用户名: 密码: 验证码:
高岭土/菱铁矿杂化材料制备及除砷性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砷在自然界中的平均含量为1.8mg.kg-1。饮用水中砷含量过高会引起慢性砷中毒。在中国,很多地区存在局部地下水含砷量过高的问题,导致地方性砷中毒。有些地区高达0.5mg.L-1,超过国家标准10倍。因此,在我国,高砷地下水处理已经是刻不容缓的问题。
     高岭土和菱铁矿均为常用吸附材料,具有吸附性能强,廉价易得等特点,且它们对高砷水的处理能力在前人的文献中略有涉及,但其实际应用于高砷水的处理还需进一步研究。本文主要以高岭土和菱铁矿为主要材料,研究一种可以应用于实际高砷水处理的吸附材料,主要工作如下:
     1、确定吸附材料制作工艺条件。采用用KOH活化后的高岭土和菱铁矿为主要原材料,磷酸酸化过的花生壳为造孔剂,采用高温活化的方法,通过正交静态吸附试验,研究其在常温常压下对水中砷的吸附去除效果。结果表明,在高岭土、菱铁矿、花生壳用量之比为2:2:1,KOH浓度为0.3mol.L-1,浸泡时间为6小时,活化温度为900℃时,制备得到的粉末状材料具有最好的除砷效果,可达到95%。
     2、测定材料的基本性能。用静态试验和BET (Brunauer、Emmett和Teller)氮气吸附法测定材料吸附条件、吸附容量、比表面积和孔隙率。结果表明此材料吸附除砷符合Langmuir等温吸附模型。
     3、设计除砷装置并测定其除砷效果。制作五支直径40mm,长450mm的有机玻璃柱并将其串联,进行动态连续吸附试验,结果表明此材料可以连续有效除砷20小时左右,除砷效果平均可达到84%。
The average content of arsenic in the nature is 1.8mg·kg-1. It will bring the arsenical chronic poisoning if that the content of arsenic in the drinking water is too high. In China, many areas have the problems of the parcel groundwater contain too much arsenic, and it leads parcel arsenical chronic poisoning. Some areas reach 0.5mg.L-1, exceed the National standards 10 times. So, in our country, disposal the "high arsenical content" groundwater is a question no time to delay.
     Kaolin and siderite are commonly used adsorbents. They have the characters of strong adsorption, cheap, easy to get, et cetera. Other literatures have a little treat of their abilities to dispose "high arsenical content" water. But their practical applications have to be further studied. In this study, kaolin and siderite are main materials to research an absorption material which can practical apply to "high arsenical content" water disposal. Main tasks are as follows:
     (1) Determine process conditions of adsorbents. Use the kaolin and siderite which were activated with KOH as the main raw materials and the peanut shell with Phosphoric acid acidification as the pore-forming material, and use the high-temperature activation method, The effect of arsenate removal under normal temperature and pressure by the synthetic material were studied in orthogonal captive adsorption tests. The results show that when weight ratio of the kaolin, siderite and peanut shell is 2:2:1, the concentration of KOH is 0.3 mol·L-1, the soaking time is 6h, the activation temperature is 900℃, the effect of arsenate removal is the best, can reach 95%.
     (2) Mensurate the basic performances of the material. Use the ways of captive tests and BET (Brunauer, Emmett and Teller) nitrogen adsorption to mensurate the adsorption conditions, adsorption capacity, surface area and the porosity. The results show that the adsorption behavior is fitted with Langmuir isotherm.
     (3) Design a arsenic-removal set and mensurate its arsenic-removal effects. Prepare 5 perspex columns which with the diameter 40mm and length 450mm, in series them, and take the adsorption materials into them with water under inflow, do dynamic adsorption tests. The results show that when dynamic adsorbing, the material can persist effectual remove the arsenic for about 20h, the effect of arsenate removal can reach 84%.
引文
[1]罗世旭.地下水除砷及其机理探讨[J].环境,2006,S2:58
    [2]沈雁峰,孙殿军,赵新华,等.中国饮水型地方性砷中毒病区和高砷区水砷筛查报告[J].中国地方病学杂志,2005,24(2):172-175
    [3]李永敏,郭华明,王焰新,等.地方性水砷中毒成因防治和研究现状[J].环境与健康.2001,(6):44-46
    [4]黄鑫,高乃云,刘成,等.饮用水除砷工艺研究进展[J].净水技术,2007,26(5):37-41
    [5]Vega L, Styblo M, Patterson R, et al. Differential effects of trivalent and pentavalent arsenicals on cell proliferation and cytokine secretion in normal human epidermal keratinocytes Germolec [J], Toxicol. Appl. Pharmacol.2001,172(3):225-232
    [6]闫英桃,刘建,董岁明,等.载铁硅胶去除水中氟的吸附性能与机理[J].长安大学学报(建筑与环境科学版),2004,3(21):60-62
    [7]SIMONS J H. Fluorine Chemistry [M]. New York:Academic Press,1950
    [8]PITTER P. Forms of occurrence of fluorine in water [J]. Water Resources,1985,19(3): 281-287.
    [9]APAMBIRE W B, BOYLE O R, MICHEL F A. Geo-chemistry, genesis, and health implications of fluoriferous groundwaters in the upper regions of ghana [J]. Environmental Geology,1997,33(1):13-18
    [10]景英仁,杨奇,景英勤,等.赤泥的基础性质的工程特性[J].山西建筑,2001,2(16):80-81
    [11]常方方,曲久辉,刘锐平,等.铁锰复合氧化物的制备及其吸附除砷性能[J].环境科学学报,2006,26(11):1769-1774
    [12]余青原,王琳,张宝伟.浅析水中砷的去除[J].山西建筑.2007,33,(1):182-184
    [13]李定龙,朱宏飞,关小红,等.吸附法去除饮用水中砷的研究进展[J].水资源保护,2007,23(6):44-47
    [14]张昱,杨敏,王桂燕,等.利用稀土基无机合成材料去除饮用水中砷的研究[J].环境化学,2001(1):70-75
    [15]欧阳通.稀土材料氢氧化铈吸附水中亚砷酸与砷酸阴离子的特性效果[J].环境科学,2004,25(6):43-47
    [16]彭书传,杨远盛,陈天虎,等.镁铝阴离子黏土对砷酸根离子的吸附作用[J].硅酸盐学报,2005(8):1024.1027
    [17]赵雅萍,王军锋,陈甫华.载铁(Ⅲ)-配位体交换棉纤维素吸附剂对饮用水中砷(Ⅴ)和氟联合去除的研究[J].高等学校化学学报,2003(4):643-647
    [18]廖立兵,DONALD G F.羟基铁溶液O蒙脱石体系对砷的吸附[J].中国科学D辑:地球科学,2005,35(8):750-757
    [19]郭维华,费忠民.水中砷混凝法去除机理研究[J].苏州城建环保学院学报,1995(1):70-77
    [20]梁美娜,刘海玲,朱义年,等.复合铁铝氢氧化物的制备及其对水中砷(Ⅴ)的去除[J].环境科学学报,2006(3):438-446
    [21]XU Y H, SUNENORI N, KIRA O. Adsorption and removal of arsenic (Ⅴ) from drinking water by aluminum-loaded Shirasu-zeolite[J]. Journal of Hazardous Materials,2002,9: 275-287
    [22]ZHANG Y,YANGM,DOU XM, et al. Arsenate adsorption on an Fe-Ce bimetal oxide adsorbent:role of surface properties[J].Environmental Science Technology,2005,39: 7246-7253
    [23]赵月朝,陈亚妍,林少彬,等.负载金属饮水除砷材料的研究[J].卫生研究,2004,33(5):550-552
    [24]KELLY B P, TAREK M A F.Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites:effects of pH, temperature, and ionic strength [J]. Journal of Environmental Science and Health,2005,40:723-749
    [25]LTUNDOGAN H S, SEMA A, FIKRET T, et al. Arsenic adsorption from aqueous solutions by activated red mud[J]. Waste Management,2002,22:357-363
    [26]郭学军,甫华.铁(β-FeOOH)球形棉纤维素吸附剂去除地下水砷(Ⅴ)的研究[J].环境科学,2005,26(3):66-72
    [27]SINGH T S, PANT K K. Equilibrium, kinetics and thermodynamic studies for adsorption of As(Ⅲ) on activated alumina [J]. Separation and Purification Technology,2004,36: 139-147
    [28]陈敬军,蒋柏泉.Fe(Ⅲ)改性D401螯合树脂吸附微量砷(Ⅴ)的研究[J].南昌大学学报:工科版,2005,27(4):25.28
    [29]杨胜科,王文科,李翔.改性海泡石处理含砷饮用水研究[J].化工矿与加工,2000(10):13-16
    [30]张晖,周明达,张利民,等.改性沸石处理水中砷的研究[J].贵州化工,2006,31(2):7-9
    [31]田军,乔秀丽.新生态δ-MnO2对废水As(Ⅴ)的吸附研究[J].佳木斯大学学报:自然科学版,2004,22(4):508-510
    [32]刘锐平,杨艳玲,夏圣骥,等.水合二氧化锰界面特性及其除污染效能[J].环境化学,2005,24(3):338-341
    [33]汉景泰,FYFE W S.硫化铁矿物处理水体砷污染[J].科学通报,2000(5):1100-1104
    [34]叶瑛,季珊珊,邬黛黛,等.针铁矿及其前体吸附亚砷酸根离子的反应及预处理方法的影响[J].岩石矿物学杂志,2005(6):551-555
    [35]ZHANGW, SINGH P, PALING E, et al. Arsenic removal from contaminated water by natural iron ores [J]. Minerals Engineering,2004,17:517-524
    [36]袁涛,罗启芳.运用涂铁砂粒进行分散式饮水除砷的效果[J].环境科学,2001,22(3):25-29
    [37]武荣成,曲久辉,吴成强.磁性吸附材料CuFe2O4吸附砷的性能[J].环境科学,2003(9):60-64
    [38]KARASU T K,HIAVAN TV, SUBRA M KS. Arsenic removal from drinkingwater using iron xide-coated sand[J]. Water Air and Soil Pollution,2003,142:95-111
    [39]杨仕清,张怀武.纳米材料科学的研究现状与未来[J].电子科技导报,1995(11):2-5
    [40]肖亚兵,钱沙华.纳米二氧化钛对砷(Ⅲ)和砷(Ⅴ)吸附性能的研究[J].分析科学学报,2003,19(2):172-174
    [41]喻德忠,邹菁,艾军.纳米二氧化锆对砷(Ⅲ)和砷(Ⅴ)的吸附性质研究[J].武汉化工学院学报,2004,26(3):1-3
    [42]PARITAM KD, AJAY KR, VIRENDER KS, et al. Adsorption of arsenate and arsenite on titanium dioxide suspensions [J]. Journal of Colloid and Interface Science,2004,278: 270-275
    [43]SUNBAEK B M P, LEE L, MENG X G. Removal of arsenic from groundwater by granular titanium dioxide adsorbent [J]. Chemosphere,2005,60:389-397
    [44]查春花,张胜林,夏明芳,等.饮用水除氟方法及其机理[J].净水技术,2005,24(6):46-48
    [45]李雪玲,刘俊峰,李培元,等.石灰沉淀法除氟的应用[J].水处理技术,2000,26(6):359-361
    [46]PARTHASARATHY N, BUFFLE J. Study of Inter-action of Polymeric Aluminium Hydroxide with Fluoride[J]. Can.J.Chem,1986,64(1):24-30
    [47]卢建杭.含氟水治理研究进展[J].化工环保,1999.19(6):341.345
    [48]张思宏,赵育林.利用骨炭去除饮水中氟化物的探讨[J].铁道劳动安全卫生与环保,2000,27(3):159-161
    [49]刘昌汉主编.地方性氟中毒[M].北京:人民卫生出版社,1988:132
    [50]王学松,徐颖,孙维彬,等.骨碳饮水降氟技术应用及管理对策[J].地方病通报,1996,11(2):104
    [51]傅玉治.充分发挥骨碳饮水除氟设备效益的措施[J].氟研究通讯,1991,6(2):30
    [52]刘文质等.饮用水沸石除氟[J].水处理技术,1995,21(3):166.170
    [53]孙立成,万小平,陈雪明,等.电凝聚饮用水除氟的理论与实践[J].氟研究通讯,1988.7:18
    [54]李卫东.饮水理化除氟方法与进展[J].安徽预防医学杂志,2002,8(2):128.129

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700