用户名: 密码: 验证码:
基于磁球信号放大技术的超灵敏DNA检测方法及其在测定基因表达中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA是生命现象中不可缺少的生物大分子,是生命体内的基因物质,也是遗传信息的携带者。检测与疾病有关的变异基因对基因筛选、遗传疾病的早期诊断和治疗具有十分深远的意义。因此,随着分子生物学研究的深入DNA的检测手段变得越来越重要。本论文以DNA这一生物大分子为研究对象,将磁球放大技术、核酸杂交技术与光电化学分析技术相结合,研制新型的高灵敏、高选择性的DNA检测方法,并成功应用于检测细胞中的基因表达。主要内容如下:
     第一章主要对DNA的检测方法及检测中放大技术进行了简要的综述。DNA检测方法可分为标记型与无标记型,标记型方法主要有荧光分析法、电化学方法、化学发光法、电化学发光法等,无标记的方法涉及到表面等离子共振技术和石英微晶天平法等。本章还介绍了检测DNA中的放大技术,包括核酸体外扩增和检测物信号放大技术两方面,其中基于酶反应、纳米粒子和微磁球的信号放大技术进行了着重介绍。
     第二章我们研究了两种以亚微米磁球(MB)为载体标记Ru(bpy)32+-NHS的超灵敏检测人乳腺癌细胞中beta-2-microglobulin (p2M) mRNA的电化学发光(ECL)法。第一种方法是用ECL光谱法。这种方法的方案是:修饰有生物素化的捕捉DNA(B-DNAc)的基底通过杂交反应依次连接上目标DAN(t-DNA)、生物素化的探针DNA (B-DNAp)和链霉亲和素化的磁球(SA-MBs)。然后通过去杂交反应将SA-MBs从基底上释放下来,并标记上Ru(bpy)32+-NHS。标记了Ru(bpy)32+-NHS的MBs固定在金电极上后,利用多通道光学分析仪采集Ru(bpy)32+-NHS的电化学发光光谱图。通过该方法我们测得人乳腺癌细胞中β2M mRNA的检测限达到1.2×10-15mol/L。第二种方法是以碳纳米管(CNTs)作为辅助电极材料包裹标记了Ru(bpy)32+-NHS的MBs,再用ECL方法检测细胞中基因的表达水平,∞2M mRNA的检测限可达3×10-16mol/L。
     第三章我们研究了一种新的荧光检测痕量DNA的信号放大方法—磁球表面DNA杂交-去杂交信号放大方法。该方法首先将修饰了B-DNAp的SA-MBs (DNAp-MBs)以1:1的比例连接到基底上的t-DNA上。通过DNA之间去杂交方式将DNAp-MBs释放下来,然后与标记了Cy5的检测DNA (Cy5-DNAd)进行杂交。通过DNAp-MBs和Cy5-DNAd之间去杂交反应,收集释放得到的Cy5-DNAd。而分离得到的DNAA-MBs可以再次与其他的Cy5-DNAd进行杂交-去杂交反应。经多次杂交-去杂交循环过程后可以收集大量Cy5-DNAd。最终,将所有收集到的Cy5-DNAd进行荧光检测。经11次循环放大后t-DNA的检测限为8.5×10-15mol/L。我们将该超灵敏方法用于检测人乳腺癌细胞中RPLP2mRNA的检测。
     第四章研究了一种新颖的基于多色编码微珠单分子检测多种DNA的技术,通过同时检测三种DNA及细胞中的多基因表达证明了该技术的可行性。该方法通过精确控制纳米磁球上标记了三种染料(Cy5,FAM和AMCA) DNA的比例构建多色编码纳米球。将不同的颜色编码纳米球标记到不同的t-DNA上后,以普通荧光显微镜摄取多种t-DNA的单分子图象。通过统计t-DNA的数量以同时定量多种t-DNA.我们将该单分子检测技术应用于检测~100细胞中三种基因的表达。
DNA is the genetic material and one of the indispensable biological macromolecules in the phenomenon of life. Detecting mutant genes associated with disease has significant meaning for gene screening, early diagnosis and treatment. Therefore, DNA detection methods become more and more important. This thesis developed several novel methods of DNA detection with high sensitivity and selectivity using magnetic beads as the carrier to amplify signal. This technique was successfully applied to gene expression in the cell. The content as follows:
     In chapter one, we reviewed DNA detection methods with and without labels, and signal amplification techniques including amplification of taget DNA and detected substances briefly.
     In chapter two, we reported ultrasensitive ECL methods for determination of mRNA in cells using streptavidin-coated magnetic nanobeads (SA-MBs) as the carrier of Ru(bpy)32+-NHS to amplify signal. In this chapter, we used ECL spectrometry to measure gene expression level in cells by using an optical multi-channel analyzer. Using this method, not only the limit of detection for DNA determination was as low as1.2×10-15mol/L, but also the ECL spectrum of Ru(bpy)32+-NHS on the surface of the SA-MBs was obtained. Additionally, we used carbon nanotubes (CNTs) to wrap the Ru(bpy)32+-loaded MBs on the electrode. In this case, the ECL of Ru(bpy)32+was greatly increased. Using this method, DNA of3x10-6mol/L could be detected and mRNA in cells could be quantified.
     In chapter three, a new signal amplification strategy based on DNA hybridization-dehybridization reaction on the surface of MBs for fluorescence detection of ultrasensitive DNA was developed. In this strategy, MBs modified with probe DNA (DNAP-MBs) were bound to t-DNA (with a ratio of1:1) captured to a substrate. The DNAp-MBs were released from the substrate via DNA dehybridization and then hybridized with Cy5-labeled detection DNA (Cy5-DNAd). After the Cy5-DNAd and DNAp-MBs were separated by dehybridization, the Cy5-DNAd was collected. The DNAp-MBs were then hybridized with other Cy5-DNAd to initiate the next hybridization-dehybridization round. Finally, fluorescence intensity of the collected Cy5-DNAd was measured. Using this strategy, the limit of detection for determination of t-DNA was8.5×10-15mol/L for11cycles. The ultrasensitive assay was used to quantify ribosomal protein, large, P2(RPLP2) mRNA in human breast cancer cells.
     In chapter four, a novel multiplexed optical coding technique for single-molecule detection (SMD) of DNAs was developed using300-nm-diameter MBs. The encoded MBs were fabricated by hybridizing three kinds of coding DNAs labeled with different dyes (Cy5, FAM and AMCA), respectively, at precisely controlled ratios with biotinylated reporter DNA modified to magnetic streptavidin-coated MBs. Different colors from the encoded MBs could be obtained by overlapping three single-primary-color fluorescence images of the MBs corresponding to emission of Cy5(red), FAM (green) and AMCA (blue). Intraccllular multi-gene expression analysis demonstrated the DNA coding technique for SMD.
引文
[1]Watson, J. D. and Crick, F. H. C., Genetical implications of the structure of deoxyribonucleic acid, Nature,1953,171,964-967.
    [2]张翮,中国科学技术大学硕士毕业论文,20世纪上半叶核酸研究回顾及若干 问题探析[D],中国科学技术大学,2010。
    [3]李佩珊,许良英,20世纪科学技术简史,第2版,北京:科学出版社,1999。
    [4]贾德森H.R.,创世纪的第八天:20世纪分子生物学革命[M],李晓丹译,上海:上海科学技术出版社,2005。
    [5]Lockhart, D. J. and Winzeler, E. A., Genomics, gene expression and DNA arrays, Nature,2000,405,827-836.
    [6]Conner, B. J.; Reyes, A. A.; Morin, C.; Itakurak, K.; Teplitz, R. L. and Wallace, R. B., Detection of sickle cell beta S-globin allele by hybridization with synthetic oligonucleotides, Proc. Natl. Acad. Sci., U.S.A.,1983,80,278-282.
    [7]Riordan, J. R.; Romniens, J. M.; Kerm, B.; Alon, N.; Rozmahel, R.; Grzelczak, Z.; Zielenski, J.; Lok, S.; Plavsic, N. and Chou, J. L., Identification of the cystic fibrosis gene:cloning and characterization of complementary DNA, Science,1989,245(4922), 1066-1073.
    [8]MacDonald, M. E.; Ambrose, C. M.; Duyao, M. P. and Myers, R. H., A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes, Cell,1993,72(6),971-983
    [9]陆晓军,鞠烷先,脱氧核糖核酸电化学传感器的原理及其应用,分析化学,2003,31(1),110-115。
    [10]Vainrub, A. and Pettitt, B. M., Sensitive quantitative nucleic acid detection using oligonucleotide microarrays, J. Am. Chem. Soc.,2003,125(26),7798-7799.
    [11]Drummond, T. G.; Hill, M. G. and Barton, J. K., Electrochemical DNA sensors, Nat. Biotechnol.,2003,21,1192-1199.
    [12]Todd, R. and Wong-DT, W. DNA hybridization arrays for gene expression analysis of human oral cancer, J. Dent. Res.,2002,81(2),89-97.
    [13]Gong, P.; Lee, C. Y; Gamble, L. J.; Castner, D. G. and Grainger, D. W., Hybridization behavior of mixed DNA/alkylthiol monolayers on gold: characterization by surface plasmon resonance and 32P radiometric assay, Anal. Chem., 2006,78,3326-3334.
    [14]Su, H.; Kallury, K. M. R.; Thompson, M. and Roach, A., Interfacial nucleic acid hybridization studied by random primer 32P labeling and liquid-phase acoustic network analysis, Anal. Chem.,1994,66(6),769-777.
    [15]Wolf, S. F.; Haines, L.; Fisch. J.; Kremsky, J. N.; Dougherty, J P. and Jacobs, K.; Rapid hybridization kinetics of DNA attached to submkron latex particles, Nucleic Acids Res.,1987,15(7),2911-2926.
    [16]Tyagi, S. and Kramer, F. R., Molecular beacons:probes that fluoresce upon hybridization, Nat. Biotechnol.,1996,14,303-308.
    [17]Xiang, D. S.; Zhang, C. L.; Chen, L.; Ji, X. H. and He, Z. K., Tricolour fluorescence detection of sequence-specific DNA with a new molecular beacon and a nucleic acid dye TOTO-3, Analyst,2012,137(24),5898-905.
    [18]Lin, J.; Liu, R. T. and Gao, C. Z., Interactions of L-Arg with calf thymus DNA using neutral red dye as a fluorescence probe, Spectrochim. Acta, part A,2012,97, 532-535.
    [19]Teixeira, R.; Paulo, P. M. R.; Viana, A. S.; and Costa, S. M. B, Plasmon-Enhanced Emission of a Phthalocyanine in Polyelectrolyte Films Induced by Gold Nanoparticles, J. Phys. Chcm. C,2011,115(50),24674-24680.
    [20]Han, J.; Jose, J.; Mei, E. and Burgess, K., Chemiluminescent energy-transfer cassettes based on fluorescein and Nile red, Angew. Chem., Int. Ed.,2007,46, 1684-1687.
    [21]Wilson, R.; Cossins, A. R. and Spiller, D. G., Encoded microcarriers for high-throughput multiplexed detection, Angew. Chem., Int. Ed.,2006,45,6104-6117.
    [22]Peng, H.; L.J. Zhang, Kjallman, T. H. M., Soeller, C. and Travas-Sejdic, J.,DNA hybridization detection with blue luminescent quantum dots and dye-labeled single-stranded DNA, J. Am. Chem. Soc.,2007,129(11),3048-3049.
    [23]Shlyahovsky, B.; Pavlov, V; Kaganovsky, L. and Willner, I., Angew. Chem., Int. Ed.,2006,45,4815-4819.
    [24]Li, L.; Qu, X.; Sun, J. T.; Yang, M. X.; Song, B. F.; Shao, Q. Q.; Zhang, X. L. and Jin, W. R., Single-molecule-counting protein microarray assay with nanoliter samples and its application in the dynamic protein expression of living cells, Biosens. Bioelectron.,2011,26,3688-3691.
    [25]Li, L.; Hu, X. F.; Sun, Y. M.; Zhang, X. L. and Jin, W. R., Electrochemilumin-escence resonance energy transfer between quantum dots (QDs) as the donor and Cy5 dye molecules as the acceptor in QD-Cy5 conjugates with biomolecules as the linker, Electrochem. Commun.,2011,13,1174-1177.
    [26]Kupstat, A.; Ritschel, T. and Kumke, M. U., Oxazine dye-conjugated DNA oligonucleotides:Forster resonance energy transfer in view of molecular dye-DNA interactions, Bioconjugate Chem.,2011,22(12),2546-2557.
    [27]Qiu, T.; Zhang, B.; Hu, Z. Y.; Tang, J. H.; Xie, H. P.; Gu, B. R., Detection of DNA based on fluorescence resonance energy transfer of polyelectrolyte-protected CdTe quantum dots as energy donors, Analyst,2012,137,11,2608-2613.
    [28]Xu, Q. H.; Wang, S.; Korystov, D.; Mikhailovsky, A.; Bazan, G. C.; Moses, D. and Heeger, A. J., The fluorescence resonance energy transfer (FRET) gate:A time-resolved study, Proc. Natl. Acad. Sci., U.S.A.,2005,102(3),530-535.
    [29]Wang, S.; Gaylord, B. S. and Bazan, G. C., Fluorescein provides a resonance gate for FRET from conjugated polymers to DNA intercalated dyes, J. Am. Chem. Soc., 2004,126,5446-5451.
    [30]Liu, B. and Bazan, G. C., Homogeneous fluorescence-based DNA detection with water-soluble conjugated polymers, Chem. Mater.,2004,16(23),4467-4476.
    [31]Duan, X. R.; Li, Z. P.; He, F. and Wang, S., A sensitive and homogeneous SNP detection using cationic conjugated polymers, J. Am. Chem. Soc.,2007,129, 4154-4155.
    [32]Yu, Z. G. and Lai, R. Y., A reagentless and reusable electrochemical DNA sensor based on target hybridization-induced stem-loop probe formation, Chem. Commun., 2012,48(85),10523-10525.
    [33]Palecek, E. and Fojta, M., Electrochemical DNA sensors, in Bioelectronics, in Wilner, I., and Katz, E., (Eds.), Wiley VCH, Weinheim,2005,127-192.
    [34]Wang, J., In Electrochemistry of nucleic acids and proteins:Towards electrochemical sensors for genomics and proteomics, in Palecek, E., Scheller, F., Wang, J. (Eds.), Elsevier, Amsterdam,2005,369-382.
    [35]Ahangar, L. E. and Mehrgardi, M. A., Nanoporous gold electrode as a platform for the construction of an electrochemical DNA hybridization biosensor, Biosens. Bioelectron.,2012,38(1),252-257.
    [36]Fojta, M.; Kostecka, P.; Trefulka, M.; Havran, L. and Palecek, E., "Multicolor" electrochemical labeling of DNA hybridization probes with osmium tetroxide complexes, Anal. Chem.,2007,79(3),1022-1029.
    [37]Kostecka, P.; Havran, L.; Bittova, M.; Pivonkova, H. and Fojta, M., Sensing mispaired thymines in DNA heteroduplexes using an electroactive osmium marker: towards electrochemical SNP probing, Anal. Bioanal. Chem.,2011,400(1),197-204
    [38]Vrabel, M.; Horakova, P.; Pivonkova, H.; Kalachova, L.; Cernocka, H.; Cahova, H.; Pohl, R.; Sebest, P.; Havran, L.; Hocek, M. and Fojta, M., Base-modified DNA labeled by [Ru(bpy) 3]2+ and [Os(bpy)s]2+ complexes:Construction by polymerase incorporation of modified nucleoside triphosphates, electrochemical and luminescent properties, and applications, Chem.--Eur. J.,2009,15,1144-1154.
    [39]Hurley, D. J. and Tor, Y, Ru(Ⅱ) and Os(Ⅱ) nucleosides and oligonucleotides: synthesis and properties, J. Am. Chem. Soc.,2002,124(14),3749-3762.
    [40]Mukumoto, K.; Nojima, T. and Takenaka, S., Synthesis of ferrocenylcarbo- diimide as a convenient electrochemically active labeling reagent for nucleic acids, Tetrahedron,2005,61(49),11705-11715.
    [41]Flechsig, G. U. and Reske, T., Electrochemical Detection of DNA Hybridization by Means of Osmium Tetroxide Complexes and Protective Oligonucleotides, Anal. Chem.,2007,79(5),2125-2130.
    [42]Patolsky, F.; Lichtenstein, A. and Willner, I., Electrochemical transduction of liposome-amplified DNA sensing, Angew. Chem. Int. Ed.,2000,39(5),940-943.
    [43]Patolsky, F; Lichtenstein, A. and Willner, I., Electronic transduction of DNA sensing processes on surfaces:amplification of DNA detection and analysis of single-base mismatches by tagged liposomes, J. Am. Chem. Soc.,2001,123,22, 5194-5205.
    [44]赵元弟,庞代文,王宗礼,程介克,电化学脱氧核糖核酸传感器,分析化学,1996,24(3),364-368。
    [45]蔡宏,徐颖,何品刚,方禹之,脱氧核糖核酸在电极表面的固定化研究进展,分析化学,2004,32(6),815-820。
    [46]祝宁宁,张爱平,何品刚,方禹之,基于硫化镉纳米团簇标记 DNA电化学传感的研究,化学学报,2003,61(10),1682-1685。
    [47]Wang, J.; Xu, D.; Kawde. A. N. and Polsky, R., Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization, Anal. Chem.,2001,73(22),5576-5581.
    [48]Wang, J.; Liu, G. D. and Jan, M. R., Ultrasensitive electrical biosensing of proteins and DNA:carbon-nanotube derived amplification of the recognition and transduction events, J. Am. Chem. Soc.,2004,126(10),3010-3011.
    [49]Hansen, J. A.; Mukhopadhyay, R.; Hansen. J.(?); Gothelf, K. V., Femtomolar electrochemical detection of DNA targets using metal sulfide nanoparticles, J. Am. Chem. Soc.,2006,128(12),3860-3861.
    [50]Pavlov, V.; Xiao, Y.; Gill, R.; Dishon, A.; Koller, M. and Willner, I., Amplified chemiluminescence surface detection of DNA and telomerase activity using catalytic nucleic acid labels, Anal. Chem.,2004,76,2152-2156.
    [51]Becker, M.; Lerum, V.; Dickson, S.; Nelson, N. C.; Matsuda, E., The double helix is dehydrated:Evidence from the hydrolysis of acridinium ester-labeled probes, Biochemistry,1999,38,5603-5611.
    [52]Nelson, N. C.; Cheikh, A. B.; Matsuda, E.; Becker, M. M., Simultaneous detection of multiple nucleic acid targets in a homogeneous format, Biochemistry, 1996,35,8429-8438.
    [53]王鹏,张文艳,周泓,朱果逸,电化学发光核酸杂交分析,科学通报,1998,43(21),2241-2247。
    [54]陈扬,陆祖宏,发光标记分析及其在核酸检测中的应用,化学通报,2001,9,537-546。
    [55]张成孝,漆红兰,电化学发光分析研究进展,世界科技研究与发展,2004,26(4),7-13。
    [56]Richter, M. M., Electrochemiluminescence (ECL), Chem. Rev.,2004,104(6), 3003-3036.
    [57]Patolsky, F.; Katz, E. and Willner, I., Amplified DNA detection by electrogenerated biochemiluminescence and by the catalyzed precipitation of an insoluble product on electrodes in the presence of the doxorubicin intercalator, Angew. Chem. Int. Ed.,2002,41,3398-3402.
    [58]Miao, W. J. and Bard, A. J., Electrogenerated chemiluminescence.72. determination of immobilized DNA and c-reactive protein on Au (Ⅲ) electrodes using Tris(2,2'-bipyridyl)ruthenium(II) labels, Anal. Chem.,2003,75,5825-5834.
    [59]Miao, W. J. and Bard, A. J., Electrogenerated chemiluminescence.77. DNA hybridization detection at high amplification with [Ru(bpy)3]2+-containing microspheres, Anal. Chem.,2004,76,5379-5386.
    [60]Sun, Q. X. and Zhang, X. L., Electrochemiluminescence DNA sensor based on Ru(bpy)32+ -doped silica nanoparticle labeling and proximity-dependent surface hybridization assay, J. Solid State Electrochem.,2012,16,247-252.
    [61]Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L. and Mirkin, C. A., Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science,1997,277,1078-1081.
    [62]Fang, S.; Lee, H. J.; Wark, A. W. and Corn, R. M., Attomole microarray detection of microRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions, J. Am. Chem. Soc.,2006,128,14044-14046.
    [63]Feng, K.; Li, J.; Jiang, J. H.; Shen, G. L. and Yu, R. Q., QCM detection of DNA targets with single-base mutation based on DNA ligase reaction and biocatalyzed deposition amplification, Biosens. Bioelectron.,2007,22(8),1651-1657.
    [64]dos Santos Riccardi, C.; Yamanaka, H.; Josowicz, M.; Kowalik, J.; Mizaikoff, B. and Kranz, C., Label-free DNA detection based on modified conducting polypyrrole films at microelectrodes, Anal. Chem.,2006,78(4),1139-1145.
    [65]Li, Z.; Chen, Y.; Li, X.; Kamins, T. I.; Nauka, K. and Williams, R. S. Sequence-specific label-free DNA sensors based on silicon nanowires, Nano Lett., 2004,4(2),245-247.
    [66]Lee, H. J.; Li, Y.; Wark, A. W. and Corn, R. M., Enzymatically amplified surface plasmon resonance imaging detection of DNA by exonuclease Ⅲ digestion of DNA microarrays, Anal. Chem.,2005,77,5096-5100.
    [67]Goodrich, T. T.; Lee, H. J. and Corn, R. M., Enzymatically amplified surface plasmon resonance imaging method using RNase H and RNA microarrays for the ultrasensitive detection of nucleic acids, Anal. Chem.,2004,76(21),6173-6178.
    [68]Goodrich, T. T.; Lee, H. J. and Corn, R.M., Direct detection of genomic DNA by enzymatically amplified SPR imaging measurements of RNA microarrays, J. Am. Chem. Soc.,2004,126(13),4086-4087.
    [69]Patolsky, F.; Ranjit, K. T.; Lichtenstein, A. and Willner, I., Dendritic amplification of DNA analysis by oligonucleotide-functionalized Au-nanoparticles, Chem. Commun.,2000,1025-1026.
    [70]Su, X. D.; Robelek, R.; Wu, Y.; Wang, G. and Knoll, W., Detection of point mutation and insertion mutations in DNA using a quartz crystal microbalance and muts, a mismatch binding protein. Anal. Chem.,2004,76(2),489-494.
    [71]Mullis, K. B.; Falcona, F. A. and Scharf, S., Specific amplification of DNA in vitro, the polymerase chain reaction, Cold Spring Harbor Symp. Quant. Biol.,1985, 51(1),263-273.
    [72]Krokene, P.; Barnes, I.; Wingfield, B. D. and Wingfield, M. J., A PCR-RFLP based diagnostic technique to rapidly identify Seiridium species causing cypress canker, Mycologia.,2004,96(6),1352-1354.
    [73]Shekhar, M. S.; Gopikrishna, G. and Azad, I. S., PCR-RFLP analysis of 12s and 16s mitochondrial rRNA genes from brackishwater finfish and shellfish species, Asian Fish. Sci.,2005,18(1),39-48.
    [74]周薇薇,刘云庆,陈振栋等,PCR技术在临床医学中的应用,黑龙江;黑龙江教育出版社,1996。
    [75]Walker, G. T.; Fraiser, M. S.; Schram, J. L.; Little, M. C.; Nadeau, J. G. and Malinowski, D. P., Strand displacement amplification--an isothermal, in vitro DNA amplification technique, Nucleic Acids Res.,1992,20(7),1691-1696.
    [76]Spargo, C. A.; Fraiser, M. S.; Van, C. M.; Wright, D. J.; Nycz, C. M.; Spears, P. A. and Walker, G. T., Detection of M. tuberculosis DNA using thermophilie strand displacement amplification, Mol. Cell. Probes,1996,10(4),247-256.
    [77]Walker, G. T., Empirical aspects of strand displacement amplification, PCR Methods Appl.,1993,3(1),1-6.
    [78]Barany, F., Genetic disease detection and DNA amplincation using cloned thermostable ligase, Proc. Natl. Acad. Sci., U.S.A.,1991,88(1),189-193.
    [79]Compton, J., Nucleic acid sequence-based amplification, Nature,1991,350(7), 91-92.
    [80]Deiman, B.; Aarle, P. and Sillekens, P., Characteristics and applications of nucleic acid sequence-based amplification(NASBA), Mol. Biotechnol.,2002,20(1), 160-179.
    [81]Souza, D. H. and Jaykus, L. A., Nucleic acid sequence based amplification for the rapid and sensitive detection of Salmonella enterica from foods, J. Appl. Microbiol.,2003,95(6),1343-1350.
    [82]任力强,可使RNA体外特异性扩增的Qβ复制酶技术,生物学杂志,1991,6(2),134-136。
    [83]Kohne, D. E., Application of DNA probe tests to the diagnosis of infectious disease, Am. Clin. Prod. Rev.,1986,11,20-29.
    [84]Lizardi, P.; Huang, X.; Zhu, Z.; Bray-Ward, P.; Thomas, D. C. and Ward, D. C., Mutation detection and single-molecule counting using isothermal rolling circle amplincation, Nat. Genet.,1998,19(3),225-232.
    [85]Thomas, D.; Nardone, G. and Randall, S., Amplification of padlock probes for DNA diagnostics by cascade rolling circle amplification or the polymerase chain reaction, Arch. Pathol. Lab. Med.,1999,123(12),1170-1176.
    [86]陈庆山,刘春燕,刘迎雪等,核酸体外扩增技术,中国生物工程杂志,2004,24(5),10-14。
    [87]Mir, M.; Vreeke, M. and Katakis, I., Different strategies to develop an electrochemical thrombin aptasensor, Electrochem. Commun.,2006,8(3),505-511.
    [88]Shlyahovsky, B.; Pavlov, V.; Kaganovsky, L. and Willner, I., Biocatalytic evolution of a biocatalyst marker:towards the ultrasensitive detection of immunocomplexes and DNA analysis, Angew. Chem., Int. Ed.,2006,45(29), 4815-4819.
    [89]Hom, T. and Urdea, M. S., Forks and combs and DNA:the synthesis of branched oligodeoxyribonucleotides, Nucleic Acids Res.,1989,17(17),6959-6967.
    [90]Player, A. N.; Shen, L. P.; Kenny, D.; Antao, V. P. and Kolberg, J. A., Single-copy gene detection using branched DNA(bDNA) in situ hybridization, J. Histochem. Cytochem.,2001,49(5),603-612.
    [91]Yu, M. L.; Chuang, W. L.; Dai, C. Y.; Chen, S. C.; Lin, Z. Y.; Hsieh, M. Y.; Wang, L. Y. and Chang, W. Y, Clinical evaluation of the automated COBAS AMPLICOR HCV MONITOR test version 2.0 for quantifying serum Hepatitis C virus RNA and comparison to the quantiplex HCV version 2.0 test, J. Clin. Microbiol.,2000,38, 2933-2939.
    [92]Park, S. J.; Taton, T. A. and Mirkin, C. A., Array-based electrical detection of DNA with nanoparticle probes, Science,2002,295(22),1503-1506.
    [93]Wang, Y.; Li, Z. H.; Li, H.; Vuki, M.; Xu, D. and Chen, H. Y., A novel aptasensor based on silver nanoparticle enhanced fluorescence, Biosens. Bioelectron.,2012,32, 76-81.
    [94]Taton, T. A., Mirkin, C. A. and Letsinger, R. L., Seanometrie DNA array detection with nanoparticle probes, Science,2000,289(8),1757-60.
    [95]Wang, J.; Liu, G. D.; Polsky, R. and Merkoci, A., Electrochemical stripping detection of DNA hybridization based on cadmium sulfide nanoparticle tags, Electrochem. Commun.,2002,4(9),722-726.
    [96]Zhu, N.; Zhang, A.; He, P. G. and Fang, Y. Z., Cadmium sulfide nanocluster-based electrochemical stripping detection of DNA hybridization, Analyst, 2003,128(3),260-264.
    [97]Munge, B.; Liu, G. D.; Collins, G. and Wang, J., Multiple enzyme layers on carbon nanotubes for electrochemical detection down to 80 DNA copies, Anal. Chem., 2005,77,4662-4666.
    [98]张盛龙,彭图治,石英晶体微天平的纳米微球质量放大技术及短序列DNA测定,高等学校化学学报,2002,23(6),1022-1026。
    [99]Hun, X.; Mei, Z. H.; Wang, Z. P. and He, Y. H., Indole-3-acetic acid biosensor based on G-rich DNA labeled AuNPs as chemiluminescence probe coupling the DNA signal amplification, Spectrochim. Acta, Part A,2012,95,114-119.
    [100]Zhang, X. L.; Li, L. L.; Li, L.; Chen, J.; Zou, G. Z.; Si, Z. K. and Jin, W. R., Ultrasensitive electrochemical DNA assay basedon counting of single magnetic nanobeads by a combination of DNA amplification and enzyme amplification, Anal. Chem.,2009,81,1826-1832.
    [101]Chen, J.; Zou, G. Z.; Zhang, X. L.; Jin, W. R., Ultrasensitive electrochemical immunoassay based on counting single magnetic nanobead by a combination of nanobead amplification and enzyme amplification, Electrochem. Commun.,2009, 11(7),1457-1459.
    [102]Li, M. Y.; Sun, Y. M.; Chen, L.; Li, L.; Zou, G. Z.; Zhang, X. L. and Jin, W. R., Ultrasensitive eletrogenerated chemiluminescence immunoassay by magnetic nanobead amplification, Electroanalysis,2010,22(3),333-337.
    [1]Fahnrich, K. A.; Pravda, M and Guilbault, G G., Recent applications of electrogenerated chemiluminescence in chemical analysis, Talanta,2001,54(4), 531-559.
    [2]Richter, M. M., Electrochemiluminescence (ECL), Chem. Rev.,2004,104(6), 3003-3036.
    [3]Kumala, S. and Suomin, J., Current status of modern analytical luminescence methods, Anal. Chim. Acta,2003,500(1-2),21-69.
    [4]Yin, X.; Dong, S. and Wang, E., Analytical applications of the electrochemiluminescence of tris (2,2'-bipyridyl) ruthenium and its derivatives, Trends Anal. Chem.,2004,23(6),432-441.
    [5]Miao, W., Electrogenerated chemiluminescence and its biorelated applications, Chem. Rev.,2008,108(7),2506-2553.
    [6]Baeumner, A. J.; Humiston, M. C.; Montagna, R. A. and Durst, R. A., Detection of viable oocysts of cryptosporidium parvum following nucleic acid sequence based amplification, Anal. Chem.,2001,73(6),1176-1180.
    [7]Patolsky, F.; Katz, E. and Willner, I., Amplified DNA detection by electrogenerated biochemiluminescence and by the catalyzed precipitation of an insoluble product on electrodes in the presence of the doxorubicin intercalator, Angew. Chem. Int. Ed.,2002,41,3398-3402.
    [8]Weizmann, Y.; Patolsky, F.; Katz, E. and Willner, I., Amplified DNA sensing and immunosensing by the rotation of functional magnetic particles, J. Am. Chem. Soc., 2003,125(12),3452-3454.
    [9]Dennany, L.; Forster, R. J. and Rusling, J. F., Simultaneous direct electro-chemiluminescence and catalytic voltammetry detection of DNA in ultrathin films, J. Am. Chem. Soc.,2003,125(17),5213-5218.
    [10]Miao, W. J. and Bard, A. J., Electrogenerated chemiluminescence.72. determination of immobilized DNA and c-reactive protein on Au (III) electrodes using Tris(2,2'-bipyridyl)ruthenium(II) labels, Anal. Chem.,2003,75,5825-5834.
    [11]Dennany, L.; Forster, R. J.; White, B.; Smyth, M. and Rusling, J. F., Direct electrochemiluminescence detection of oxidized DNA in ultrathin films containing [Os(bpy)2(PVP)10]2+, J. Am. Chem. Soc.,2004,126(28),8835-8841.
    [12]Miao, W. J. and Bard, A. J., Electrogenerated chemiluminescence.77. DNA hybridization detection at high amplification with [Ru(bpy)3]2+ -containing microspheres, Anal. Chem.,2004,76,5379-5386.
    [13]Hvastkovs, E. G.; So, M.; Krishnan, S.; Bajrami, B.; Tarun, M.; Jansson, I.; Schenkman, J. B. and Rusling, J. F., Electrochemiluminescent arrays for cytochrome P450-activated genotoxicity screening. DNA damage from benzo[a]pyrene metabolites, Anal. Chem.,2007,79(5),1897-1906.
    [14]Zhu, D.; Tang, Y.; Xing, D. and Chen, W., PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based biobar code method, Anal. Chem.,2008,80(10),3566-3571.
    [15]Zhang, J.; Qi, H.; Li, Y.; Yang, J.; Gao, Q. and Zhang, C., Electrogenerated chemiluminescence DNA biosensor based on hairpin DNA probe labeled with ruthenium complex, Anal. Chem.,2008,80(8),2888-2894.
    [16]Cao, W.; Ferrance, J. P.; Demas, J. and Landers, J. P., Quenching of the electrochemiluminescence of tris(2,2'-bipyridine)ruthenium(II) by ferrocene and its potential application to quantitative DNA detection, J. Am. Chem. Soc.,2006, 128(23),7572-7578.
    [17]Duan, R.; Zhou, X. and Xing, D., Electrochemiluminescence biobarcode method based on cysteamine-gold nanoparticle conjugates, Anal. Chem.,2010,82(8), 3099-3103.
    [18]Lee, W. Y. and Nieman, T. A., Evaluation of use of tris(2,2'-bipyridyl)ruthenium (Ⅲ) as a chemiluminescent reagent for quantitation in flowing streams, Anal. Chem., 1995,67(11),1789-1796.
    [19]Miao, W. and Bard, A. J., Electrogenerated chemiluminescence,80, C-reactive protein determination at high amplification with Ru(bpy)32+ -containing microspheres, Anal. Chem.,2004,76,7109-7113.
    [20]Liu, X.; Jiang, H.; Lei, J. and Ju, H., Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives, Anal. Chem.,2007,79(21),8055-8060.
    [21]Wu, M.; Shi, H.; Xu, J. and Chen, H., CdS quantum dots/Ru(bpy)32+ electrochemiluminescence resonance energy transfer system for sensitive cytosensing, Chem. Commun.,2011,47,7752-7754.
    [22]陈莉,山东大学硕士毕业论文,基于磁球放大技术的电化学发光免疫分析研究[D],山东大学,2008。
    [23]李君,山东大学硕士毕业论文,量子点电化学、电化学发光共振能量转移及磁球修饰Ru(bpy)32+的电化学发光分析方法[D],山东大学,2009。
    [24]Ajayan, P. M., Nanotubes from carbon, Chem. Rev.,1999,99(7),1787-1800.
    [25]Tasis, D.; Tag matarchis, N.; Bianco, A. and Prato, M., Chemistry of carbon nanotubes, Chem. Rev.,2006,106(3),1105-1136.
    [26]Li, J.; Xu, Y.; Wei, H.; Huo, T. and Wang, E., Electrochemiluminescence sensor based on partial sulfonation of polystyrene with carbon nanotubes, Anal. Chem.,2007, 79(14),5439-5443.
    [27]Munge, B.; Liu, G. D.; Collins, G. and Wang, J., Multiple enzyme layers on carbon nanotubes for electrochemical detection down to 80 DNA copies, Anal. Chem., 2005,77,4662-4666.
    [28]Du, Y.; Wei, H.; Kang, J.; Yan, J.; Yin, X.; Yang, X. and Wang, E., Microchip capillary electrophoresis with solid-state electrochemiluminescence detector, Anal. Chem.,2005,77(24),7993-7997.
    [29]Choi, H. N.; Lee, J.; Lyu, Y. and Lee, W., Tris(2,2'-bipyridyl)ruthenium(II) electrogenerated chemiluminescence sensor based on carbon nantube dispersed in sol-gel-derived titania-Nafion composite films, Anal. Chim. Acta,2006,565(1), 48-55.
    [30]Zhang, L.; Guo, Z.; Xu, Z. and Dong, S. J., Highly sensitive electrogenerated chemiluminescence produced at in Eastman-AQ55D-carbon nanotube composite film electrode, Electroanal. Chem.,2006,592(1),63-67.
    [31]Li, Y.; Qi, H.; Fang, F. and Zhang, C., Ultrasensitive electrogenerated chemiluminescence detection of DNA hybridization using carbon-nanotubes loaded with tris(2,2'-bipyridyl) ruthenium derivative tags, Talanta,2007,72(5),1704-1709.
    [32]Veetil, J. V. and Ye, K., Development of immunosensors using carbon nanotubes, Biotechnol. Prog.,2007,23(3),517-531.
    [33]Choi, H. N.; Yoon, S. H.; Lyu, Y. and Lee, W., Electrogenerated chemiluminescence ethanol biosensor based on carbon nanotube-titania-nafion composite film, Electroanalysis,2007,19(4),459-465.
    (34] Guo, Z. and Dong, S., Electrogenerated chemiluminescence from Ru(bpy)32+ ion-exchanged in carbon nanotube/perfluorosulfonated ionomer composite films. Anal. Chem.,2004,76(10),2683-2688.
    [35]Hernandez, F. H. and Escriche, J. M., Fluorimetric determination of aluminium with morin after extraction with isobutyl methyl ketonc. Part Ⅰ:Fluorescence of the aluminium-morin complex in an isobutyl methyl ketone-ethanol-water system, Analyst,1984,109,1585-1588.
    [1]Lockhart, D. J. and Winzeler, E. A., Genomics, gene expression and DNA arrays, Nature,2000,405,827-836.
    [2]Saiki, R. K.; Gelfand, D. H.; Stoffel, S.; Scharf, S. J.; Higuchi, R.; Horn, G. T.; Mullis, K. B. and Erlich, H. A., Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase, Science,1988,239,487-491.
    [3]Mullis, K.; Faloona, F.; Scharf, S.; Saiki, R.; Horn, G. and Erlich, H., Specific enzymatic amplification of DNA in vitro:the polymerase chain reaction, Cold Spring Harbor Symp. Quant. Biol.1986,51(Pt.1),263-273.
    [4]Landegren, U.; Kaiser, R.; Sanders, J. and Hood, L., A ligase-mediated gene detection technique, Science,1988,241,1077-1080.
    [5]Sambrook, J. and Russell, D.W., Preparation of plasmid DNA by alkaline lysis with SDS, Molecular Cloning, Cold Spring Harbor Laboratory Press,2001,1.31-1.41.
    [6]Ahn, J. M.; Jung, H. K.; Cho, J. H.; Choi, D.; Mayo, K. E. and Cho, B. N. Changes in the reproductive functions of mice due to injection of a plasmid expressing an inhibin-subunit into muscle:a transient transgenic model, Mol. Cells, 2004,18,79-86.
    [7]Walker, G. T.; Little, M. C.; Nadeau, J. G. and Shank, D. D., Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system, Proc.Natl. Acad. Sci., U.S.A.,1992,89,392-396.
    [8]Fire, A. and Xu, S. Q., Rolling replication of short DNA circles, Proc. Natl. Acad. Sci., U.S.A.,1995,92,4641-4645.
    [9]Lizardi, P. M.; Huang, X.; Zhu, Z.; Bray-Ward, P.; Thomas, D. C. and Ward, D. C., Mutation detection and single-molecule counting using isothermal rolling-circle amplification, Nat. Genet.,1998,19,225-232.
    [10]Compton, J., Nucleic acid sequence-based amplification, Nature,1991,350, 91-92.
    [11]Kacian, D. L. and Fultz, T. J., Nucleic acid sequence amplification methods, Gen Probe, USA,1998,51.
    [12]Dean, F. B.; Hosono, S.; Fang, L.; Wu, X.; Faruqi, A. F.; Bray-Ward, P. Sun, Z.; Zong, Q.; Du, Y.; Du, J.; Driscoll, M.; Song, W.; Kingsmore, S. F.; Egholm, M. and Lasken, R. S., Comprehensive human genome amplification using multiple displacement amplification, Proc. Natl. Acad. Sci., U.S.A.,2002,99,5261-5266.
    [13]Lage, J. M.; Leamon, J. H.; Pejovic, T.; Hamann, S.; Lacey, M.; Dillon, D.; Segraves, R.; Vossbrinck, B.; Gonzalez, A.; Pinkel, D.; Albertson, D. G.; Costa, J. and Lizardi, P. M., Whole genome analysis of genetic alterations in small DNA samples using hyperbranched strand displacement amplification and array-CGH, Genome Res., 2003,13,294-307.
    [14]Vincent, M.; Xu, Y. and Kong, H., Helicase-dependent isothermal DNA amplification, EMBO Rep.,2004,5,795-800.
    [15]Motre, A.; Li, Y. and Kong, H., Enhancing helicase-dependent amplification by fusing the helicase with the DNA polymerase, Gene,2008,420,17-22.
    [16]Li, Y.; Kim, H. J.; Zheng, C.; Chow, W. H.; Lim, J.; Keenan, B.; Pan, X.; Lemieux, B. and Kong, H., Primase-based whole genome amplification, Nucleic Acids Res.,2008,36, e79.
    [17]Zhang, X. L.; Li, L. L.; Li, L.; Chen, J.; Zou, G. Z.; Si, Z. K. and Jin, W. R., Ultrasensitive electrochemical DNA assay basedon counting of single magnetic nanobeads by a combination of DNA amplification and enzyme amplification, Anal. Chem.,2009,81,1826-1832.
    [18]Xue, Q. W.; Jiang, D. F.; Wang, L. and Jiang, W., Quantitative detection of single molecules using enhancement of dye/DNA conjugate-labeled nanoparticles, Bioconjugate Chem.2010,21,1987-1993.
    [19]Shen, L. P.; Sun, Y. M.; Li, J.; Chen, L.; Li, L.; Zou, G. Z.; Zhang, X. L. and Jin, W. R., Heterogeneous electrochemiluminescence spectrometry of Ru(bpy) 32+ for determination of trace DNA and its application in measurement of gene expression level, Talanta,2012,89,427-432.
    [20]Miao, W. J. and Bard, A. J., Electrogenerated chemiluminescence.77. DNA hybridization detection at high amplification with [Ru(bpy)3]2+-containing microspheres, Anal. Chem.,2004,76,5379-5386.
    [21]Shen, L. P.; Li, J.; Li, L.; Zou, G. Z.; Zhang, X. L. and Jin, W.R., Ultrasensitive electrochemiluminescence method for determination of DNA using Ru(bpy)32+-coated magnetic submicrobeads wrapped with carbon nanotubes, Electrochem. Commun., 2011,13,1499-1501.
    [22]Zhang, S. S.; Zhong, H. and Ding, C. F., Ultrasensitive flow injection chemiluminescence detection of DNA hybridization using signal DNA probe Modified with Au and CuS nanoparticles, Anal. Chem.,2008,80,7206-7212.
    [23]Niazov, T.; Pavlov, V.; Xiao, Y; Gill, R. and Willner, I., DNAzyme-functionalized Au nanoparticles for the amplified detection of DNA or telomerase activity, Nano Lett.,2004,4(9),1683-1687.
    [24]Zhou, X.; Cao, P.; Tian, Y. and Zhu, J., Expressed peptide assay for DNA detection, J. Am. Chem. Soc.,2010,132 (12),4161-4168.
    [25]Quach, A. D.; Crivat, G.; Tarr, M. A. and Rosenzweig, Z., Gold nanoparticle-quantum dot-polystyrene microspheres as fluorescence resonance energy transfer probes for bioassays, J. Am. Chem. Soc.,2011,133,2028-2030.
    [26]Grubor, N. M.; Shinar, R.; Jankowiak, R.; Porter, M. D. and Small, G. J., Novel biosensor chip for simultaneous detection of DNA-carcinogen adducts with low-temperature fluorescence, Biosens. Bioelectron.,2004,19,547-556.
    [27]Wang, Y.; Li, Z. H.; Li, H.; Vuki, M.; Xu, D. and H. Y. Chen, A novel aptasensor based on silver nanoparticle enhanced fluorescence, Biosens. Bioelectron.,2012,32, 76-81.
    [28]Li, N.; Mei, L.; Xiang, Y.; Tong, A. J.; Nishizawa, S. and Teramae, N., Fluorescence detection of single-nucleotide polymorphisms with two simple and low cost methods:A double-DNA-probe method and a bulge form method, Anal. Chim. Acta,2007,597,97-102.
    [29]Li, F.; Zhang, J.; Cao, X. N.; Wang, L. H.; Li, D.; Song, S. P.; Ye, B.C. and Fan, C. H., Adenosine detection by using gold nanoparticles and designed aptamer sequences, Analyst,2009,134,1355-1360.
    [30]Huang, C. C.; Huang, Y. F.; Cao, Z. H.; Tan, W. H. and Chang, H. T., Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors, Anal. Chem.,2005,77,5735-5741.
    [31]Hernandez, F. H. and Escriche, J. M., Fluorimetric determination of aluminium with morin after extraction with isobutyl methyl ketone. Part Ⅰ:Fluorescence of the aluminium-morin complex in an isobutyl methyl ketone-ethanol-water system, Analyst,1984,109,1585-1588.
    [1]Zhao, X.; Tapec-Dytioco, R. and Tan, W., Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles, J. Am. Chem. Soc.,2003,125, 11474-11475.
    [2]Li, H.; Zhou, D.; Browne, H.; Balasubramanian, S. and Klenerman, D., Molecule by molecule direct and quantitative counting of antibody-protein complexes in solution, Anal. Chem.,2004,76,4446-4451.
    [3]Sun, B. and Chiu, D. T., Determination of the encapsulation efficiency of individual vesicles using single-vesicle photolysis and confocal single-molecule detection, Anal. Chem.,2005,77,2770-2776.
    [4]Agrawal, A.; Zhang, C.; Byassee, T.; Tripp, R. A. and Nie, S., Counting single native biomolecules and intact viruses with color-coded nanoparticles, Anal. Chem., 2006,78,1061-1071.
    [5]Donner, S.; Li, H.; Yeung, E. S. and Porter, M. D., Fabrication of optically transparent carbon electrodes by the pyrolysis of photoresist films:approach to single-molecule spectroelectrochemistry, Anal. Chem.,2006,78,2816-2822.
    [6]Hesse, J.; Jacak, J.; Kasper, M.; Regl, G.; Eichberger, T.; Winklmayr, M.; Aberger, F.; Sonnleitner, M.; Schlapak, R.; Howorka, S.; Muresan, L.; Frischauf, A. M. and Schutz, G. J., RNA expression profiling at the single molecule level, Genome Res., 2006,16,1041-1045.
    [7]Lee, J.; Li, J. and Yeung, E. S., Single-molecule detection of surface-hybridized human papilloma virus DNA for quantitative clinical sceening, Anal. Chem.,2007,79, 8083-8089.
    [8]Li, L.; Tian, X. Z.; Zou, G. Z.; Shi, Z. K.; Zhang, X. L. and Jin, W. R., Quantitative counting of single fluorescent molecules by combined electrochemical adsorption accumulation and total internal reflection fluorescence microscopy, Anal. Chem.,2008,80,3999-4006.
    [9]Zhang, X.; Li, L. L.; Chen, L.; Zou, G Z.; Si, Z. K. and Jin, W. R., Ultrasensitive electrochemical DNA assay based on counting of single magnetic nanobeads by a combination of DNA amplification and enzyme amplification, Anal. Chem.,2009,81, 1826-1832.
    [10]Li, L.; Qu, X.; Sun, J.; Yang, M.; Song, B.; Shao, Q.; Zhang X. L. and Jin W. R., Single-molecule-counting protein microarray assay with nanoliter samples and its application in the dynamic protein expression of living cells, Biosens. Bioelectron., 2011,26,3688-3691.
    [11]Ferguson, J. A.; Steemers, F. J. and Walt, D. R., High-density fiber-optic DNA random microsphere array, Anal. Chem.,2000,72,5618-5624.
    [12]Steemers, F. J.; Ferguson, J. A. and Walt, D. R., Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays, Nat. Biotechnol.,2000,18,91-94.
    [13]Nicewarner-Pena, S. R.; Freeman, R. G.; Reiss, B. D.; He, L.; Pena, D. J.; Walton, I. D.; Cromer, R.; Keating, C. D. and Natan, M. J., Submicrometer metallic barcodes, Science,2001,294,137-141.
    [14]Han, M.; Gao, X.; Su, J. Z. and Nie, S., Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules, Nat. Biotechnol.,2001,19,631-635.
    [15]Gaponik, N.; Radtchenko, I. L.; Sukhorukov, G. B.; Weller, H. and Rogach, A. L., Toward encoding combinatorial libraries:charge-driven microencapsulation of semiconductor nanocrystals luminescing in the visible and near IR, Adv. Mater.,2002, 14,879-882.
    [16]Eastman, P. S.; Ruan W.; Doctolero M.; Nuttall R.; de Feo G.; Park J. S.; Chu J. S.; Cooke P.; Gray J. W.; Li S. and Chen F. F., Qdot nanobarcodes for multiplexed gene expression analysis, Nano Lett.,2006,6,1059-1064.
    [17]Jia, N.; Lian, Q.; Tian, Z.; Duan, X.; Yin, M.; Jing, L.; Chen, S.; Shen, H. and Gao, M., Decorating multi-walled carbon nanotubes with quantum dots for construction of multi-color fluorescent nanoprobes, Nanotechnol,2010,21,045606.
    [18]Taton, T. A.; Lu, G. and Mirkin, C. A., Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes, J. Am. Chem. Soc.,2001, 123,5164-5165.
    [19]Cao, Y. C.; Jin, R. and Mirkin, C. A., Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection, Science,2002,297,1536-1540.
    [20]Wang, J.; Liu, G. and Merkoci, A., Electrochemical coding technology for simultaneous detection of multiple DNA targets, J. Am. Chem. Soc.,2003,125, 3214-3215.
    [21]Yang, J.; Dave, S. R. and Gao, X., Quantum dot nanobarcodes:epitaxial assembly of nanoparticle-polymer complexes in homogeneous solution, J. Am. Chem. Soc.,2008,130,5286-5292.
    [22]van Oijen, A. M.; Blainey, P. C.; Crampton, D. J.; Richardson, C. C.; Ellenberger, T. and Xie, X. S., Single-molecule kinetics of λ exonuclease reveal base dependence and dynamic disorder, Science,2003,301,1235-1238.
    [23]Lee, J.-B.; Hite, R. K; Hamdan, S. M.; Xie, X. S.; Richardson, C. C. and van Oijen, A. M., DNA primase acts as a molecular brake in DNA replication, Nature, 2006,439,621-624.
    [24]Kim, S.; Blainey, P. C.; Schroeder, C. M. and Xie, X. S., Multiplexed singlemolecule assay for enzymatic activity on flow-stretched DNA, Nat. Methods, 2007,4,397-399.
    [25]李璐,山东大学博士毕业论文,生物单分子定量检测新方法及电化学发光共振能量转移[D],山东大学,2010。
    [26]隋本会,山东大学硕士毕业论文,高灵敏DNA单分子检测法及对苯酚共振能量猝灭法[D],山东大学,2012。
    [27]Riddiford, L. M.; Hiruma, K.; Zhou, X. F. and Nelson, C. A., Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster, Insect Biochem. Mol. Biol.,2003,33, 1327-1338.
    [28]Riddiford, L. M., Juvenile hormone:the status of its "status quo" action, Arch. Insect Biochem. Physiol.,1996,32,271-286.
    [29]Zhou, B.; Hiruma, K.; Shinoda, T. and Riddiford, L. M., Juvenile hormone prevents ecdysteroid-induced expression of broad complex RNAs in the epidermis of the tobacchornworm, Manduca sexta, Dev. Biol.,1998,203,233-244.
    [30]Shen, L. P.; Li, J.; Li, L.; Zou, G. Z.; Zhang, X. L. and Jin, W. R., Ultrasensitive electrochemiluminescence method for determination of DNA using Ru(bpy)32+-coated magnetic submicrobeads wrapped with carbon nanotubes, Electrochem. Commun., 2011,13,1499-1501.
    [31]Shen, L. P.; Zhang, X. L. and Jin, W. R., Signal amplification based on DNA hybridization-dehybridization reaction on the surface of magnet submicrobeads for ultrasensitive DNA detection, Analyst,2012,137,4849-4854.
    [32]Hernandez, F. H. and Escriche, J. M., Fluorimetric determination of aluminium with morin after extraction with isobutyl methyl ketone. Part Ⅰ. Fluorescence of the aluminium-morin complex in an isobutyl methyl ketone-ethanol-water system, Analyst,1984,109,1585-1588.
    [33]Minakuchi, C.; Zhou, X. and Riddiford, L. M., Kruppcl homolog 1 (Kr-hl) mediates juvenile hormone action during metamorphosis of Drosophila melanogaster, Mech. Dev.,2008,125,91-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700