olea europaea L.).Plant Sci,2005,168:547-555.
    91.Barret P,Delourne R,Renard M,et al..A rapeseed FAE1 gene is linked to the E1 locus associated with variation in the content of erucic acid.Theor Appl Genet,1998,96:177-186.
    92.Barro F,Femandez-Escobar J,De la Vega M.et al..Modification of glucosimolate and erucic acid contents in doubled haploid lines of Brassica carinata the UV treatment of isolated microspore.Euphytica,2002,12(9):1-6.
    93.Bartkowiar-broda I.Inheritance of fat content and fatty acid composition in seed of zero erucic acid winter rape.Proceedings of 5~(th) International.Rapeseed Congress,1987,Vol.1:119-123.
    94.Bechyne M,Z P Kondra.Effect of seed-pod position on the fatty acid composition of seed oil from rapeseed (Brassica napus and campestris).Can .J. Plant Sci., 1970, 50:151-154.
    95. Brough C L, Coventry J M, et al.. Towards the genetic engineering of triacylg- lycerols of defined fatty acid composition: major changes in erucic acid content at the sn-2 position affected by the introduction of a 1-acyl-sn-glycerol-3- phosphate acyltransferase from limnanthes douglasii into oil seed rape. Mol Breed, 1996,2(2): 133-142.
    96. Bruner AG, Jung S, Abbott AG. et al.. Endoplasmic oleoyl-PC desaturase the reference the second double double bond. Phytochemistry,2001,57: 643-652
    97. Butruille D V, Guries R P, Osborn T C. Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brassica napus L..Genetics, 1999,153: 949-964.
    98. Cao G, Zhu J, He C, Gao Y, et al.. Impact of epistasis and QTL xenvironment interaction on the developmental behavior of plant height in rice (Oryza sativa L.). Theor Appl Genet, 2001, 103:153-160
    99. Campos de Quiros H, Mithen R. Molecular markers for low-glucosinolate alleles in oilseed rape (Brassica napus L.). Mol Breed, 1996, 2: 277-281.
    100. C. Cassagne, R. Lessire. Biosynthesis of saturated very long chain fatty acids by purified membrane fractions from leek epidermal cells. Arch. Biochem. Biophys. 1978,191:146-152.
    101. Cheung W Y, Friesen L, Rakow G F W, et al.. A RFLP-based linkage map of mustard (Brassica juncea L. Czern and Coss). Theor Appl Genet. 1997,94:841-851
    102. Daun J K, Clear K M, Williams P. Comparison of three whole seed near-infrared analyzers for measuring quality components of canola seed. J.Am.Oil Chem.Soc, 1994, 71:1063-1068.
    103. Delourme R, Foisset N. Horvais R, et al.. Characterisation of the radish introgression carrying the Rf_0 restorergene for the Ogu-INRA cytoplasmic male sterility in rapeseed (Brassica napus L.). Theor Appl Genet, 1998, 97:129-134.
    104. Downey R K, Craig B M. Genetic control of fatty acid biosynthesis in rapeseed (Brassica napus L.). J Am Oil Chem Soc. 1964, 41: 475-478.
    105. Downey R K, B M Graig. Genetic control of fatty acid composition in rapeseed. J.Americ.Oil Chem. Soc., 1964, 41:475-478.
    106. D.Post, Beittenmiller. Biochemistry and molecular biology of wax production in plants, Annu.Rev. Plant Physiol. Plant Mol. Biol. 1996,47: 405-43
    107. D.Qiu, C.Morgan, J.Shi, et al.. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and acid content. Theor Appl Genet, 2006, 114:67-80.
    108. Ecke W , Uzunova M , W eissleder K. Mapping the genome of rapeseed (Brassica napus L.) localization of genes controlling erucic acid synthesis and seed oil content. Theor Appl Genet, 1995, 91: 972-977.
    109. Elizabeth-France Marillia, E.Michael Giblin, Patrick S. Covello, et al. Expression of meadowfoam Des5 and FAEl genes in yeast and in transgenic soybean somatic embryos and their roles in fatty acid modification. Plant Physiol. Biochem. 2002,40:821-828
    110. Falcone DL, Gibson S G, Lemieux B, et al. Identification of a gene that complements an Arabidopsis mutant deficient in chloroplast omega 6 desaturase activity. Plant Physiol, 1994, 106(4): 1453-14591.
    111. Fehling E, Mukhejee K D. Acyl-CoA elongase from a higher plant (Lunaria annua):metabolic intermediates of very-long-chain acyl-CoA products and substrate specificity. Biochim Biophys Acta. 1991,1082: 239-246
    112. Fernandez-Escobar J, Dominguez J, Martin A, et al.. Genetics of the erucic acid content in interspecific hybrids of Ethiopian mustard (Brassica carinta Braun) and rapeseed (B.napus L.). Plant Breeding, 1988, 100:310-315.
    113. Ferreira M E, Williams P H, Osborn T C. RFLP mapping of Brassica napus using doubled haploid lines. Theor Appl Genet, 1994, 89: 615-621.
    114. Ferreira M E, Rimmer S R, Williams P H, et al.. Mapping loci controlling Brassica napus resistance to Leptosphaeria maculans under different screening conditions. Phytopathology, 1995,85:213-217.
    115. Ferreira M E, Satagopan J, Yandell B S, et al.. Mapping loci controlling vernalization requirement and flowering time in Brassica napus. Theor Appl Genet, 1995, 90:727-732.
    116. Foisset N, Delourme R, Barret P, et al.. Molecular tagging of the dwarf BREIZH (Bzh)gene in Brassica napus. Theor Appl Genet, 1995,91:756-761.
    117. Foisset N, Delourme R, Barret P, et al.. Molecular mapping analysis of Brassica napus using isozyme, RAPD and RFLP markers on doubled haploid progeny. Theor Appl Genet, 1996,93:1017-1025.
    118. Fourmann M, Barret P, Renard M, et al.. The two genes homologous to Arabidopsis FAEl cosegregate with the two loci governing erucic acid content in Brassica napus. Theor Appl Genet, 1998,96:852-858.
    119. Fourmann M, Chariot F, Forger N, et al.. Expression mapping and genetic variability of Brassica napus disease resistance gene analogues. Genome, 2001,44(6): 1083-1099.
    120. Ghanevati M, Jaworski J G. Active-site residues of a plant membrane-bound fatty acid elongase[-ketoacyl-CoA synthase, FAE1 KCS. Biochimicaet Biophysica Acta, 2001, 77-85.
    121. Ghanevati M, Jan G. Engineering and mechanistic studies of the Arabidopsis FAE1 β-ketoacyl-CoA synthase, FAE1 KCS. Eur J Biochem, 2002, 269: 3531-3539.
    
    122. Guan CY, Chen SY. et al.. Preliminary report of breeding for high oleic acid content in Brassica napus. Science Press New York, 2001,197-200.
    123. Gupta A, Mukhopadhyay N., Arumugam Y.S., et al.. Molecular tagging of erucic acid trait in oil seed mustard (Brassica juncea) by QTL mapping and single nucleotide polymorphisms in FAE1 gene. Theor Appl Genet, 2004, 108: 743-749.
    124. Han J X, Luhs W, Sonntag K, et al. Functional characterization of β-ketoacyl-CoA synthase genes from Brassica napus L. Plant Molecular Biology, 2001,46(2):229-239.
    125. Harvey B L. Downey R K. The inheritance of erucic acid content in rapeseed (Brassica napus) Can J Plant Sci, 1964, 44(1):104-111.
    126. Heppard E P, Kinney AJ, Stecca KL, et al.. Developmental and growth temperature regulation of two different microsomal omega-6 desaturase genes in soybeans. Plant Physiol, 1996, 110(1): 311-319.
    127. Hitz W D, Yadaw N S, Reiter R S, et al.. Reducing polyunsaturation in oils of transgenic canola and soybean. Plant Lipid Metabolism. Wilmington: Kluwer Academic Publishers, 1995, 506-508.
    128. Hu J, Quiros C, Arus P, et al.. Mapping of a gene determining linolenic acid concentration in rapeseed with DNA based markers. Theor Appl Genet, 1995,90:258-262.
    129. Hu J, Li G, Struss D, et al.. SCAR and RAPD markers associated with 18-carbon fatty acids in rapeseed (Brassica napus). Plant Breeding, 1999,1(18):145-150.
    130. Jadhav A, Katavic V, Marillia EF, et al.. Increased levels of erucic acid in Brassica carinata by co-suppression and antisense repression of the endogenous FAD2 gene. Metab Eng, 2005, 7(3):215-220.
    131. James DW, Lim E, Keller J, et al.. Directed tagging of the Arabidopsis fatty acid elongation 1 (FAE1) gene with the maize transposon activator. Plant Cell, 1995, 7:309-319.
    132. Jansen RC, Van Ooijen JW, Stam P, et al.. Genotype by environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet, 1995, 91:33-37.
    133. Jaworski J, Cahoon EB. IndusLrial oils from transgenic plants. Curr Opin Plant Biol, 2003, 6: 178-184.
    134. Jean M, Brown G G, Landry B S. Genetic mapping of nuclear fertility restorer genes for the'Polima'cytoplasmic male sterility in canola (Brassica napus L.) using DNA markers. Theor Appl Genet, 1997,95:321-328.
    135. Joasson, R. Erucic Acid Heredity in Rapeseed. Proceeding of the 5th International Rapeseed Conference. 1978, (1): 124-126.
    136. Jonsson R. Erucic Acid Heredity in Rapeseed (Brassica napus L., and B.Campestris L.). Hereditas, 1977, 86(2): 159-170.
    137. Jourdren C, Barret P, Horvais R, et al.. Identification of RAPD markers linked to the loci controlling erucic acid level in rapeseed. Mol Breed, 1996,2:61-71.
    138. Jourdren C, Barret P, Brunei D, et al.. Specific molecular marker of the genes controlling the linolenic acid level in rapeseed. Theor AppI Genet, 1996,93:512-518.
    139. Jourdren C, P Barret, R Horvais, et al.. Identification of RAPD markers linked to the loci controlling erucic acid level in rapeseed. Molecular Breeding, 1996 2: 61-71.
    140. J. Piquemal, E.Cinquin, F. Couton, et al.. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers, Theor Appl Genet, 2005, 111: 1514-1523.
    141. Joyeux A, Fortin M G, Mayerhofer R, et al.. Genetic mapping of plant disease resistance gene homologues using a minimal Brassica napus L. population. Genome, 1999, 42:735-743.
    142. Katavic V, Friesen W, et al.. Utility of the Arabidopsis FAE1 and yeast SLC1-1 genes for improvement in erucic acid and oil content in rapeseed. Biochem Soc Trans, 2000, 28 (6): 935-937.
    143. Katavic V., Mietkiewska E, Barton D.L., et al.. Restoring enzyme activity in nonfunctional low erucic acid Brassica napus fatty acid elongase 1 by a single amino acid substitution. Eur J Biochem, 2002, 269(22): 5625-5631.
    144. Katavica V, Dennis L, Bartona E et al.. Gaining insight into the role of serine 282 in B.napus FAE1 condensing enzyme. FEBS Letters, 2004, 562: 118-124.
    145. Kenard M C, Bernard M, Deschamps V, et al.. Glucosinolate analysis in whole rapeseed by near infrared reflectance spectroscopy. In: J.P. Wathelet(ed.). Glucosinolates in Rapeseeds: Analytical Aspects, Martinus Nijhoff, Dordrecht. 1987, 173-176.
    146. Kinney AL, Knowlton S. Designer oils: The high oleic acid soybean. In: Toller S, Harlandr S(eds). Genetic Modification in the Food Industry. London: Biotech Publishers, 1998, 193-213.
    147. Kondra Z P, Stefansson B R, Inheritance of erucic and eicosenoic acid content of rapeseed oil (Brassica napus). Can J Genet Cytol, 1965, 7(3):505-510.
    148. Kostina L. The influence of space flight factors on viability and mutability of plants. Adv Space Research, 1984,4(10):65-70.
    149. Krzymanski J, R K Downey. Inheritance of fatty acid composition in winter forms of rapeseed (Brassica napus).Can. J. Plant Sci., 1968, 49:313-319.
    150. Kunst L, Tayl D C, Underhill E W. Fatty acid elongation in developing seeds of Arabidopsis thaliana. Plant Physiol Biochem, 1992, 30(4):425-434.
    151. Laga B, Seurinck J, Verhoye T, et al.. Molecular breeding for high oleic and linolenic fatty acid composition in Brassica napus. Pflanzenschutz-Nachrichten Bayer, 2004, 57(1):87-92.
    152. Landry B S, Hubert N, Etoh T, et al.. A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome, 1991, 34:543-552.
    153. Lassner M W, Levering C K, et al.. Lysophosphatidic acid acyltransferase from meadow-foam mediates insertion of erucic acid at the sn-2 position of triacyl- glycerol in transgenic rapeseed oil. Plant Physiol, 1995, 109(4): 1389-1394.
    154. Lassner M W, Lardizabal K, et al.. A jojoba β-ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell, 1996, 8(2):281-292.
    155. Laurent P, Huang A H. Organ and development-specific acyl coenzyme a lysophosphatidate acyltransferences in plant and meadowfoam. Plant Physiol, 1992, 99(4): 1711-1715.
    156. Lemieux B, Miquel M, Somerville C, et al.. Mutants of Arabidoposis with alteration in seed lipid fatty acid composition. Theor Appel Genet, 1990, 80(2): 234-240.
    157. Liuhs W, Friedt W. Non-food uses of vegetable oils and fatty acids. In: Murphy DJ(ed) Designer oil crops: breeding, processing and biotechnology. VCH, Weinheim New York Basel Cambridge Tokyo, 1993: 73-130.
    158. Liu Q., Singh S.P., Brubaker C.L., et al.. Cloning and Sequence Analysis of A Novel Member (Accession No. Y10112) of the microsomal w-6 Fatty Acid Desaturase Family from Cotton (Gossypium hirsutum). Plant Physiol, 1999, 120-339.
    159. Lobana K S. Mutation Breeding Newsletter. 1967, (7): 11.
    160. Lombard V, Delourme R. A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. Theor Appl Genet, 2001, 103(4): 491-507.
    161. Maren Rossak, Mark Smith and Ljerka Kunst. Expression of the FAE1 gene and FAE1 promoter activity in developing seeds of Arabidopsis thaliana. Plant Molecular Biology 2001.46:717-725.
    162. Martinez-Rivas J.M., Sperhng P., Luhs W., et al.. Spatial and temporal regulatio different mierosomal oleate desaturase genes (FAD2) from normal-type and high-oleic varieties of sunflower (Helianhus annum L.). Mol Breed, 2001, 8: 159-168.
    163. Matzker M, A J M Matzke. Genomic imprinting in plants: parental effects and transinactivation phenomena. Annu. Rev. Plant Physiol. Plant Mol.Biol, 1993, 44:53-76.
    164. Mayerhofer R, Bansal V K, Thiagarajah M R, et al.. Molecular mapping of resistance to Leptosphaeria maculans in Australian cultivars of Brassica napus. Genome, 1997, 40:294-301.
    165. Michelmore R W. Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating population. Proc, Natl. Acad. Sci. USA. 1991,88:9828-9832.
    166. Millar A.A., Kunst L. Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J, 1997, 12(1): 121-131.
    167. Miller JF, Zimmerman DC, Vick BA. Genetic control of high oleic acid content in sunflower oil. Crop Sci, 1987, 27: 923-926.
    168. Mollers C. Development of oleic acid oilseed rape. In: Presentation at the 8th International Conference for Renewable Resources and Plant Biotechnology. Biotechnology. NAROSSA 2002. Magdeburg, June Published on CD only, 10-11.
    169. Murata N, Wada H. Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem J, 1995, 306:1-8.
    170. Nayar G G. Mutation Breeding Newsletter, 1977, (10):9-10.
    171. Ohlrogge J.B., Browse J.A., Lipid biosynthesis. Plant Cell, 1995, 7: 957-970.
    172. Okuley J., Lightner J., Feldmann K., et al.. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell, 1994, 6:147-158.
    173. Osborn T C, Kole C, Parkin I A P, et al.. Comparison of flowering time genes in Brassica rapa, B.napus and Arabidopsis thaliana. Genetics, 1997, 146:1123-1129.
    174. Parkin I A P, Gulden S M, Sharpe A G, et al.. Segmental Structure of the Brassica napus Genome Based on Comparative Analysis with Arabidopsis thaliana. Genetics, 2005, 171: 765-781.
    175. Piepho HP. A mixed-model approach to mapping quantitative trait loci in barley on the basis of multiple environment data. Genetics, 2000, 156:2043-2050.
    176. Pilet M L, Delourme R, Foisset N, et al. Identification of loci contributing to quantitative field resistance to blackleg disease, causal agent Leptos- phaeria maculans(Desm.)Ces. et de Not., in Winter rapeseed(Brassica napus L.). Theor Appl Genet, 1998, 96: 23-30.
    177. Pirtle I.L., Kongcharoensuntorn W., Nampaisansuk M., et al.. Molecular cloning and functional expression of the gene for a cotton Δ-12 fatty acid desaturase (FAD2). Biochimica et Biophysics Acta, 2001, 1522: 122-129.
    178. Plieske J, Struss D. Microsatellite markers for genome analysis in Brassica. I. Development in Brassica napus and abundance in Brassicaceae species. Theor Appl Genet, 2001,102: 689-694.
    179. Princen L H, Rothfus J A. Development of new crops for industrial raw materials. J Am Oil Chem Soc, 1984, 61:281-289.
    180. Rajcan I, Kasha K J, Kott L S, et al.. Detection of molecular markers associated with linolenic acid levels in spring rapeseed (Brassica napus L.). Euphytica, 1999,105:173-181.
    181. Reddy A S, Thomas T L. Expression of a cyanobacterial A6-desaturase gene results in γ-linoienic acid production in transgenic plants. Nat Biotechnol. 1996,14:639-642.
    182. Renard M C, Bernard M, Deschamps V,et al.. Glucosinolate analysis in hole rapeseed by near infrared reflectance spectroscopy. In: J.P.Wathelet(ed.). Glucosinolates in Rapeseeds: Analytical Aspects, Martinus Nijhoff, Dordrecht. 1987,173-176.
    183. Robbelen G Screening for oils and fats in plants. In: Crop Genetics Resources for Today and Tomorrow. ED. By O, H Frankel and G H Hawlzes, Cambr. Univ.Press, 1975, 231-247.
    184. Roscoe T J, Lessire R., Puyaubert J et al.. Mutations in the fatty acid elongation 1 gene are associated with a loss of β-ketoacyl-coA synthase activity in low arucic acid rapeseed. FEBS Letters, 2001,492:107-111.
    185. Rossak M, Smith M, et al. Expression of the FAE1 gene and FAE1 promoter activity in developing seeds of Arabidopsis thaliana. Plant Mol Biol, 2001, 46(6):717-725.
    186. Schierholt A, Becker H C, Ecke W. Mapping a high oleic acid mutation in winter oilseed rape (Brassica napus L.). Theor Appl Genet, 2000,101:897-901.
    187. Shah S., Xin Z., Browse J. Overexpression of the FAD3 in Desaturase Gene in a Mutant of Arabidopsis. Plant Physiol, 1997, 114: 1533-1539.
    188. Sharpe AG, Parkin IAP, Keith DJ, et al.. Frequent nonreciprocal translocations in the amphidiploid genome of oilseed rape (Brassica napus). Genome, 1995, 38:1112-1121.
    189. Siebel J, Pauls K P. Inheritance patterns of erucic acid content in populations of Brassica napus microspore-derived spontaneous diploids. Theoretical and Applied Genetics, 1989, 77:489-494.
    190. Snowdon RJ, Friedt W. Molecular markers in Brassica oilseed breeding: current status and future possibilities. Plant Breed, 2004, 123:1-8.
    191. Somers D J, Friesen K R D, Rakow G. Identification of molecular markers associated with linoleic acid desaturation in Brassica napus. Theor Appl Genet, 1998, 96:897-903.
    192. Somers D J, Rakow G, Prabhu V K, et al.. Identification of a major gene and RAPD markers for yellow seed coatcolour in Brassica napus. Genome, 2001, 44(6):1077-1082.
    193. Stefansson B R, Hougen F W. Selection of rape plants (Brassca napus) with seed oil practically free from erucic acid. Can J Plant Sci, 1961, 41(1):218-219.
    194. Stoutjesdijk P A, Hurlestone C, Singh S P, et al.. High-oleic acid Australian Brassica napus and B.juncea varieties produced by co-suppression of endogenous delta-12desaturases. Biochem Soc Trans, 2000, 28(6): 938-940.
    195. Stumpf P K and Pollard M R. Pathways of fatty acid biosynthesis in higher plants with particular reference to developing rapeseed. In: Kramer J K G, Sauer F D, Pigden W J(eds.) High and Low Erucic Acid Rapeseed Oils. Academic Press. New York. 1983,131-141.
    196. Styrmne S, Stobart A K, Gladd G. The role of the acyl-CoA pool in the synthesis of polyunsaturated 18-carbin fatty acids and triacylglycerol production in the microsomes of developing sunflower seed. Biochimica et Biophysica Acta, 1983, 752:198-208.
    197. Swanson EB, Herrgesell MJ, et al.. Microspore Autogenesis and Selection: Canola Plants with Field Tolerance to the imidazolimones. Theoretical and Applied Genetics, 1989,98: 525-530.
    198. Tanhuanpaa P.K., Vilkki J.P., Vilkki H.J. Mapping and cloning of FAD2 gene to develop allele-specific PCR for oleic acid in spring turnip rape (Brassica rapa ssp.oleifera). Mol Breed, 1995,4: 543-550.
    199. Teutonico R A, Obsorn T C. Mapping loci controlling the vernalization requirement in Brassica rapa. Theor Appl Genet, 1995, 91:1279-1283.
    200. Teutonico R A, Yandell B, Satagopan J M, et al.. Genetic analysis and mapping of genes controlling freezing tolerance in oilseed Brassica. Mol Breed, 1995,1:329-339.
    201. Thormann C E, Romero J, Mantet J, et al.. Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. Theor Appl Genet, 1996, 93:282-286.
    202. Topfer R, Martini N, Schell J. Moditicatons of lipid synthesis.Science, 1995,268:681-686.
    203. Toroser D, Thormann C E, osborn T C, et al.. RFLP mapping of quantitative trait loci controling seed aliphatic-glucosinolate content in oilseed rape(Brassica napus L.). Theor Appl Genet, 1995,91:802-808.
    204. Tumham E., Northcote D. H.. Changes in the activity of acetyl-CoA carboxylase during rapeseed formation. Biochem J, 1983, 212: 223-229.
    205. Uzunova M, Ecke W, Weissleder K, et al.. Mapping the genome of rapeseed(Brassica napus L.).I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet, 1995,90:194-204.
    206. Van Deynze A E, Landry B S, Pauls K P. The identification of restriction fragment length polymorphisms linked to seed colour genes in Brassica napus. Genome, 1995, 38:534-42.
    207. Velasco L, Fernandez-Martinez J M, Haro A D. Screening Ethiopian mustard for erucic acid by near infrared reflectance spectroscopy. CropSci, 1996, 36: 1068-1071.
    208. Vesna K, Elzbieta M, Dennis L et al.. Restoring enzyme activity in nonfunctional low erucic acid Brassica napus fatty acid elongase 1 by a single amino acid substitution. Eur J Biochem, 2002,5625-5631.
    209. V.P. Agrawal, R. Lessire, P.K.Stumpf. Biosynthesis of very long chain fatty acids in microsomes from epidermal cells of Allium porrum L. Arch. Biochem. Biophys, 1984.230:580-589.
    210. Wang DL, Zhu J, Li ZK, Paterson AH. Mapping of QTL with epistatic effects and QTL x environment interactions by mixed model approaches. Theor Appl Genet, 1999, 99: 1255-1264.
    211. Wang Y P, Sonntag K, et al.. Production of fertile transgenic Brassica napus by Agrobacterium-mediated transformation of protoplasts. Plant Breed, 2005, 124(1): 1-4.
    212. Weier D, Hanke C, et al.. Trierucoylglycerol biosynthesis in transgenic plants of rapeseed (Brassica napus L.). Fett/Lipid, 1997, 99 (5): 160-165.
    213. Whitfield H V, Murphy D J, Hills M J. Sub-cellular localization of fatty acid elongase in developing seeds of Lunaria annua and Brassica napus. Phyto-chemistry, 1993, 32:255-258.
    214. Wilmer J A, G Helsper, L H W Vanderplas. Effects of abscisic acid and temperature on erucic acid accumulation in oilseed rape( B.napus L.). J.Plant Physiol, 1997, 5:414-419.
    215. Xing YZ, Tan YF, Hua JP,et al.. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet, 2002, 105:248-257.
    216. Xu F S, Wang Y H, Meng J. Mapping boron efficiency gene(s)in Brassica napus using RFLP and AFLP markers. Plant Breeding, 2001, 120:319-324.
    217. Yan J, Zhu J, He C, et al.. Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L.). Genetics, 1998, 150:1257-1265.
    218. Zhao J, Becker H C, Zhang D, et al.. Oil Content in a European-Chinese Rapeseed Population: QTL with additive and epistatic effects and their genotype- environment interactions. Crop Sci., 2005, 45:51-59.
    219. Zhuang H, Hamitoon-Kemp TR, Andersen RA, et al.. The impact of alteration of polyunsaturated fatty acid levels on C6-aldehyde formation of Arabidopsis thaliana leaves. Plant Physiol, 1996, 111,805-812.
    220. Zou J, Katavic V. Modification of seed oil content and acyl composition in the Brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell, 1997, 9 (6): 909-923.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700