用户名: 密码: 验证码:
主要饵料微藻的分子系统学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选取收集在中国海洋大学藻种库中绿藻门的三个属(杜氏藻属、四爿藻属、小球藻属)、金藻门的两个属(等鞭藻属、巴夫藻属)、硅藻门的三个属(菱形藻属、褐指藻属、角刺藻属)的一些未明确其确切种类的饵料微藻,扩增并测定其核糖体18SrRNA序列以及部分藻株的核糖体5.8S rRNA和ITS序列,同时从基因库搜索相关微藻的基因序列,对这些微藻的系统发生关系进行了分析,以为这些藻株的分类鉴定提供分子依据。
     扩增的绿藻门3个属的18SrRNA序列长度在1671-1729bp之间,分析结果如下:(1)杜氏盐藻属26株盐藻18SrRNA序列的GC含量最低为48.4%,最高为49.0%,在比对的1638个位点中,保守位点1531个,转换和颠换位点92个,插入或缺失位点15个,转换和颠换位点变异率为5.6%,插入或缺失位点变异率为0.9%。系统分析结果表明,26株盐藻可分为三大支,其中D.salina, D.bardawil,D.tertiolecta,D.bioculata,D.primolecta,D.parva共同聚类成一支, D.viridis和D.lateralis strain Nepal分别聚为一支。这与利用ITS1和ITS2进行分析的结果相似。根据序列多样性,7株未明确盐藻中,A43、A57、A83、A85和C43均与D.viridis亲缘关系最近,可以确定为D.viridis的不同株系。而根据18S rRNA序列分析,A121和A124聚类位置处于D.salina和D.viridis之间,根据ITSs序列,两者则与D.viridis更为接近。(2)四爿藻属19株18SrRNA序列GC含量最低为46.8%,最高为47.7%,在比对的1628个位点中,保守位点1551个,转换和颠换位点66个,插入或缺失位点11个,转换和颠换位点变异率为4.1%,插入或缺失位点变异率为0.7%。系统分析表明,四爿藻属19个序列可以分为四个分支,其中C75与T.striata的亲缘关系最近, C73、C74、C152与T.suecica strain KMMCC P-9和T.subcordiformis之间的亲缘关系最近,而C151可能属于T. helgolandica var.tsingtaoensis的一个株系。(3)小球藻属18SrRNA序列的GC含量最高接近50%,在比对的1756个位点中,保守位点1707个,转换和颠换位点49个,无插入或缺失位点,转换和颠换位点变异率为2.8%。种质库的CF126与C.sorokiniana亲缘关系最近。
     金藻门两个属的分析结果如下:(1)在比对的23株巴夫藻的18S rRNA序列1714个位点中保守位点1464个,插入或缺失位点70个,多态位点180个,其中简约信息位点147个。构建进化树结果表明,23个巴夫藻相应序列可分为4个大支,8个P.pinguis株系与1个P.pseudogranifera株系优先聚为一支,5个P.gyrans聚为一支,3个Pa. salina株系单独聚类成一支,来自种质库的藻株BF和P. viridis优先相聚又依次与P.virecens和P.lutheri相聚,结果表明,BF可能就是P. viridis的一个株系。(2)7株等鞭金藻的18S rRNA部分序列的比对结果表明,在比对的1399个位点中,保守位点1341个,插入或缺失位点13个,多态位点45个,其中简约信息位点2个。亲缘关系分析结果表明来自种质库的3011、8701与球等鞭金藻(I. galbana)有非常近的亲缘关系,S18、S29与I. aff. galbana 'Tahitian isolate'亲缘关系最近。
     PCR扩增种质库的4株硅藻18SrRNA序列长度为1687-1726bp之间,与基因库已有的相关22条序列信息进行比较,亲缘关系分析结果表明,根据18S rRNA可将分属于菱形藻属、褐指藻属和角毛藻属的硅藻完全分开,其中来自种质库的B228和B253与三角褐指藻(P.triconutum)完全聚为一支,说明两者均为三角褐指藻的不同株系,而B13则与角毛藻属的微藻种C.gracilis完全聚类。本研究的结果还表明,小新月菱形藻完全与三角褐指藻聚为一支,而并未与菱形藻属的新月菱形藻聚类,显示该微藻可能与三角褐指藻的亲缘更近。
Some bait-microalgaes were selected from MACC, including Chlorophyta(Dunaliella, Tetraselmis, Chlorella), Chrysophyta(Isochrysis, Pavlova), Bacillariophyta(Nitzschia, Phaeodactylum, Chaetoceros). Their taxonomic position were undefined. To provide molecular basis for the relationship and identification, the18SrRNA and ITSrRNA sequences were amplified and sequenced, phylogenetic relationship among these sequences and some other related algae sequences from GenBank were also analyzed.
     The analysis results of 1671-1729bp 18SrRNA sequences in Chlorophyta showed that: (1) The GC content of 26 Dunaliella strains ranged from 48.4% to 49.0%. There are 1531 conserve loci, 92 transition and transversion loci, 15 insert or deletion loci in total of 1638 loci. The mutation rate of transition and transversion is 5.6%, while the mutation rate of insert or deletion is 0.9%. Analysis results of phylogenetic relationship implied that 26 strains of Dunaliella can be divided into three clads: D.salina, D.bardawil, D.tertiolecta, D.bioculata, D.primolecta and D.parva clustered in one clad, D.viridis and D.lateralis strain Nepal clustered into two clad separately. The result was consistent with ITS1 and ITS2. According to the sequence diversity, seven Dunaliella sp. A43, A57, A83, A85, C43 had closely affinity with D.viridis, could be identified as different strains of D.viridis. A121 and A124 stood between D.salina and D.viridis according to 18SrRNA sequence, and became closer to D.viridis according to ITSrRNA sequence. (2) The GC content of 19 Tetraselmis strains ranged from 46.8% to 47.7%, There are 1551 conserve loci, 66 transition and transversion loci, 11 insert or deletion loci in total of 1628 loci. The mutation rate of transition and transversion is 4.1%, while the mutation rate of insert or deletion is 0.7%. Analysis results of phylogenetic relationship showed that 26 strains of Tetraselmis can be divided into 4 clads, C75 had closely affinity with T.striata, C73, C74, C152 were much closer to T.suecica strain KMMCC P-9 and T.subcordiformis; C151 could belong to T. helgolandica var.tsingtaoensis. (3) The highest GC content of Chlorella 18SrRNA sequences is close to 50%. There are 1707 conserve loci, 49 transition and transversion loci, 0 insert or deletion loci in total of 1756 loci. The mutation rate of transition and transversion was 2.8%, while the mutation rate of insert or deletion was 0. Strain CF126 was most closely related to C.sorokiniana.
     The analysis results of two Chrysophyta genus showed that: (1) 18SrRNA sequence of 23 strains of Pavlova, There are 1464 conserve loci, 180 transition and transversion loci, 70 insert or deletion loci in total of 1714 loci. The phylogenetic relationship analysis showed that 23 strains of Pavlova can be divided into four clades, 8 strains of Pa.pinguis and 1 strain of Pa.pseudogranifera clustered firstly in a clade, 5 strains of Pa.gyrans clustered in one clade, 3 strains of Pa. salina clustered in one clade, BF of MACC and a strain of Pa.viridis clustered firstly, then clustered further in one clade with Pa.virecens and Pa.lutheri. (2) Match results of 7 Isochrysis strains showed that 1399 sites were compared, the number of conserve sites are 1341, the number of transition and transversion sites are 45, the number of insert or deletion sites are 13. Analysis results of phylogenetic relationship show that 3011, 8701 and Isochrysis galbana (I. galbana) had a very close affinity, S18, S29 were closer to I. aff. Galbana 'Tahitian isolate'.
     The18SrRNA sequence length of 4 Diatom strains were 1687-1726bp. Phylogenetic relationship among these sequences and 22 related algae sequences from GenBank were compared. The results implied that all the strains of Nitzschia, Phaeodactylum, Chaetoceros can be devided through 18S rRNA. B253, B228 and P.triconutum clustered in one clade, which suggested B253, B228 were different strains of P.triconutum, B13 and C.gracilis clustered in one clade. The result also indicated that it was Nitzschia closterium f.minutissima which clustered in one clade with P.triconutum entirely, not N.closterium. Nitzschia closterium f.minutissima had a closer affinity with P.triconutum.
引文
[1] Bucklin,A. ,B.W.Frost,J.Bradford Grieve,L.D.Allen&N.J.Copley.Molecular systematic assessment of thirty-four calanoid copepod species of the Calanidae and Clausocalanidae using DNA sequences of mtCOI and nuclear 18S rRNA.Marine Biology, 2003, 142:333~343
    [2] Irene Y.&Annette W.C. .The advantages of the ITS2 region of the nuclear rDNA cistron for analysis of phylogenetic relationships of insects:a Drosophila example.Molecular Phylogenetics and Evolution, 2004, 30:236~242
    [3] Adachi M,Sako Y,Ishida Y.Restriction fragment length polymorphism of ribosomal DNA internal transcribed spacer and 5.8S regions in Japanse Alexandrium species (Dinophyceae)[J].J Phycol,1994,30:857-863
    [4] Adachi M ,Sako Y,Ishida Y. Analysis of Alexandrium (Dinophyceae)species using sequences ofthe 5.8S ribosomal DNA and internal transcribed spacer regions[J].J Phycol,1996,32:424-432
    [5] Scholin C A,Anderson D M.Identification of group-and-gtrain-specific genetic markers or globally distributed Alexandrium(Dinophyceae)I.RFLP analysis of SSU rRNA genes[J].J Phycol,1994.30:744-754
    [6]黄勃,等.两种常见拟青霉的rRNA基因ITS区及5.8SrRNA基因的克隆测序[J].安徽农业大学学报2002,29(1)8-11
    [7]赵一之,等.用rDNA的ITS序列探讨绵刺属的系统位置[J].植物研究,2003, 23(4)402-406
    [8]张宝玉,王广策,张炎,韩笑天,等.东海原甲藻(Prorocentrum donghaiense)和海洋原甲藻PBM(P.micans APBM)的5.8S rDNA及其转录间隔区(ITS)的克隆和序列分析[J].海洋与湖沼,2004,35(3)264-272
    [9]庄丽,陈月琴,李钦亮,等.赤潮叉角藻18S rDNA和ITS区序列测定与分析[J].海洋与湖沼,2001,32(2)148-154
    [10]张宝玉,王广策,张炎,韩笑天,等.一株赤潮甲藻转录单元内间隔区(ITS)和5.8SrDNA序列的克隆[J].海洋科学,2004,28(12)48-53
    [11]苟万里,刘东艳,等.利用rDNA和ITS序列对1株裸甲藻的初步鉴定[J].中国海洋大学学报,2004,34(1)75-83
    [12]王伟,等.利用ITS序列对两个盐藻株的分子鉴定[J].上海大学学报,2006,12(1)84-88
    [13]张宝玉,王广策,吕颂辉,等.三株赤潮硅藻5.8S rDNA及转录间隔区(ITS)的克隆及序列分析[J].海洋学报,2006,28(1):111-116
    [14]韩笑天,郑立,等.赤潮生物原甲藻Prorocentrum分子识别和系统发育学研究[J].高技术通讯,2006,16(8)864-869
    [15]王波,米铁柱,吕颂辉,孙军,等.五种/株原甲藻核糖体小亚基(18S rRNA)基因克隆及序列分析[J].海洋与湖沼,2006,37(5)450-456
    [16]潘卫东张贵星袁保梅,等.杜氏盐藻叶绿体16S rRNA基因的克隆,郑州大学学报,2004,39(1):9~12
    [17]侯桂琴,王宁,谢华,等.PCR法扩增盐藻叶绿体atpA基因,郑州大学学报,2004,39(1):12~15
    [18]王义琴,尹良宏,王鹏,等.小球藻的分子生物学研究进展,遗传,2004,26(3):399~402
    [19] Group I introns within the nuclear-encoded small-subunit rRNA gene of three green algae.Mol.Biol.Evol, 1992,9(6):1103-1118
    [20] Mariela A. Gonz′alez, Patricia I. G′omez1,Rolando Montoya.Comparison of PCR-RFLP analysis of the ITS region with morphological criteria of various strains of Dunaliella.Journal of Applied Phycology 1999,10: 573–580
    [21] Bakker FT, Olsen JL, Stam WT.Global phylogeography in the cosmopolitan species Cladophora vagabunda (Chlorophyta) based on nuclear rDNA internal transcribed spacer sequences.Eur. J. Phycol. 1995, 30: 197–208
    [22] Patricia I. Gómez,Mariela A. González.Genetic variation among seven strains of Dunaliella salina (Chlorophyta) with industrial potential, based on RAPD banding patterns and on nuclear ITS rDNA sequences.2004, 233:149–162
    [23] Gonzalez,M.A., Coleman,A.W., Gomez,P.I. and Montoya, R.Phylogenetic relationship among various strains of Dunaliella(Chlorophyceae) based on nuclear ITS rDNA sequences. J. Phycol. 2002,37(4):604-611
    [24] Mai,J.C. and Coleman,A.W.The internal transcribed spacer 2 exhibits a common secondary structure in green algae and flowering plants. J.Mol.Evol.1997,44 (3):258-271
    [25] Luo,W., Pflugmacher,S., Proschold,T., Walz,N. and Krienitz,L.Genotype versus phenotype variability in Chlorella and Micractinium (Chlorophyta,Trebouxiophyceae) .Protist,2006,157: (3),315-333
    [26] Huss,V.A. and Sogin,M.L.Primary structure of the Chlorella vulgaris small subunit ribosomal RNA coding region. Nucleic Acids Res, 1989, 17(3):1255
    [27] Yamamoto,M., Nozaki,H., Miyazawa,Y., Koide,T. and Kawano,S.Relationship between presence of a mother cell wall and speciation in the unicellular microalga Nannochloris (Chlorophyta) .J. Phycol. 2003,39:172-184
    [28] Huss,V.A.R., Holweg,C., Seidel,B., Reich,V., Rahat,M. and Kessler,E.There is an ecological basis for host/symbiont specificity in Chlorella/Hydra symbioses.Endocyt. Cell Res,1993,10:35-46
    [29] de-Bashan,L.E., Trejo,A., Huss,V.A., Hernandez,J.P. and Bashan,Y.Chlorella sorokiniana UTEX 2805, a heat and intense,sunlight-tolerant microalga with potential for removing ammonium from wastewater. Bioresour. Technol,2008,99(11): 4980-4989
    [30] Wakasugi T,Nagai T,Kapoor M,Sugita M,lto M,lto S,Tsudzuki J,Nakashima K,Tsudzuki T.Suzuki Y,Hamada A,Ohta T,Inamura A,Yoshinaga K,Sugiura M.Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris:the existence of genes possibly involved in chloroplast division. Proc Natl Acad Sci,USA.1997,94(11):5967~5972
    [31] Suga K, Honjoh K,Furuya N,Shimizu H,Nishi K,Shinohara F,H irabaru Y ,M aruyama I,M iyam oto T ,H atano S.Iio M.Two low-temperature-inducible Chlorella genes for deltal 2 and omega-3 fatty acid desaturase (FAD):isolation of dehal 2 and omega-3 fad eDNA clones,expression of dehal 2 fad in Saccharomyces cerevisiae and expression of omega-3 fad n Nicotiana tabatun7.Biosci Biotechnol Biochem,2002,66(6):1314~1327
    [32] Watanabe K I,Ehara M,Inagaki Y,Ohama T.Distinctive origins of group I introns found in the COXI genes of three gree algae.Gene,1998,213(12):1~7
    [33]陈颖,刘根齐,李文彬,等.三种小球藻DNA提取方法的比较[J].植物生物学通讯,2001,37(3):242-244
    [34]张继民,杨官品,张学成,等.一种提取眼点拟微球藻DNA的简便方法[J].海洋科学,2003,27(9):58-60
    [35]罗立明,欧阳叶新,胡鸿钧.海洋单细胞四爿藻基因组DNA的微量提取,武汉植物学研究,2003,21(4):295~300
    [36]张德瑞,郑宝福,等.青岛产扁藻及其形态变异[J].植物学报,1964,12(1)109-117
    [37] Green J.C.The fine structure of Pavlova pinguis Green and a preliminary survey of the order Pavlovales(Prymnesiophyceae) .Br. Phycol.J.1980,15:151~191
    [38] Van Lenning,K., Latasa,M., Estrada,M., Saez,A.G., Medlin,L.K.,Probert,I., Veron,B. and Young,J . Pigment signatures and phylogenetic relationships of the Pavlovophyceae (Haptophyta) .J.Phycol. 2003,39(2):379-389
    [39] Chu,W.L., Kawachi,M., Miyashita,H.Molecular Phylogeny and Distinct Morphological Characters of the Pavlovales (Prymnesiophyta). J. Appl. Phycol,2000, In press
    [40] Simon N. , Brenner J. , Edeardsen B. and Medlin L.K . The ideniifieation of Chrysochromulina and Pyrmnesium species (Haptophyta , Prymnesiophyceae)using fluorescent or chemiluninescent oligonucleotide Probes: a means for improving studies on toxic algae.European Journal of Phycology 1997,32:393~401
    [41]梁象秋,方纪祖,杨和荃,等.水生生物学(形态和分类),中国农业出版社
    [42] B.Fott著.藻类学,上海科学技术出版社
    [43]胡鸿钧,李尧英,魏印心,等.中国淡水藻类,上海科学技术出版社
    [44]陆开宏,林霞.13种饵料微藻的脂肪酸组成特点及在河蟹育苗中的应用,宁波大学学报(理工版),14(3):27~32
    [45]詹冬梅,孙世英,梁英.十九株海洋金藻的总脂含量及脂肪酸组成,海水养殖,2000,55(8):28~32
    [46]陈必链,庄惠如,陈文列,等.Co对绿色巴夫藻超微结构的影响,海洋环境科学,2000,19(2):22~24
    [47]陈椒芬等.两种新分离的海洋金藻及其对贻贝幼虫的饲料效果,海洋湖沼通报,1985,2:44~46
    [48]刘东超,梁飞龙.绿色巴夫藻对褶皱臂尾轮虫的饵料效果试验,福建水产,1999,1:9~13
    [49]郑严,马志珍,周利,等.现代生物饵料培养及开发利用,中国农业出版社
    [50]陈椒芬等.等鞭藻的生长及其主要营养成分的研究,海洋与湖沼,1987,18(l):55~63
    [51]龙丽娟,孙恢礼,何伟宏.海洋植物营养素的应用研究1.金藻类的培养,热带海洋,1998,17(l):88~92
    [52]王君,李红,王焉.球等鞭金藻3011的生长与其营养盐关系的研究,海南大学学报自然科学版,2002,20(4):319~323
    [53]周汝伦,孙爱淑,杨震,等.金藻8701培养的生态条件研究,青岛海洋大学学报,1994,24(2):181~186
    [54]毛连菊,张从尧,由学策.湛江等鞭金藻的超微结构研究,大连水产学院学报,1999,14(4):7~12
    [55]周汝伦,孙爱淑,杨震,等.金藻8701的分离、培养和应用初报告,海洋湖沼通报,1990,(1):34~40
    [56]宫相忠,唐学玺,黄健等.球等鞭金藻8701的耐低温机理,水产学报,2001,25(l):20~25
    [57]陈峰,姜悦.微藻生物技术.北京:中国轻工业出版社,1999
    [58]陈明耀.生物饵料培养[M].北京:中国农业出版社, 1999: 31-65
    [59] Damste,J.S., Muyzer,G., Abbas,B.et,al.The rise of the rhizosolenid diatoms. Science 2004,304 (5670):584-587
    [60]李海涛,杨官品,石媛嫄,等.长菱形藻(Nitzschia longissima)和新月细柱藻(Cylindrotheca closterium)分子分类研究,海洋湖沼通报,2006,(3)67~72
    [61]张宝玉,王广策,吕颂辉,等.三株赤潮硅藻5.8S rDNA及转录间隔区(ITS)的克隆及序列分析[J].海洋学报,2006,28(1):111-116
    [62]石娟,潘克厚,王晓青,等.对小新月菱形藻(Nitzschia closterium f.minutissima)分类地位的重新认识[J].科学通报.2008,53(2):197-202.
    [63]李文权,黄贤忙,陈清花,等.4种海洋单胞藻生化组成的环境因子效应研究[J].海洋学报, 1999, 21(3): 59-65
    [64] Hayward J. Studies on the growth of Phaeodactylum tricornutum.IV.Comparison of different isolates [J] .J Mar Biol Assoc UK,1968, 48: 657-666
    [65] Michael A.Borowitzka,Christopher J. Siva.The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species[J]. Journal of Applied Phycology, 2007,19:567–590
    [66]杨泽民.金藻部分类群的分子系统学研究:[暨南大学硕士学位论文].广州:暨南大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700