用户名: 密码: 验证码:
光子晶体光纤激光器和超连续光源的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体光纤起源于光子带隙思想,却又随着不断发展而高于带隙理论。时至今日,它正以极快的速度影响现代科学的多个领域。在基于PCF的众多新型光纤器件之中,稀土掺杂光纤激光器件和超连续光源是比较具有代表性的两种。本文从实验和理论两个角度研究了光子晶体光纤在以上两方面的应用:首先总结了光子晶体光纤激光器件和超连续光源的研究现状;然后利用有限单元方法分析了大模面积光纤中的双折射特性;理论和实验研究了稀土掺杂光子晶体光纤激光器和放大器;利用分步傅里叶方法数值求解非线性薛定谔方程,分析了宽脉冲泵浦在非线性光子晶体光纤中传输时的光谱展宽过程;利用准连续/连续光源作为泵浦,实验研究光子晶体光纤中的光谱展宽现象并分析了连续谱的频域和时域特性。主要内容概括如下:
     1.详细讨论了有限单元方法的基本思想和求解过程,利用该方法分析了大模面积光纤中的双折射特性,提出两种结构致双折射大模面积PCF的设计:(1)通过在纤芯中引入两个小于包层空气孔尺度的小孔以破坏光纤截面几何形状的对称性,在有效模场面积大于100μm2的光子晶体光纤中获得10-4的双折射度;(2)在光子晶体光纤的包层中引入两个大尺度空气孔的同时,在光纤纤芯中引入椭圆形的小空气孔以降低光纤的多重轴对称性。通过这种具有复合不对称结构的双折射晶体光纤设计,可以使光纤在具有较大模场面积的情况下获得10-4量级的双折射。
     2.理论分析了高折射率Bragg光纤的模式特性和色散特性,并讨论了其在掺稀土光纤激光器件方面的应用。对拉制出的掺Er3+Bragg光纤进行了放大特性的测试,测量了前、后向泵浦方式下放大器的小信号增益和噪声系数。使用环行器和光栅构成的环行腔结构,得到了1553.7nm的单波长激光输出。由于这种掺Er3+的Bragg光纤之前未见报道,所以无论在工艺上还是在特性上,都有大量研究工作尚待继续进行。
     3.对掺Yb3+双包层光子晶体光纤激光器进行了实验研究。采用前向端面泵浦方式,选用二向色镜和增益光纤端面构成F-P腔的结构构建了线性腔掺Yb3+光子晶体光纤激光器。激光最大输出功率11.69W,斜率效率87%。在此基础上,利用GaAs晶体作为饱和吸收体,进行了被动调Q包层泵浦PCFL的研究,获得了脉冲宽度小于90ns、最大平均功率为5.86W的激光输出。
     4.利用有限单元方法,研究了光子晶体光纤非线性特性的基本理论。系统地分析了光子晶体光纤有效模场面积、光纤非线性系数和其结构参量的关系,并讨论了非线性系数随波长的变化。研究表明,利用石英/空气大的折射率差,可以设计具有小模场面积的光纤来提高非线性系数。但是,当纤芯直径过小时,能量已经不能够很好地被限制在纤芯中,形成泄漏。在此基础上,研究了掺锗纤芯PCF增强的非线性特性,计算了掺杂浓度和掺杂区域半径对光子晶体光纤非线性系数、模场分布和色散等性质的影响。这对于制造具有高非线性系数的PCF具有指导意义。
     5.利分步傅里叶方法求解非线性薛定谔方程,对低峰值功率、宽脉冲在光子晶体光纤中的传输特性进行了数值模拟和比较,分析了脉冲传输和演化的非线性机理和超连续谱展宽特性。通过改变光纤参数和初始入射条件,发现在低峰值功率、宽脉冲条件下引起光谱展宽的主要因素是调制不稳定性。在光纤反常色散区,噪声可以作为调制不稳作用的探测波加速入射脉冲的破裂,使之形成无序的超短脉冲,进而在光纤中继续传输实现光谱的展宽。此外,还分析了脉冲功率、光纤非线性系数、脉冲宽度等因素对连续谱的影响。
     6.以脉冲宽度80ps的激光输出作为泵浦,通过两极放大器引入自发辐射噪声,在70m高非线性PCF中获得了通信波段的超连续谱。在实验中,观察到了调制不稳定现象的出现,与第四章的理论分析很好地吻合。此外,还将光纤拉曼激光器输出的连续光耦合入70m高非线性光子晶体光纤,在入纤功率为4.14W时得到了1450-1650nm的光谱展宽,输出平均功率为2W。
     7.使用脉宽为0.62ns的调Q固体激光器和20m光子晶体光纤,获得了600-1750nm的超宽带连续谱,分析了光谱展宽的机制并测量了连续谱的频域和时域特性。利用上述宽带光源,测量了全固光子晶体光纤的带隙,并利用高双折射环境滤波的方式获得了S+C+L波段的多波长信号源。
Photonic crystal fibers, also known as microstructured or holey fibers, have recently generated great interest in the scientific community thanks to the new ways provided to control and guide light. Among the varieties of novel PCF-based apparatus, Rare-Earth Doped fiber laser and supercontinuum light source are relatively representative. In this dissertation, applications of PCF to the above mentioned fields are theoretically and experimentally investigated. Firstly, new occurrence on rare-earth doped fiber laser and SC generation are summarized with the focus mainly on photonic crystal fibers. Properties of birefringence in large mode area PCF are studied with a finite element method. As for PCF laser apparatus, Er3+ doped Bragg fiber based amplifier and Yb3+ PCFL are demonstrated. The last part of our work is concentrated on the propagation of quasi-continuous/continuous wave in PCF with high nonlinearity, which including both theoretical and experimental researches. The details are described as follows:
     1. The basic idea and analyzing process of finite element method are discussed. By means of this method, birefringence in PCF with a large mode area is studied and two fiber designs are proposed to realize form-induced birefringence: (1) A design of microstructure fiber containing small circular air holes in the center of the solid core is proposed, and it can have structure-induced birefringence with an order of ~10-4 whilst a large mode area of 100μm2. (2) By introducing two big air holes in the fiber cladding region and a small elliptical hole in the fiber core region at the same time, the cross section of the fiber shows twofold symmetry and group birefringence of ~10-4 can be achieved. These fibers can be applied to generation and propagation of high power laser.
     2. Modal properties and dispersion properties of high-index core Bragg fiber are theoretically investigated. Its application on rare-earth doped fiber laser apparatus is also discussed. Using the actual Er3+-doped Bragg fiber, we demonstrated a fiber amplifier and investigated its properties of gain. Result shows it have potential application in automatic gain control.
     3. A high power cladding pumped Yb3+ PCFL has been demonstrated using Fabry-Perot cavity configuration. The highest output power and the slope efficiency are 11.69W and 87%, respectively. In the latter experiment, a GaAs crystal was inserted into the cavity acting as a saturable absorber. Passive Q-switched Yb3+ PCFL was achieved with a pulse width less than 90ns.
     4. The fundamental properties of fiber nonlinearity are theoretically investigated with finite element method. Compared with the conventional fiber, the enhancement of the nonlinear coefficient in PCF can be considered from two aspects. One is the decreased mode area benefit from the large index difference between silica and air. However, the mode area can not be reduced unlimitedly and the energy will penetrate into the air holes when the diameter of the core is sufficiently small. Thus another way for nonlinearity enhancement is discussed, and PCF with Ge-doped core is studied in details.
     5. Based on the NLSE and Split-step Fourier Transform Method, the propagation of long pulse in PCF with low peak power is simulated, which shows that the modulation instability derived from SPM dominates the spectrum broadening. In the anomalous dispersion region, white noise can be introduced as the MI probe for speeding up the break of the long pulse. Thus unorderly ultra-short pulses come into being and its further propagation in PCF result in SC generation. The affection of peak power, fiber nonlinear coefficient and pulse width on SC spectrum are also investigated respectively.
     6. Pumping 70m long PCF with an 80ps pulse output, SC generation covering communication windows is demonstrated. In the experiment, two orders of amplifier are used as the noise source and MI is observed. It is in good agreement with the simulation results. In another experiment, the continuous wave from a Raman fiber laser is used to pump the same PCF, SC generation with high average power is acquired within a wavelength range of 1450-1650nm.
     7. The output of an Nd3+ doped Q-switched laser with high peak power is lunched into a 20m PCF for SC generation. Properties of SC both in frequency domain and time domain are measured and analyzed. By use of the ultra wide SC light source, we measured the band gap map of an all-solid PBG fiber. And it can also be used for providing multi-wavelength signals by means of filtering.
引文
[1]Yablonovitch, E., Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physics Review Letters, 1987, 58(20): 2059-2062.
    [2]John, S., Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Physics Review Letters, 1987, 58(23): 2486-2489
    [3]Knight, J.C., et al., All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 1996, 21(19): 1547-1549
    [4]Birks, T.A., J.C. Knight, and P. St. J. Russell, Endlessly single-mode photonic crystal fiber. Optics Letters, 1997, 22(13): 961-963
    [5]Knight, J.C., et al. Properties of photonic crystal fiber and the effective index model. Journal of the Optical Society of America a-Optics Image Science and Vision, 1998, 15(3): 748-752
    [6]Broeng, J., et al. Photonic crystal fibers: A new class of optical waveguides. Optical Fiber Technology, 1999, 5(3): 305-330
    [7]Birks, T.A., et al. Dispersion compensation using single-material fibers. Ieee Photonics Technology Letters, 1999, 11(6): 674-676.
    [8]Wadsworth, W.J., et al. Very high numerical aperture fibers. Ieee Photonics Technology Letters, 2004, 16(3): 843-845
    [9]Issa, N.A., High numerical aperture in multimode microstructured optical fibers. Applied Optics, 2004, 43(33): 6191-6197
    [10]Broderick, N.G.R., et al. Nonlinearity in holey optical fibers: measurement and future opportunities. Optics Letters, 1999, 24(20): 1395-1397
    [11]Liu, J.G., et al. Enhanced nonlinearity in a simultaneously tapered and Yb3+-doped photonic crystal fiber. Journal of the Optical Society of America B-Optical Physics, 2006, 23(11):. 2448-2453
    [12]Begum, F., et al.Highly nonlinear dispersion-flattened square photonic crystal fibers with low confinement losses. Optical Review, 2007, 14(3): 120-124
    [13]Knight, J.C., et al. Large mode area photonic crystal fibre. Electronics Letters, 1998, 34(13): 1347-1348
    [14]Gates, J.C., et al. Structure and propagation of modes of large mode area holey fibers. Optics Express, 2004, 12(5): 847-852
    [15]Mortensen, N.A., et al. Improved large-mode-area endlessly single-mode photonic crystal fibers. Optics Letters, 2003, 28(6): 393-395
    [16]Zhang, W., et al. Experimental research on mode properties of large mode area photonic-crystal fiber laser. Microwave and Optical Technology Letters, 2005, 46(2): 141-144
    [17]Wadsworth, W.J., et al. Yb3+-doped photonic crystal fibre laser. Electronics Letters, 2000,36(17): 1452-1454
    [18]Limpert, J., et al. High power Q-switched Yb-doped photonic crystal fiber laser producing sub-10 ns pulses. Applied Physics B-Lasers and Optics, 2005, 81(1): 19-21
    [19]J Limper, T Schreiber, S Nolte, et al. Air-clad large-mode-area holey-fiber laser yields high power. Laser Focus World, 2003, 39(7): 13-13
    [20]Wadsworth, W.J., et al. High power air-clad photonic crystal fibre laser. Optics Express, 2003, 11(1): 48-53
    [21]Zhang, C.S., et al. Temperature and strain sensing property of grapefruit microstructure fiber Bragg grating. Acta Physica Sinica, 2005, 54(6): 2758-2763
    [22]Matejec, V., et al. Microstructure fibers for gas detection. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2006, 26(2-3): 317-321
    [23]Eggleton, B.J., et al. Cladding-mode-resonances in air-silica microstructure optical fibers. Journal of Lightwave Technology, 2000, 18(8): 1084-1100
    [24]Yue, Y., et al., Phase and group modal birefringence of an index-guiding photonic crystal fibre with helical air holes. Optics Communications, 2006, 268(1): 46-50
    [25]Liu, Y.C. and Y. Lai, Optical birefringence and polarization dependent loss of square- and rectangular-lattice holey fibers with elliptical air holes: numerical analysis. Optics Express, 2005, 13(1): 225-235
    [26]Ortigosa-Blanch, A., et al. Highly birefringent photonic crystal fibers. Optics Letters, 2000. 25(18): 1325-1327
    [27]Hansen, T.P., et al. Highly birefringent index-guiding photonic crystal fibers. Ieee Photonics Technology Letters, 2001, 13(6): 588-590
    [28]Hu, M.L., et al. Multiplex frequency conversion of unamplified 30-fs Ti: sapphire laser pulses by an array of waveguiding wires in a random-hole microstructure fiber. Optics Express, 2004, 12(25): 6129-6134
    [29]Hu, M.L., et al. Supercontinuum generation and transmission in a random distributed microstructure fiber. Laser Physics, 2004, 14(5): 776-779
    [30]Knight, J.C., et al., Photonic band gap guidance in optical fibers. Science, 1998, 282(5393): 1476-1478
    [31]Cregan, R.F., et al. Single-mode photonic band gap guidance of light in air. Science, 1999, 285(5433): 1537-1539
    [32]West J A , V.N., Smith C M , et al. Photonic crystal fibers. ECOC 2001, 2001: 582-585
    [33]Roberts, P.J., et al. Ultimate low loss of hollow-core photonic crystal fibres. Optics Express, 2005, 13(1): 236-244
    [34]Russell, P.S.J., Photonic-crystal fibers. Journal of Lightwave Technology, 2006, 24(12): 4729-4749
    [35]Zhang, C.S., et al. Tunable highly birefringent photonic bandgap fibers. Optics Letters, 2005, 30(20): 2703-2705
    [36]Argyros, A., et al. Photonic bandgap with an index step of one percent. Optics Express, 2005, 13(1): 309-314
    [37]Russell, P., Photonic crystal fibers. Science, 2003, 299(5605): 358-362
    [38] Mrazek, J., et al. Application of the sol-gel method at the fabrication of microstructure fibers. Journal of Sol-Gel Science and Technology, 2004, 31(1-3): 175-178
    [39]Kumar, V., et al. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Optics Express, 2002, 10(25): 1520-1525
    [40]van Eijkelenborg, M.A., et al. Microstructured polymer optical fibre. Optics Express, 2001, 9(7): 319-327
    [41]Falkenstein, P., C.D. Merritt, and B.L. Justus, Fused preforms for the fabrication of photonic crystal fibers. Optics Letters, 2004, 29(16): 1858-1860
    [42]Monro, T.M., et al. Chalcogenide holey fibres. Electronics Letters, 2000, 36(24): 1998-2000
    [43]van Eijkelenborg, M.A., et al. Recent progress in microstructured polymer optical fibre fabrication and characterisation. Optical Fiber Technology, 2003, 9(4): 199-209
    [44]Li, S.G., et al. Supercontinuum generation in holey microstructure fibres with random cladding distribution by femtosecond laser pulses. Chinese Physics Letters, 2003, 20(8): 1300-1302
    [45]Hu, M.L., et al. Birefringence phenomena in a random distributed microstructure fiber. Acta Physica Sinica, 2004, 53(12): 4248-4252
    [46]Knight, J.C., et al. Anomalous dispersion in photonic crystal fiber. Ieee Photonics Technology Letters, 2000, 12(7): 807-809
    [47]Reeves, W.H., et al. Demonstration of ultra-flattened dispersion in photonic crystal fibers. Optics Express, 2002, 10(14): 609-613
    [48]Ferrando, A., et al. Designing the properties of dispersion-flattened photonic crystal fibers. Optics Express, 2001, 9(13): 687-697
    [49]Hansen, K.P., Dispersion flattened hybrid-core nonlinear photonic crystal fiber. Optics Express, 2003, 11(13): 1503-1509
    [50]Renversez, G., B. Kuhlmey, and R. McPhedran, Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses. Optics Letters, 2003, 28(12): 989-991
    [51]Ferrando, A., et al. Nearly zero ultraflattened dispersion in photonic crystal fibers. Optics Letters, 2000, 25(11): 790-792
    [52]Huttunen, A. and P. Torma, Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode. Optics Express, 2005, 13(2): 627-635
    [53]Luan, F., et al. Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers. Optics Express, 2004, 12(5): 835-840
    [54]Mortensen, N.A., Effective area of photonic crystal fibers. Optics Express, 2002, 10(7): 341-348.
    [55]Nilsson, J.e.a. Continuous-wave pumped holey fiber Raman laser. Conference on Optical Fiber Communication.2002.
    [56]Ouzounov, D.G., et al. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science, 2003, 301(5640): 1702-1704
    [57]Benabid, F., et al. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science, 2002, 298(5592): 399-402
    [58]Konorov, S.O., A.B. Fedotov, and A.M. Zheltikov, Enhanced four-wave mixing in a hollow-core photonic-crystal fiber. Optics Letters, 2003. 28(16): 1448-1450
    [59]Saitoh, K. and M. Koshiba, Photonic bandgap fibers with high birefringence. Ieee Photonics Technology Letters, 2002, 14(9): 1291-1293
    [60]Statkiewicz, G., T. Martynkien, and W. Urbanczyk, Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain. Optics Communications, 2004, 241(4-6): 339-348
    [61]Schreiber, T., et al. Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity. Optics Express, 2005, 13(19): 7621-7630
    [62]Saitoh, K. and M. Koshiba, Single-polarization single-mode photonic crystal fibers. Ieee Photonics Technology Letters, 2003. 15(10): 1384-1386
    [63]Szpulak, M., et al. Polarizing photonic crystal fibers with wide operation range. Optics Communications, 2004, 239(1-3): 91-97
    [64]Kerbage, C., et al. Highly tunable birefringent microstructured optical fiber. Optics Letters, 2002, 27(10): 842-844
    [65]Kerbage, C., et al. Microstructured optical fibre with tunable birefringence. Electronics Letters, 2002, 38(7): 310-312
    [66]Zhang, C.S., et al. Simulations of effect of high-index materials on highly birefringent photonic crystal fibres. Chinese Physics Letters, 2005, 22(11): 2858-2861
    [67]Furusawa, K., et al. Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding. Optics Express, 2001, 9(13): 714-720
    [68]Eggleton, B.J., et al. Grating resonances in air-silica microstructured optical fibers. Optics Letters, 1999, 24(21): 1460-1462
    [69]Westbrook, P.S., et al. Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings. Ieee Photonics Technology Letters, 2000, 12(5): 495-497
    [70]Kakarantzas, G., T.A. Birks, and P.S. Russell, Structural long-period gratings in photonic crystal fibers. Optics Letters, 2002, 27(12): 1013-1015
    [71]Zhu, Y.N., et al. Strong resonance and a highly compact long-period grating in a large-mode-area photonic crystal fiber. Optics Express, 2003, 11(16): 1900-1905
    [72]Zhu, Y.N., et al. Deep-notch, ultracompact long-period grating in a large-mode-area photonic crystal fiber. Optics Letters, 2003, 28(24): 2467-2469
    [73]Zhu, Y.N., et al. Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber. Optics Letters, 2005, 30(4): 367-369
    [74]Lim, J.H., et al. Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure. Optics Letters, 2004. 29(4): 331-333
    [75]Lim, J.H., et al. Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings. Optics Letters, 2004, 29(4): 346-348
    [76]孙婷婷,王志,张春书等,微结构光纤 Bragg 光栅的制备. 光电子激光, 2004, 15: 125-127
    [77]张春书,王志,孙婷婷等, 柚子型微结构光纤 Bragg 光纤温度传感特性的研究. 光电子激光, 2004. 15: 13-115
    [78]王志,开桂云,张春书等, 全矢量有限单元法分析微结构 Bragg 光栅多波长谐振. 光电子激光, 2004, 15: 118-120
    [79]Sun, T.T., et al. Multi-wavelength erbium-doped fiber laser based on a microstructure fiber Bragg grating. Microwave and Optical Technology Letters, 2005, 46(2): 162-164
    [80]Jin, L., et al. Spectral characteristics and bend response of Bragg gratings inscribed in all-solid bandgap fibers. Optics Express, 2007, 15(23): 15555-15565
    [81]Jin, L., et al. Bragg grating resonances in all-solid bandgap fibers. Optics Letters, 2007. 32(18): 2717-2719
    [82]Mangan, B.J., et al. Experimental study of dual-core photonic crystal fibre. Electronics Letters, 2000, 36(16): 1358-1359
    [83]Z. Wang, S.F., et al. Analysis of the guided modes in triangular photonic crystal fibers using a full-vectorial numerical method. APOC 2003: Optical Fibers and Passive Components. 2004.
    [84]Broeng, J., et al. Analysis of air-guiding photonic bandgap fibers. Optics Letters, 2000, 25(2): 96-98
    [85]Zhu, Z.M. and T.G. Brown, Full-vectorial finite-difference analysis of microstructured optical fibers. Optics Express, 2002, 10(17): 853-864
    [86]Saitoh, K., Y. Sato, and M. Koshiba, Polarization splitter in three-core photonic crystal fibers. Optics Express, 2004, 12(17): 3940-3946
    [87]Laesgaard, J., O. Bang, and A. Bjarklev, Photonic crystal fiber design for broadband directional coupling. Optics Letters, 2004, 29(21): 2473-2475
    [88]Petropoulos, P., et al. 2R-regenerative all-optical switch based on a highly nonlinear holey fiber. Optics Letters, 2001, 26(16): 1233-1235
    [89]Sharping, J.E., et al. All-optical switching based on cross-phase modulation in microstructure fiber. Ieee Photonics Technology Letters, 2002, 14(1): 77-79
    [90]Zheltikova, D.A., et al. Switching intense laser pulses guided by Kerr-effect-modified modes of a hollow-core photonic-crystal fiber. Physical Review E, 2005, 71(2)
    [91]Yusoff, Z., et al. Raman effects in a highly nonlinear holey fiber: amplification and modulation. Optics Letters, 2002, 27(6): 424-426
    [92]Hansryd, J., et al. Fiber-based optical parametric amplifiers and their applications. Ieee Journal of Selected Topics in Quantum Electronics, 2002, 8(3): 506-520
    [93]Tang, R., et al. Microstructure-fibre-based optical parametric amplifier with gain slope of similar to 200 dB/W/km in the telecom range. Electronics Letters, 2003, 39(2): 195-196
    [94]Glas, P. and D. Fischer, Cladding pumped large-mode-area Nd-doped holey fiber laser. Optics Express, 2002, 10(6): 286-290
    [95]Limpert, J., et al. High-power air-clad large-mode-area photonic crystal fiber laser. Optics Express, 2003, 11(7): 818-823
    [96]Limpert, J., et al. Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation. Optics Express, 2003, 11(22): 2982-2990
    [97]Ranka, J.K., R.S. Windeler, and A.J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Optics Letters, 2000, 25(1): 25-27
    [98]Fedotov, A.B., et al. Supercontinuum-generating holey fibers as new broadband sources for spectroscopic applications. Laser Physics, 2000, 10(3): 723-726
    [99]Fedotov, A.B., et al. Spatial and spectral filtering of supercontinuum emission generated in microstructure fibres. Quantum Electronics, 2002, 32(9): 828-832
    [100]Apolonski, A., et al. Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses. Journal of the Optical Society of America B-Optical Physics, 2002, 19(9): 2165-2170
    [101]Fedotov, A.B., et al. Frequency-tunable supercontinuum generation in photonic-crystal fibers by femtosecond pulses of an optical parametric amplifier. Journal of the Optical Society of America B-Optical Physics, 2002, 19(9): 2156-2164
    [102]Ortigosa-Blanch, A., J.C. Knight, and P.S.J. Russell, Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers. Journal of the Optical Society of America B-Optical Physics, 2002, 19(11): 2567-2572
    [103]JM Dudley, d S. Coen, Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers. Ieee Journal of Selected Topics in Quantum Electronics, 2002, 8(3): 651-659
    [104]Kalashnikov V.L., et al. Low-threshold supercontinuum generation from an extruded SF6PCF using a compact Cr4+: YAG laser. Applied Physics B-Lasers and Optics, 2004, 79(5): 591-596
    [105]Cheng, C.F., X.F. Wang, and B. Lu, Nonlinear propagation and supercontinuum generation of a femtosecond pulse in photonic crystal fibers. Acta Physica Sinica, 2004,53(6): 1826-1830
    [106]Schreiber, T., et al. Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths. Optics Express, 2005, 13(23): 9556-9569
    [107]Yu, Y.Q., et al. Supercontinuum generation using a polarization-maintaining photonic crystal fibre by a regeneratively amplified Ti : sapphire laser. Chinese Physics Letters, 2005, 22(2): 384-387
    [108]Jian, Y.Q., et al. Experimental study and numerical analysis of femtosecond pulse propagation and supercontinuum generation in highly nonlinear photonic crystal fiber. Acta Physica Sinica, 2006, 55(4): 1809-1814
    [109]Liu, W.H., et al. Effect of initial chirp on supercontinuum generation by femtosecond pulse in photonic crystal fibers. Acta Physica Sinica, 2006, 55(4): 1815-1820
    [110]Mitrofanov, A.V., et al. Microjoule supercontinuum generation by stretched megawatt femtosecond laser pulses in a large-mode-area photonic-crystal fiber. Optics Communications, 2007, 280(2): 453-456
    [111]Lorenc, D., et al. Adaptive ferntosecond pulse shaping to control supercontinuum generation in a microstructure fiber. Optics Communications, 2007, 276(2): 288-292
    [112]Price, J.H.V., et al. Mid-IR supercontinuum generation from nonsilica microstructured optical fibers. Ieee Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 738-749
    [113]Turke, D., et al. Coherence of subsequent supercontinuum pulses generated in tapered fibers in the femtosecond regime. Optics Express, 2007, 15(5): 2732-2741
    [114]Coen, S., et al. White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber. Optics Letters, 2001, 26(17): 1356-1358
    [115]Coen, S., et al. Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers. Journal of the Optical Society of America B-Optical Physics, 2002, 19(4): 753-764
    [116]Dudley, J.M., et al., Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping. Journal of the Optical Society of America B-Optical Physics, 2002, 19(4): 765-771
    [117]Schreiber, T., et al. High average power supercontinuum generation in photonic crystal fibers. Optics Communications, 2003, 228(1-3): 71-78
    [118]Yamamoto, T., et al. Supercontinuum generation at 1.55 mu m in a dispersion-flattened polarization-maintaining photonic crystal fiber. Optics Express, 2003, 11(13): 1537-1540
    [119]Nikolov, N.I., et al. Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing. Journal of the Optical Society of America B-Optical Physics, 2003, 20(11): 2329-2337
    [120]Mussot, A., et al. Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser. Optics Letters, 2003, 28(19): 1820-1822
    [121]Prabhu, M., et al., Supercontinuum generation using Raman fiber laser. Applied Physics B-Lasers and Optics, 2003, 77(2-3): 205-210
    [122]Wadsworth, W.J., et al. Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres. Optics Express, 2004, 12(2): 299-309
    [123]Abeeluck, A.K. and C. Headley, Supercontinuum growth in a highly nonlinear fiber with a low-coherence semiconductor laser diode. Applied Physics Letters, 2004, 85(21): 4863-4865
    [124]Cordeiro, C.M.B., et al. Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser. Optics Letters, 2005, 30(15): 1980-1982
    [125]Travers JC, et al. Extended continuous-wave supercontinuum generation in-a-low-water-loss holey fiber. Optics Letters, 2005, 30(15): 1938-1940
    [126]Kobtsev, SM. and SV Smirnov, Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump. Optics Express, 2005, 13(18):6912-6918
    [127]Vanholsbeeck, F, et al. The role of pump incoherence in continuous-wave supercontinuum generation. Optics Express, 2005, 13(17): 6615-6625
    [128]Martin-Lopez S, et al. Experimental investigation of the effect of pump incoherence on nonlinear pump spectral broadening and continuous-wave supercontinuum generation. Optics Letters, 2006, 31(23): 3477-3479
    [129]Lee JH, YG Han, and SB Lee, Experimental study on seed light source coherence dependence of continuous-wave supercontinuum performance. Optics Express, 2006, 14(8): 3443-3452
    [130]Frosz, MH, O. Bang, and A. Bjarklev, Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation. Optics Express, 2006, 14(20): 9391-9407
    [131]Raikkonen, E., et al. Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers. Optics Express, 2006, 14(17): 7914-7923
    [132]Tombelaine, V., et al.Visible supercontinuum generation in holey fibers by dual-wavelength subnanosecond pumping. Ieee Photonics Technology Letters, 2006, 18(21-24): 2466-2468
    [133]Xu, Y.Z., et al. Flat supercontinuum generation at 1550 nm in a dispersion-flattened microstructure fibre using picosecond pulse. Chinese Physics Letters, 2007, 24(3): 734-737
    [134]Xu Y., et al., Flatly broadened supercontinuum generation at 10 Gbit/s using dispersion-flattened photonic crystal fibre with small normal dispersion. Electronics Letters, 2007, 43(2): 87-88
    [135]Lin J.H., et al., Supercontinuum generation in a microstructured optical fiber by picosecond self Q-switched mode-locked Nd : GdVO4 laser. Laser Physics Letters, 2007, 4(6): 413-417
    [136]Serebryannikov, E.E. and A.M. Zheltikov, Supercontinuum generation through cascaded four-wave mixing in photonic-crystal fibers: When picoseconds do it better. Optics Communications, 2007, 274(2): 433-440
    [137]Zhang X., et al. Ultraflat supercontinuum generation in a dispersion-flattened microstructure fiber. Microwave and Optical Technology Letters, 2007, 49(5): 1062-1064
    [138]Furusawa, K., et al. Modelocked laser based on ytterbium doped holey fibre. Electronics Letters, 2001, 37(9): 560-561
    [139]Mafi A., et al. A large-core compact high-power single-mode photonic crystal fiber laser. Ieee Photonics Technology Letters, 2004, 16(12): 2595-2597
    [140]Di Teodoro, F. and C.D. Brooks, Multistage Yb-doped fiber amplifier generating megawatt peak-power, subnanosecond pulses. Optics Letters, 2005, 30(24): 3299-3301
    [141]Limpert J., et al. Ultrafast high power fiber laser systems. Comptes Rendus Physique, 2006, 7(2): 187-197
    [142]www.crystal-fiber.com
    [143]W.J. Wadsworth, P.St.J.Russell, Large mode area photonic crystal fibre laser. OSA Trends in Optics and Photonics 56, Conference on Lasers and Electro-Optics, 2001.
    [144]Airclad fiber laser technology, www.crystal-fiber.com
    [145]阮双深, 杜晨林,杨冰等, 15 W 光子晶体光纤激光器的研究. 2004, 33: 1156-1158
    [146]郭春雨,阮双琛等,调 Q 掺 Yb 大模面积光子晶体光纤激光器研究. 深圳大学学报理工版, 2007, 24(1): 79-84
    [147]Zhi Wang, et al. A novel Er3+-doped honeycomb photonic bandgap fiber for highly efficient amplification. Proceeding of SPIE, Wuhan, 2004
    [148]李燕,刘艳格,王超等, 输出功率大于 10W 的掺镱双包层微结构光纤激光器. 光学精密工程, 2006, 14: 151-154
    [149]Alfano RR, Shapiro S L, Emission in the region 4000 to 7000 A via four-photon coupling in glass. Phys. Rev. Lett, 1970, 24(11): 584-587
    [150]Genty, G., S. Coen, and J.M. Dudley, Fiber supercontinuum sources (Invited). Journal of the Optical Society of America B-Optical Physics, 2007, 24(8): 1771-1785
    [151]Hu M.L., et al. Wavelength-tunable hollow-beam generation by a photonic-crystal fiber. Laser Physics Letters, 2006, 3(6): 306-309
    [152]Hu M., et al. An anti-Stokes-shifted doublet of guided modes in a photonic-crystal fiber selectively generated and controlled with orthogonal polarizations of the pump field. Applied Physics B-Lasers and Optics, 2004, 79(7): 805-809
    [153]Hu M.L., et al. Birefringence-controlled anti-Stokes line emission from a microstructure fiber. Laser Physics Letters, 2004, 1(6): 299-302
    [154]Hu M.L., et al. Experimental analysis of the dependence factor during supercontinuum generation in photonic crystal fiber. Acta Physica Sinica, 2004, 53(12): 4243-4247
    [155]Hu M.L., et al. Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber. Optics Express, 2004, 12(9): 1932-1937
    [156]Li Y.F., et al. Interaction of supercontinuum and Raman solitons with microstructure fiber gratings. Optics Express, 2005, 13(3): 998-1007
    [157]Hu M.L., et al. Mode-controlled four-wave-mixing in the birefringent microstructure fiber by femtosecond laser pulses. Acta Physica Sinica, 2005, 54(9): 4411-4415
    [158]Hu M.L., et al. Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic-crystal fibers. Optics Express, 2006. 14(3): 1189-1198
    [159]Hu M.L., et al. Polarization- and mode-dependent anti-stokes emission in a birefringent microstructure fiber. Ieee Photonics Technology Letters, 2005, 17(3): 630-632
    [160]Hu M.L., et al. Polarization-demultiplexed two-color frequency conversion of femtosecond pulses in birefringent photonic-crystal fibers. Optics Express, 2005, 13(16): 5947-5952
    [161]Hu M.L., et al. Tunable supercontinuum generation in a high-index-step photonic-crystal fiber with a comma-shaped core. Optics Express, 2006, 14(5): 1942-1950
    [162]李燕,开桂云等,基于微结构光纤中 FWM 的波长转换的研究. 光电子激光, 2006. 17: 207-208.
    [163]Kerbage C., B.J. Eggleton, Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber. Optics Express, 2002, 10(5): 246-255
    [164]Du F., Lu Y.Q., and Wu,S.T., Electrically tunable liquid-crystal photonic crystal fiber. Applied Physics Letters, 2004, 85(12): 2181-2183
    [165]Haakestad M.W., et al. Electrically tunable photonic bandgap guidance in a liquid- crystal-filled photonic crystal fiber. Ieee Photonics Technology Letters, 2005, 17(4): 819-821
    [166]Scolari L., et al. Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers. Optics Express, 2005, 13(19): 7483-7496
    [167]Zou L.F., et al. Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber. Optics Letters, 2004, 29(13): 1485-1487
    [168]MacPherson W.N., et al. Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre. Optics Communications, 2001, 193(1-6): 97-104
    [169]Zhang D.S., et al. Studies on the dispersion in phontnic crystal fiber using the step effective index model. Acta Physica Sinica, 2005, 54(3): 1235-1240
    [170]Li Y.F., C.Y. Wang, and M.L. Hu, A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation. Optics Communications, 2004, 238(1-3): 29-33
    [171]Zhao X.T., et al. Dispersion analysis of photonic crystal fiber using improved full-vectorial effective index method. Acta Physica Sinica, 2007, 56(4): 2275-2280
    [172]Li Y.F., et al. Effective index method for all-solid photonic bandgap fibres. Journal of Optics a-Pure and Applied Optics, 2007, 9(10): 858-861
    [173]Johnson S.G., Joannopoulos J. D., Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. Optics Express, 2001, 8: 173-190
    [174]Kotynski R., M. Dems, and K. Panajotov, Waveguiding losses of micro-structured fibres - plane wave method revisited. Optical and Quantum Electronics, 2007, 39(4-6): 469-479
    [175]Pearce, G.J., T.D. Hedley, and D.M. Bird, Adaptive curvilinear coordinates in a plane-wave solution of Maxwell's equations in photonic crystals. Physical Review B, 2005, 71(19)
    [176]Yue Y., et al. Broadband single-polarization single-mode photonic crystal fiber coupler. Ieee Photonics Technology Letters, 2006, 18(17-20): 2032-2034
    [177]Fang Q., et al. Proposal for all-solid photonic bandgap fiber with improved dispersion characteristics. Ieee Photonics Technology Letters, 2007, 19(13-16): 1239-1241
    [178]Knudsen, E. and A. Bjarklev, Modelling photonic crystal fibres with Hermite-Gaussian functions. Optics Communications, 2003, 222(1-6): 155-160
    [179]Guo S.P., et al. Analysis of circular fibers with an arbitrary index profile by the Galerkin method. Optics Letters, 2004, 29(1): 32-34
    [180]White T.P., et al. Multipole method for microstructured optical fibers. I. Formulation. Journal of the Optical Society of America B-Optical Physics, 2002, 19(10): 2322-2330
    [181]Kuhlmey B.T., et al. Multipole method for microstructured optical fibers. II. Implementation and results. Journal of the Optical Society of America B-Optical Physics, 2002, 19(10): 2331-2340
    [182]Zhu Z.M., T.G. Brown, Multipole analysis of hole-assisted optical fibers. OpticsCommunications, 2002, 206(4-6): 333-339
    [183]White T.P., et al. Multipole method for microstructured optical fibers. Journal of the Optical Society of America B-Optical Physics, 2003, 20(7): 1581-1581
    [184]Kuhlmey B.T., K. Pathmanandavel, and R.C. McPhedran, Multipole analysis of photonic crystal fibers with coated inclusions. Optics Express, 2006, 14(22): 10851-10864
    [185]Campbell S., et al. Differential multipole method for microstructured optical fibers. Journal of the Optical Society of America B-Optical Physics, 2004, 21(11):1919-1928
    [186]White T.P., et al. Calculations of air-guided modes in photonic crystal fibers using the multipole method. Optics Express, 2001. 9(13): 721-732
    [187]Wang, Z., et al. Supercell lattice method for photonic crystal fibers. Optics Express, 2003, 11(9): 980-991.
    [188]Z. Wang, G.B. Ren, and S.Q. Lou, A novel supercell overlapping method for different photonic crystal fibers. Journal of Lightwave Technology, 2004, 22(3): 903-916
    [189]Wang, Z., et al. Compact supercell method based on opposite parity for Bragg fibers. Optics Express, 2003, 11(26): 3542-3549
    [190]Yu C.P. and H.C. Chang, Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers. Optics Express, 2004, 12(25): 6165-6177
    [191]Kowalczyk, P., M. Wiktor, and M. Mrozowski, Efficient finite difference analysis of microstructured optical fibers. Optics Express, 2005,13(25): 10349-10359
    [192]Nguyen H.C., et al. Experimental and finite difference time domain technique characterization of transverse in-line photonic crystal fiber. Ieee Photonics Technology Letters, 2004, 16(8): 1852-1854
    [193]Yu C.P. and H.C. Chang, Applications of the finite difference mode solution method to photonic crystal structures. Optical and Quantum Electronics, 2004, 36(1-3): 145-163
    [194]Geng Y.F., et al. Design of terahertz photonic crystal fibers by finite difference frequency domain method. Journal of Optics a-Pure and Applied Optics, 2007, 9(11): 1019-1023
    [195]Kowalczyk, P. and M. Mrozowski, A new conformal radiation boundary condition for high accuracy finite difference analysis of open waveguides. Optics Express, 2007, 15(20): 12605-12618
    [196]Brechet F., et al. Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method. Optical Fiber Technology, 2000, 6(2): 181-191
    [197]Koshiba M., Full-vector analysis of photonic crystal fibers using the finite element method. Ieice Transactions on Electronics, 2002, E85C(4): 881-888
    [198]Pomplun J., et al. Finite element simulation of radiation losses in photonic crystal fibers. Physica Status Solidi a-Applications and Materials Science, 2007, 204(11): 3822-3837
    [199]Rahman, B.M.A., et al. Birefringence study of photonic crystal fibers by using the full-vectorial finite element method. Applied Physics B-Lasers and Optics, 2006, 84(1-2): 75-82
    [200]Obayya S.S.A., B.M.A. Rahman, and K.T.V. Grattan, Accurate finite element modal solution of photonic crystal fibres. Iee Proceedings-Optoelectronics, 2005, 152(5): 241-246
    [201]Rahman B.M.A., et al. Finite element modal solutions of planar photonic crystal fibers with rectangular air-holes. Optical and Quantum Electronics, 2005, 37(1-3): 171-183
    [202]Cerqueira A., et al. A powerful tool based on finite element method for designing photonic crystal devices, Ict2004 Telecommunications and Networking, Berlin.2004: 287-295
    [203]T. Fujisawa and M. Koshiba, Finite element characterization of chromatic dispersion in nonlinear holey fibers. Optics Express, 2003, 11(13): 1481-1489
    [204]Guenneau S., et al. Modeling of photonic crystal optical fibers with finite elements. Ieee Transactions on Magnetics, 2002, 38(2): 1261-1264
    [205]Saitoh K., M. Koshiba, Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers. Ieee Journal of Quantum Electronics, 2002, 38(7): 927-933
    [206]Cucinotta A., et al. Perturbation analysis of dispersion properties in photonic crystal fibers through the finite element method. Journal of Lightwave Technology, 2002, 20(8): 1433-1442.
    [207]He Y.Z. and F.G. Shi, Finite-difference imaginary-distance beam propagation method for modeling of the fundamental mode of photonic crystal fibers. Optics Communications, 2003, 225(1-3): 151-156
    [208]Xu Y.Z., et al. A fully vectorial effective index method for accurate dispersion calculation of photonic crystal fibres. Chinese Physics Letters, 2006, 23(9): 2476-2479
    [209]Zhao X.T., et al. Improved fully vectorial effective index method in photonic crystal fiber. Applied Optics, 2007, 46(19): 4052-4056
    [210]R.V.J. Raja, K. Porsezian, A fully vectorial effective index method to analyse the propagation properties of microstructured fiber. Photonics and Nanostructures-Fundamentals and Applications, 2007, 5(4): 171-177
    [211]Qiu M., Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method. Microwave and Optical Technology Letters, 2001, 30(5): 327-330
    [212]Zhu Y.J., et al. Application of a 2D-FDTD algorithm to the analysis of photonic crystal fibers (PCFs). Microwave and Optical Technology Letters, 2002, 35(1): 10-14
    [213]S.P. Guo, et al. Loss and dispersion analysis of microstructured fibers by finite-difference method. Optics Express, 2004, 12(15): 3341-3352
    [214]胡建伟,汤怀民, 微分方程数值方法. 1999, 北京.
    [215]Alivizatos E.G., et al. Green's-function method for the analysis of propagation in holey fibers. Journal of the Optical Society of America a-Optics Image Science and Vision, 2004, 21(5): 847-857
    [216]Guan N., et al. Boundary element method for analysis of holey optical fibers. Journal of Lightwave Technology, 2003, 21(8): 1787-1792
    [217]Roberts P.J. and T.J. Shepherd, The guidance properties of multi-core photonic crystal fibres. Journal of Optics a-Pure and Applied Optics, 2001, 3(6): S133-S140
    [218]W.S. Mohammed, L. Vaissie, E.G. Johnson, Hybrid mode calculations for novel photonic crystal fibers. Optical Engineering, 2003, 42(8): 2311-2317
    [219]陆金浦, 关治, 偏微分方程数值计算. 2003: 清华大学出版社.
    [220]Kenji Kawano, T.K.I., To Optical Waveguide Analysis, John Wiley & Sons, Inc. 2001. 2001: John Wiley &Sons, Inc.
    [221]Kaminow I P, Single-polarization optical fibers: Slab model. Appl Phys Lett, 1979, 34(4): 268-271
    [222]Simpson JR, Sears FM, et al. A single-polarization fiber. J. Lightwave Technol., 1983, 1(2): 370-374.
    [223]Nolan D A, J. Li, et al. Single polarization fiber with a high extinction ratio. Opt. Lett, 2004, 29(16): 1855-1857
    [224]Folkenberg J.R., et al. Polarization maintaining large mode area photonic crystal fiber. Optics Express, 2004, 12(5): 956-960
    [225]Schreiber T., et al. Stress-induced birefringence in large-mode-area micro-structured optical fibers. Optics Express, 2005, 13(10): 3637-3646
    [226]Ritari T., et al. Experimental study of polarization properties of highly birefringent photonic crystal fibers. Optics Express, 2004, 12(24): 5931-5939
    [227]Belardi W., et al. Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area. Ieee Journal of Quantum Electronics, 2005, 41(12): 1558-1564
    [228]Roberts P.J., et al. Design of low-loss and highly birefringent hollow-core photonic crystal fiber. Optics Express, 2006, 14(16): 7329-7341
    [229]Wang J.Y., et al. High birefringence photonic bandgap fiber with elliptical air holes. Optical Fiber Technology, 2006, 12(3): 265-267
    [230]Kim S., Y. Jung, and K. Oh, Achievement of broadband uniform modal birefrigence in an index-guiding holey fibre using a novel circular hollow ring defect structure. Measurement Science & Technology, 2006, 17(5): 1005-1008
    [231]Chen MY, Yu RJ, Design of defect-core in highly birefringent photonic crystal fibers with anisotropic claddings. Optics Communications, 2006, 258(2): 164-169
    [232]Antkowiak M., et al. Phase and group modal birefringence of triple-defect photonic crystal fibres. Journal of Optics a-Pure and Applied Optics, 2005, 7(12): 763-766
    [233]Chen M.Y., R.J. Yu, and A.P. Zhao, Polarization properties of rectangular lattice photonic crystal fibers. Optics Communications, 2004, 241(4-6): 365-370
    [234]Chen M.Y., R.J. Yu, and A.P. Zhao, Highly birefringent rectangular lattice photonic crystal fibres. Journal of Optics a-Pure and Applied Optics, 2004, 6(10): 997-1000
    [235]Zhang L. and C.X. Yang, Photonic crystal fibers with squeezed hexagonal lattice. Optics Express, 2004, 12(11): 2371-2376
    [236]Yue, Y., et al. Highly birefringent elliptical-hole photonic crystal fiber with two big circular air holes adjacent to the core. Ieee Photonics Technology Letters, 2006, 18(21-24): 2638-2640
    [237]Michie A., et al. Spun elliptically birefringent photonic crystal fibre. Optics Express, 2007,15(4): 1811-1816
    [238]Zhang Y.N., et al. Polarization properties of elliptical core non-hexagonal symmetry polymer photonic crystal fibre. Chinese Physics, 2007, 16(6): 1719-1724
    [239]Tartarini G., et al. Polarization properties of elliptical-hole liquid crystal photonic bandgap fibers. Journal of Lightwave Technology, 2007, 25(9): 2522-2530
    [240]Song P., et al., Birefringence characteristics of squeezed lattice photonic crystal fibers. Journal of Lightwave Technology, 2007, 25(7): 1771-1776
    [241]Wang J.Y., et al. Dispersion and polarization properties of elliptical air-hole-containing photonic crystal fibers. Optics and Laser Technology, 2007, 39(5): 913-917
    [242]Steel M.J. and R.M. Osgood, Polarization and dispersive properties of elliptical-hole photonic crystal fibers. Journal of Lightwave Technology, 2001, 19(4): 495-503
    [243]Poletti, F., et al. The effect of core asymmetries on the polarization properties of hollow core photonic band gap fibers. Optics Express, 2005, 13(22): 9115-9124
    [244]Lou, S.Q., et al. Dispersion and polarization properties of near-rectangle core photonic crystal fibers. Acta Physica Sinica, 2005, 54(3): 1229-1234
    [245]Wegmuller M., et al., Experimental investigation of the polarization properties of a hollow core photonic bandgap fiber for 1550 nm. Optics Express, 2005, 13(5): 1457-1467
    [246]Martynkien T., M. Szpulak, and W. Urbanczyk, Modeling and measurement of temperature sensitivity in birefringent photonic crystal holey fibers. Applied Optics, 2005, 44(36): 7780-7788
    [247]Zhu Z.M. and T.G. Brown, Stress-induced birefringence in microstructured optical fibers. Optics Letters, 2003, 28(23): 2306-2308
    [248]Suzuki, K., et al. Optical properties of a low-loss polarization-maintaining photonic crystal fiber. Optics Express, 2001, 9(13): 676-680
    [249]Pochi Yeh, A.Y., Emanuel Marom, Theory of Bragg fiber. JOSA, 1978, 68(9): 1196-1201
    [250]Juan A. Monsoriu, E.S., Albert Ferrando, Pedro Andrés, High-index-core Bragg fibers: dispersion properties. OPTICS EXPRESS 2003, 11(12): 1400-1405
    [251]Ni Yi, et al. A novel design for all-solid silica Bragg fiber with zero-dispersion wavelength at 1550 nm. OPTICS EXPRESS 2004, 12(19): 4602-4607
    [252]任国斌等, 高折射率芯 Bragg 光纤的模式特征. 光电子·激光. 2004, 15(5 ): 565-568
    [253]Govind P. Agrawal 著,贾东方、余震虹等译,非线性光纤光学原理及应用. 第三版. 2002, 北京: 电子工业出版社.
    [254]Ren, G.B., et al. Dispersion properties of high-index-core Bragg fibers. Acta Physica Sinica, 2004. 53(6): 1862-1867
    [255]印建平等,空心光束的产生及其在现代光学中的应用,物理学进展, 2004, 24: 336-380
    [256]Pal B.P., S. Dasgupta, and M.R. Shenoy, Bragg fiber design for transparent metro networks. Optics Express, 2005, 13(2): 621-626
    [257]李慧生等, 大纤芯双模放大 Bragg 光纤的研究. 量子光学学报, 2005. 11: 39-42
    [258]T.Katagiri, Y. Matsuura, and M. Miyagi, All-solid single-mode Bragg fibers for compactfiber devices. Journal of Lightwave Technology, 2006, 24(11): 4314-4318
    [259]周炳琨等,激光原理(第四版). 2002, 北京: 国防工业出版社
    [260]Y Shimony, Z.B., Y Kalisky, Cr 4+: YAG as passive Q-switch and Brewster plate in apulsed Nd: YAG laser. Quantum Electronics, 1995, 31(10): 1738-1741
    [261]Husakou A.V., J. Herrmann, Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Physical Review Letters, 2001, 8720(20)
    [262]Naumov A.N., et al. Supercontinuum generation in photonic-molecule modes of microstructure cobweb fibers and photonic-crystal fibers with femtosecond pulses of tunable 1.1-1.5-um radiation. Laser Physics, 2002, 12(8): 1191-1198
    [263]Teipel, J., et al. Characteristics of supercontinuum generation in tapered fibers using femtosecond laser pulses. Applied Physics B-Lasers and Optics, 2003, 77(2-3): 245-251
    [264]Zheng Y., et al. Supercontinuum generation with 15-fs pump pulses in a microstructured fibre with random cladding and core distributions. Chinese Physics Letters, 2004, 21(4): 750-753
    [265]Li S.G., et al. Supercontinuum generation in holey microstructure fibers by femtosecond laser pulses. Acta Physica Sinica, 2004, 53(2): 478-483
    [266]Kryukov, P.G., et al. Generation of supercontinuum and spectrum broadening in holey fibers subjected to radiation from continuous femtosecond visible and infrared lasers. Measurement Techniques, 2004, 47(1): 40-46
    [267]Yan P.G., et al. Supercontinuum generation in a photonic crystal fibre. Chinese Physics Letters, 2004, 21(6): 1093-1095
    [268]Hori, T., et al. Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse. Journal of the Optical Society of America B-Optical Physics, 2004, 21(11): 1969-1980
    [269]Kano H. and H. Hamaguchi, Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber. Applied Physics Letters, 2004, 85(19): 4298-4300
    [270]Genty G., M. Lehtonen, and H. Ludvigsen, Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses. Optics Express, 2004, 12(19): 4614-4624
    [271]von Vacano, B. and M. Motzkus, Time-resolved two color single-beam CARS employing supercontinuum and femtosecond pulse shaping. Optics Communications, 2006, 264(2): 488-493
    [272]Zhang S.M., et al. Soliton pulses in an erbium-doped fiber ring laser and its use in supercontinuum generation. Acta Physica Sinica, 2007, 56(4): 2191-2195
    [273]Ohashi, K.N.a.M., Dopant dependence of effective nonlinear refractive index in GeO2 and F-doped core single-mode fibers. IEEE Photonics Technology Letters, 2002, 14(4): 492-494
    [274]李春雷等, 光子晶体光纤非线性系数与其结构参量及光波长的关系. 光子学报, 2006. 35(5): 734-737
    [275]V. Finazzi, T.M. Monro, D.J. Richardson, The role of confinement loss in highly nonlinear silica holey fibers. Ieee Photonics Technology Letters, 2003, 15(9): p. 1246-1248.
    [276]Long J., et al. Fibre Bragg gratings inscribed in homemade microstructured fibres. Chinese Physics Letters, 2007, 24(6): 1603-1606
    [277]刘艳格等, 输出平均功率大于 2W 的高功率、包层抽运、超短脉冲铒镱共掺光纤激光器. 物理学报, 2006, 55(9): 4679-4685
    [278]Tingting Sun, et al. Enhanced Nonlinearity in Photonic Crystal Fiber by Germanium Doping in the Core Region. Chinese optics letters, 2008. 6: 93-95
    [279]刘艳云等,空芯光子晶体光纤中光子带隙的测量. 激光与红外, 2006. 36(3): 196-198
    [280]Headley, et al. High-power supercontinuum generation in highly nonlinear, dispersion shifted fibers by use of a continuous-wave Raman fiber laser. OPTICS LETTERS, 2004, 29(18): 2163-2165
    [281]D. Anderson, L.H.W., M. Lisak, and V. Semenov, Features of modulational instability of partially coherent light: Importance of the incoherence spectrum. PHYSICAL REVIEW E 2004, 69: 025601_1-025601_4
    [282]A. Mussot, E.L., H. Maillotte, and T. Sylvestre, Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers. OPTICS EXPRESS, 2004, 12(13): 2838-2843
    [283]冯鸣, 喇曼光纤激光器及其应用研究. 南开大学博士学位论文, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700