用户名: 密码: 验证码:
磁悬浮式加速度计悬浮体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了磁悬浮式加速度计悬浮体的超顺磁性及其设计方法。在实现磁悬浮式加速度计悬浮体的超顺磁性机理、磁力、纳米颗粒的分散方法等方面进行了研究。首先分析了实现磁悬浮式加速度计悬浮体超顺磁性的机理以及具有超顺磁性的磁悬浮式加速度计悬浮体在外磁场中的磁化过程和所受磁力;其次分析了不同纳米颗粒的制备方法,不同高分子聚合物的特殊性能和纳米颗粒的分散机理;然后根据磁悬浮式加速度计的特殊要求,利用化学共沉淀法制备纳米四氧化三铁颗粒并利用机械高剪切法将其分散到双马来酰亚胺基体中;最后对所制备的超顺磁性磁悬浮式加速度计悬浮体样品进行了测试。
     本文共分为六章三大部分。第一部分在阅读大量文献的基础上着重介绍了现有的几种加速度计中的悬浮体现状及各自存在的缺陷,并介绍了利用纳米颗粒与高分子聚合物制备超顺磁性复合材料的研究现状。第二部分对如何使磁悬浮式加速度计悬浮体具有超顺磁性的机理进行了分析,研究了超顺磁性磁悬浮式加速度计悬浮体在外磁场中的磁化以及其在外磁场中所受的磁力。分析了不同纳米颗粒制备方法的优劣和不同高分子聚合物的优劣,研究了纳米颗粒的分散机理。第三部分根据磁悬浮式加速度计悬浮体的特殊要求,利用化学共沉淀法制备出超顺磁性纳米四氧化三铁颗粒,选择温度作用范围大、力学性能和绝缘性能良好的双马来酰亚胺作为基体,利用机械高剪切方法将纳米四氧化三铁颗粒较均匀分散于基体中而制成了超顺磁性磁悬浮式加速度计悬浮体样品。对样品的测试结果表明自制的磁悬浮式加速度计悬浮体样品具有超顺磁性,其内部的纳米四氧化三铁颗粒得到较均匀的分散且没有发生团聚,改变作用于超顺磁性磁悬浮式加速度计悬浮体的外加磁场可以改变其所受的磁力并最终实现悬浮。
The superparamagnetism and designing methods of levitation objects of magnetic levitation accelerometer was studied in this paper. The study of this paper focused on the mechanism of superparamagnetism, magnetic force, and dispersion method of levitation object of magnetic levitation accelerometer. Firstly, this paper analyzed the mechanism of realized superparamagnetism, as well as the magnetization procedure and magnetic force of superparamagnetic levitation object of magnetic levitation accelerometer in external magnetic field. Secondly, different preparation methods of nanoparticles and properties of different polymer were compared. Thirdly, magnetite nanoparticles were prepared by chemical co-participation method and then dispersed into bismaleimide matrix via mechanical high shear method, according to the special required properties of levitation object. Finally, the prepared samples of levitation object were tested.
     The thesis was composed of six chapters, including three parts. Firstly, based on the reading of various materials, several kinds of levitation object of accelerometer were introduced and there defects were analyzed, as well as the situation of preparation of superparamagnetic composite using nano particles and polymer. Secondly, the thesis analyzed the mechanism of superparamagnetism of levitation objects of magnetic levitation accelerometer, studied the magnetization and magnetic force of levitation objects in external magnetic fields. In addition, the thesis analyzed the advantages and disadvantages of different methods for preparing magnetite nanoparticles and different kinds of polymer, studied the mechanism of nano magnetite dispersion. Finally, according to the specific requirement of levitation object of magnetic levitation accelerometer, superparamagnetic magnetite nanoparticles were prepared via chemical co-participation method. Bismaleimide, which have wide temperature range, excellent mechanic and isolation properties, was chose as matrix. Samples of superparamagnetic levitation object were prepared via dispersed magnetite nanoparticles into the bismaleimide matrix using mechanic high shear method. Test results of demonstrated that those self-prepared levitation object samples exhibited superparamagnetism and the magnetite nanoparticles were well dispersed. Those samples can be levitated by changing their magnetic force in external magnetic fields via adjusting magnetic field. Experiment results showed that the method for preparing superparamagnetic levitation object was valid.
引文
[1]王永刚.聚酰亚胺挠性加速度传感器的研究[D].2008.
    [2]梁萌.平面线圈式石英挠性加速度计的前期研究[D].2007.
    [3]Killen A, Tarrant D, Jensen D. High Acceleration, High-Performance Solid-State Accelerometer development[J]. IEEE Aerospace and Electronic Systems Magazine.1994,9(9):20-25.
    [4]Hathi B, Ball A J, Colombatti G, et al. Huygens HASI servo accelerometer: A review and lessons learned[J]. Planetary and Space Science.2009,57(12):1321-1333.
    [5]Hudson D, Chhun R, Touboul P. Development status of the differential accelerometer for the MICROSCOPE mission[J]. Advances in Space Research.2007, 39(2):307-314.
    [6]赵君辙,邢謦婷,杨中柳.线加速度计的现状与发展趋势综述[J].计测技术.2007,27(5):4.
    [7]白韶红.加速度计的发展[J].自动化仪表.1999,20(9):5.
    [8]顾英.惯导加速度计技术综述[J].飞航导弹.2001(6):8.
    [9]Lin L, Jones J. A liquid-filled buoyancy-driven convective micromachined accelerometer[J]. Journal of Microelectromechanical Systems.2005,14(5): 1061-1069.
    [10]王跃钢,秦永元,郭志斌.ANSYS在液浮摆式加速度计复合环境动态特性分析中的应用[J].工程设计学报.2005,12(2):4.
    [11]]赵丹.液浮摆式加速度计温度控制系统的研究[D].哈尔滨工业大学,2007.
    [12]Che W S, Oh J H. Development of force-balance accelerometer with high accuracy for precision motion measurement[J]. Measurement Science & Technology. 1996,7(7):1001-1011.
    [13]薛旭,闵跃军,郭晓芳,等.挠性摆式加速度计频率特性的电激励测试方法及参数辨识[J].导弹与航天运载技术.2008(4):5.
    [14]杜伟,陈敏花,季明华.充油式挠性摆式加速度计中气泡故障的判断[J].上海航天.2006,23(4):4.
    [15]吴黎明,董景新,韩丰田.静电悬浮加速度计检测线路设计及实验研究[J]. 仪器仪表学报.2006,27(12):4.
    [16]Houlihan R, Koukharenko E, Sehr H, ct al. Optimisation, design and fabrication of a novel accelerometer[J]. Boston Transduccrs'03:Digest of Technical Papers, vols 1 and 2.2003:1403-1406.
    [17]Nakamura S. MEMS inertial sensor toward higher accuracy & multi-axis scnsing[M].2005,939-942.
    [18]Touboul P, Foulon B, Willemenot E. Electrostatic space accelerometers for present and future missions[J]. ACTA Astronautica.1999,45(10):605-617.
    [19]段光武.星载硅微静电加速度计的设计与噪声分析[D].清华大学,2010.
    [20]Yazdi N, Ayazi F, Najafi K. Micromachined inertial sensors[J]. Proceedings of the IEEE.1998,86(8):1640-1659.
    [21]Tanaka M. An industrial and applied review of new MEMS devices featurcs[J]. Microelectronic Engineering.2007,84(5-8):) 341-1344.
    [22]顾英,赵连元.微硅加速度计技术综述[J].飞航导弹.2002(9):4.
    [23]Geiger W, Folkmer B, Merz J, et al. A new silicon rate gyroscope[J]. Sensors and Actuators A-Physical.1999,73(1-2):45-51.
    [24]Takao H, Fukumoto H, Ishida M. A CMOS integrated three-axis accelcrometer fabricated with commercial submicrometer CMOS technology and bulk-micromachining[J]. IEEE Transactions on Electron Devices.2001,48(9): 1961-1968.
    [25]弗雷泽R.H.,基林森P.J.,奥伯贝克G.A.,等.磁悬浮和电恳浮[M].1982.
    [26]Moody M V, Chan H A, Paik H J. Preliminary tests of a newly developed superconducting gravity gradiometer[J]. IEEE Transactions on Magnetics.1983, 19(3):461-464.
    [27]Chan H A, Paik H J, Moody M V, et al. Superconducting techniques for gravity survey and inertial navigation[J]. IEEE Transactions on Magnetics.1985,21(2): 411-414.
    [28]Canavan E R, Paik H J, Parke J W. A superconducting six-axis accelerometer[J]. Magnetics, IEEE Transactions on Applied Superconductivity.1991,27(2): 3253-3256.
    [29]Bachrach B, Canavan E R, Levine W S. Diagonalizing controller for a superconducting six-axis accelerometer[J].,-(-):2793-2795.
    [30]Vankann F J, Edeards C, Buckingham M J, et al. A Prototype superconducting gravity gradiometer[J]. IEEE Transactions on Magnetics.1985,21(2):610-613.
    [31]Obana T, Ogitsu T, Nakamoto T, et al. Development of a prototype superconducting magnet for the FFAG accelerator[J]. IEEE Transactions on Applied Superconductivity.2006,16(2):216-219.
    [32]Zhang Z, Menq C. Six-axis magnetic levitation and motion control [J]. IEEE Transactions on Robotics.2007,23(2):196-205.
    [33]Garmire D, Choo H, Kant R, et al. Diamagnetically levitated MEMS accelerometers[J]. Transducers '07 & eurosensors XXI, digest of technical papers, volts 1 and 2.2007:U606-U607.
    [34]王安蓉,许刚,舒纯军.磁性液体及其应用[M].成都:西南交通大学出版社,2010.
    [35]Bacri J C, Lcnglet J, Perzynski R, et al. Magnetic fluid pressure sensor[J]. Journal of Magnetism and Magnetic Materials.1993,122(1-3):399-402.
    [36]Raj K, Moskowitz R. Commercial applications of ferrofluids[J]. Journal of Magnetism and Magnetic Materials.1990,85(1-3):233-245.
    [37]Baglio S, Barrera P, Savalli N. Novel ferrofluidic inertial sensors[M].2006, 2368-2372.
    [38]Pigot C, Chetouani H, Poulin G, ct al. Diamagnetic Levitation of Solids at Microscale[J]. IEEE Transactions on Magnetics.2008,44(11):4521-4524.
    [39]Liu J, Wang Q, Li X. Modeling of Hybrid Suspension System of Superconducting and Electrostatic Suspension[J].2009 IEEE International Conference on Mcchatronics and Automation, vols 1-7, Conference Proceedings. 2009:4715-4719.
    [40]Gang X, Xiaotao Z, Huaiwu Z. Electromagnetic design of a magnetically suspended gyroscope prototype[C].2009.
    [41]杜昌雷,张怀武,张晓涛,等.一种新型薄片转子磁悬浮陀螺的结构设计与分析[J].磁性材料及器件.2010,41(2):6.
    [42]孙鹏飞,严小军,赵晓萍.磁悬浮定中偏差对陀螺加速度计精度的影响[J].导航与控制.2010,09(1).
    [43]薛炜杰.基于MATLAB的磁悬浮控制系统研究[D].东北大学,2008.
    [44]宋文荣.微电子制芯领域中磁悬浮精密定位平台的研究[D].中国科学院研究生院(长春光学精密机械与物理研究所),2004.
    [45]张三慧.大学物理学(第三册)电磁学[M].2.2000.
    [46]Ma K B, Postrekhin Y V, Chu W K. Superconductor and magnet levitation devices[J]. Review of scientific instruments.2003,74(12):4989-5017.
    [47]Ohsaki H, Takabatake M, Masada E. Magnetic gradient levitation using high-Tc bulk superconductors[J]. IEEE Transactions on applied superconductivity.1997, 7(2Part 1):908-911.
    [48]顾晨,邢华伟,周彤,等.一种高温超导磁悬浮装置[J].物理与工程.2004,14(3):5.
    [49]Chen Q Y. Magnetic-Levitation Using High-Tempcrature Superconductors-A materials perspective[J]. IEEE Transactions on Instrumentation and measurement. 1992,41(6):824-828.
    [50]Ito E, Suzuki T, Sakai T, et al. Levitation forces of bulk RE-Ba-Cu-O in high magnetic fields[J]. Physica C-Superconductivity and its applications.2006,445(SI): 412-416.
    [51]Suzuki T, Araki S, Koibuchi K, et al. A study on levitation force and its time relaxation behavior for a bulk superconductor-magnet system[J]. Physica C-Superconductivity and Its Applications.2008,468(15-20):1461-1464.
    [52]Suzuki T, Araki S, Takcuchi K, et al. Measurements of the levitation forces for a bulk Gd-Ba-Cu-O superconductor in high magnetic ficlds[J]. Physica C-Superconductivity and Its Applications.2007,463:383-386.
    [53]Suzuki T, Ito E, Sakai T, et al. Temperature dependency of levitation force and its relaxation in HTS[J]. IEEE Transactions on Applied Superconductivity.2007, 17(2Part 3):3020-3023.
    [54]Deng Z, Zheng J, Li J, et al. Superconducting bulk magnet for maglev vehicle: Stable levitation performance above permanent magnet guideway[J]. MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS.2008,151(1):117-121.
    [55]王桂香,范瑜,柯青峰,等.抗磁性磁悬浮装置初探[J].电工技术学报.2006,21(3):5.
    [56]Simon M D, Geim A K. Diamagnetic levitation:Flying frogs and floating magnets (invited)[J]. Journal of Applied Physics.2000,87(9Part 3):6200-6204.
    [57]Simon M D, Heflinger L O, Geim A K. Diamagnetically stabilized magnet levitation[J]. American Journal of Physics.2001,69(6):702-713.
    [58]Xing J, Wang F. Analysis of magnetic levitation force of high speed PM bearingless machine[J].2007 International Conference on Electrical Machines and Systems, vols 1-4.2007:1850-1853.
    [59]Kirchmayr H R. Permanent magnets and hard magnetic materials[J]. Journal of Physics D-Applied Physics.1996,29(11):2763-2778.
    [60]Abbott J J, Ergencman O, Kummer M P, et al. Modeling magnetic torque and force for controlled manipulation of soft-magnetic bodies[J]. IEEE Transactions on Robotics.2007,23(6):1247-1252.
    [61]Demirdji. S F, Copeland M A. Force measurements on magnetic reeds[J]. IEEE Transactions on Magnetics.1967, MAG3(3):552.
    [62]Tartaj P. Superparamagnetic Composites:Magnetism with No Memory[J]. European Journal of Inorganic Chemistry.2009(3):333-343.
    [63]Tsukamoto O, Yasuda K, Chen J Z. A new magnetic levitation-system with AC magncts[J]. IEEE Transactions on Magnetics. 1988,24(2Part 1):1497-1500.
    [64]张金平,张奕黄.磁悬浮列车的原理及现状[J].交通科技.2002(6):4.
    [65]Kaplan B Z. Analysis of a method for magnetic levitation [J]. Proceedings of the Institution of Electrical Engineers-London.1967,114(11):1801.
    [66]Roman A. The influence of the skin effect on eddy-current losses in the plane for single and multidomain wall models[J]. IEEE Transactions on Magnetics.1984, 20(6):2109-2116.
    [67]Saslow W M. Maxwell theory of eddy currents in thin conducting sheets, and applications to electromagnetic shielding shielding and maglev[J]. American Journal of Physics.1992,60(8):693-711.
    [68]Lee E W. Eddy-current losses in thin ferromagnetic sheets[J].,-105(-8):342.
    [69]Marysko M, Krupicka S. Calculation of the eddy current loss in a ferrite core[J]. Journal of Magnetism and Magnetic Materials.1996,157:469-470.
    [70]Lu H Y, Zhu J G, Hui S Y R. Measurement and modeling of thermal effects on magnetic hysteresis of soft ferrites[J]. IEEE Transactions on Magnetics.2007,43(11): 3952-3960.
    [71]Takayasu Y, Yamazaki T, Yoshizawa T, et al. Modulated wave characteristics of two-phase magnetic levitation induction linear motor[J].IEEE Transactions on Magnetics.2007,43(2Part 1):549-553.
    [72]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [73]Philip B M, Emmanuel P G. Synthesis and characterization of layered silicate-epoxy nanocomposites[J]. Chem Mater.1994,6(10):1719-1725.
    [74]刘吉平,郝向阳.聚合物基纳米改性材料[M].北京:科学出版社,2009.
    [75]柯杨船.聚合物纳米复合材料[M].北京:科学出版社,2009.
    [76]Sutcr M, Graf S, Ergencman O, et al. Superparamagnetic photosensitive polymer nanocomposite for microactuators[C].2009.
    [77]战佳宇.功能性聚酰亚胺纳米复合薄膜的制备及性能研究[D].北京化工大学,2009.
    [78]唐志华,翟宝清,王铎.聚酰亚胺磁性复合材料的研制[J].铸造技术2010(6):710-712.
    [79]王铎.纳米三氧化二铁改性聚酰亚胺的研究[J].工程塑料应用.2008(8):20-23.
    [80]Wu J T, Yang S Y, Gao S Q, ect al. Preparation, morphology and properties of nano-sized Al2O3/polyimide hybrid films[J]. Eurppcan Polymer Journal.2005,41(1): 73-81.
    [81]Tsai M H, Liu S J, Chiang P C. Synthesis and characteristics of polyimide/titania nano hybrid films [J]. Thin Solid Films.2006,515(3):6.
    [82]Zhang C H, Zhang M L, Cao H L, et al. Synthesis and properties of a novel isomeric polyimide/SiO2 hybrid material[J]. Composites Science and Technology. 2007,67(3-4):380-389.
    [83]Chiang P C, Whang W T. The synthesis and morphology characteristic study of BAO-ODPA polyimide/TiO2 nano hybrid films[J]. Polymer.2003,44(8):2249-2254.
    [84]Yoshida M, Lai M, Kumar N D, et al. TiO2 nano-particle-dispersed polyimide composite optical waveguide materials through reverse micelles[J]. Journal of Materials Science.1997,32(15):4047-4051.
    [85]Takahashi A, Kakimoto M, Tsurumi T A, et al. High dielectric ceramic nano particle and polymer composites for embedded capacitor[J]. Journal of Photopolymer Science and Technology.2005,18(2):297-300.
    [86]Liu L N, Gu A J, Fang Z P, et al. The effects of the variations of carbon nanotubes on the micro-tribological behavior of carbon nanotubes/bismaleimide nanocomposite D-6167-2011 [J]. Composites Part A-Applied Science and Manufacturing.2007,38(9):1957-1964.
    [87]颜红侠,宁荣昌,张军平,等.载荷对纳米SiC/BMI-BA复合材料摩擦性能的影响[J].塑料工业.2006,34(5):3.
    [88]颜红侠,宁荣昌,张秋禹,等.α-A1203/石墨/双马来酰亚胺自润滑复合材料的研究[J].机械科学与技术.2001,20(5):3.
    [89]颜红侠,宁荣昌,梁国正,等.纳米SiO_2/双马来酰亚胺复合材料的性能研究[J].中国塑料.2004(11):38-40.
    [90]黄仁和,王力.石墨及石墨/双马来酰亚胺减摩树脂复合材料的XRD研究[J].化学研究.2005,16(1):4.
    [91]刘琳,王翀.双马来酰亚胺树脂/碳纳米管复合材料的性能研究[J].工程塑料应用.2009,37(2):4.
    [92]陈翌庆,石瑛.纳米材料科学基础[M].长沙:中南大学出版社,2008.
    [93]江雯,温贤涛,王伟,等.超顺磁单分散性Fe3O4磁纳米粒的制备及性能表征[J].无机材料学报.2009,24(4):5.
    [94]Jun Y, Seo J, Cheon J. Nanoscaling Laws of Magnetic Nanoparticles and Their Applicabilities in Biomedical Sciences[J]. Accounts of Chemical Research.2008, 41(2):179-189.
    [95]Jiles D. Introduction to Magnetism and Magetnic Materials[M]. FL:CRC Press, 1998.
    [96]Handley O, C R. Modern magnetic materials:principles and applications[M]. New York:John Wiley & Sons, Inc.,1999.
    [97]Givord D. Introduction to Magnetism and Magnetic MaterialsMagnetism and Synchrotron Radiation[J].2001,565:3-23.
    [98]Yu J. Introduction to Magnetism and Magnetic Materials[M]. Seoul:School of Physics, Seoul National University,2005.
    [99]Dunlop D J. Superparamagnetic and single-domain threshold sizes in magnetite[J]. Journal of Grophysical Research.1973,78(11):1780-1793.
    [100]Tauxe L, Mullender T, Pick T. Potbellies, wasp-waists, and superparamagnetism in magnetic hysteresis[J]. Journal of Geophysical Research-Solid Earth.1996,101 (B1):571-583.
    [101]Osborn J A. Demagnetizing factors of the general ellipsoid[J]. Physical Review. 1945,67(11-1):351-357.
    [102]Chen D X, Pardo E, Sanchez A. Demagnetizing factors of rectangular prisms and cllipsoids[J]. IEEE Transactions on Magnetics.2002,38(PII S0018-9464(02)06375-64Part 2):1742-1752.
    [103]王琛,严玉蓉.高分子材料改性技术[M].北京:中国纺织出版社,2007.
    [104]王森.Fe_3O_4/SiO_2复合纳米磁性微球制备及用于DNA分离纯化研究[D].四川农业大学,2007.
    [105]Vayssieres L, Chancac C, Tronc E, et al. Size tailoring of magnetite particles formed by aqueous precipitation:An example of thcrmodynamic stability of nanometric oxide particles[J]. Journal of Collid and Interface Science.1998,205(2): 205-212.
    [106]Zhu Y, Wu Q. Synthesis of Magnetite Nanoparticles by Precipitation with Forced Mixing[J]. Journal of Nanoparticle Research.1999,1(3):393-396.
    [107]单志,杨婉身.正交实验法优化羧基纳米磁性粒子的合成条件[J].绵阳师 范学院学报.2006,25(2):56-59.
    [108]Cheng F Y, Su C H, Yang Y S, et al. Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications C-5428-2009[J]. Biomaterials.2005,26(7):729-738.
    [109]田国徽,张萍,倪明亮,等.高饱和磁化强度Fe304纳米粒子的制备及表征[J].四川有色金属.2009(4):7.
    [110]张鑫,李鑫钢,姜斌.四氧化三铁纳米粒子合成及表征[J].化学工业与工程.2006,23(1):4.
    [111]秦润华,姜炜,刘宏英,等.Fe304纳米粒子的制备与超顺磁性[J].功能材料.2007,38(6):3.
    [112]陈平,廖明义.高分子合成材料学[M].第2版.北京:化学工业出版社,2010.
    [113]Tao K, Dou H, Sun K. Combined investigation of experimental characterization and theoretic calculation on the structure of dextran-Fe3O4 clusters[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2006,290(1-3):70-76.
    [114]Chantrell R W, Popplewell J, Charles S W. Measurements of particle-size distribution parameters in ferrofluids[J]. IEEE Transactions on Magnetics.1978, 14(5):975-977.
    [115]Kim D K, Zhang Y, Voit W, et al. Systhesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles[J]. Journal Of Magnetism and Magnetic Materials.2001,-225(-1-2):36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700