用户名: 密码: 验证码:
表面等离子体激元共振及相关技术用于蛋白质相互作用和DNA检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面等离子体激元共振(surface plasmon resonance,SPR)是一种检测金属表面超薄吸附层厚度和结构变化的光学技术,是研究生物分子与其它分子相互作用的有力工具,具有高灵敏、免标记、实时检测等优点,但是传统的SPR技术难以检测小分子或者弱亲和作用的反应体系,并且它需要将探针分子固定在SPR芯片表面,固定在金膜表面探针分子尤其是生物分子的活性和识别位点是否受到影响值得关注,本文针对这两方面的问题进行了如下研究:
     为了提高SPR的灵敏度以满足小分子检测的需求,首先,从提高SPR仪器本身灵敏度方面着手,自行搭建了双单元差分型高灵敏的SPR仪,检测灵敏度得到了一定的提高,理想情况下可达10~(-5)度。其次,从生物分子的组装方法入手,探讨提高SPR灵敏度的途径。用巯基十一酸(MUA)代替羧甲基葡聚糖(CM-Dextran)在中性条件下来固定金属金属硫蛋白(MT),使MT芯片对金属离子的检测达到了很低的水平,Cd~(2+)的检测下限为15ppb或0.1μM,与传统的离子分析技术有很好的可比性。再次,在现有仪器条件下,将酶催化沉淀放大技术用于SPR检测,通过对SPR信号的放大,大大提高了SPR的灵敏度,实现了超痕量DNA的检测,检测下限可达10 fM(1×10~(-14)M),比其它很多检测DNA方法的检出限都要低。
     为了研究生物分子的活性是否受表面固定的影响,同时将SPR(着重研究固/液界面)和亲和毛细管电泳(ACE)(溶液方法)两种独立的技术来研究药物(阿魏酸,FA)与蛋白质(牛血清白蛋白,BSA)的相互作用,提出了一个测定结合常数的新方法。SPR测定的结合常数((5.1±0.6)×10~4 M~(-1))与ACE用迁移率比得到的结果((5.6±0.4)×10~4 M~(-1))十分吻合,并且与其它方法有很好的可比性。二者的比较研究表明,BSA在SPR芯片表面的固定并没有影响它和药物作用的活性,因此用SPR来研究固液界面亲和作用是行之有效的。
     最后,本论文探讨不同的固定方法对蛋白质与药物相互活性的影响,分别采用共价偶联、金属螯合和静电吸附三种方法固定脂烯酰基酰基载体蛋白还原酶Ⅰ(FabI),用SPR测定了FabI与抗菌剂三氯生的结合常数。研究表明,FabI的药物活性受固定方式的影响并不显著。另外,为了对结合在SPR芯片表面的药物分子进行鉴定,利用毛细管电泳(CE)对SPR回收液中的成分进行分析,得到令人满意的结果。通过SPR-CE联用技术研究蛋白质与抗菌剂的相互作用,提供了一个药物筛选的新思路,具有潜在的应用前景。
Surface plasmon resonance(SPR)is a powerful optical technique for measuring the thickness and structure of ultrathin adsorbate layers and for evaluating affinity of biomolecules at metal film/solution interface. SPR interrogates biomolecular interactions without the necessity of labeling the analytes.Moreover,the analysis is sensitive and can be conducted in real time.However,there are certain inherent limitations in conventional SPR analysis.On one hand,the analysis becomes very difficult when small molecules are assayed or weak affinity reactions are investigated.On the other hand,at issues are whether the preimmobilized biomolecules onto the sensor surface can retain their native structures and functionality O ur work aims at addressing these two questions.
     To improve the sensitivity of SPR dectection,three approaches have been implemented.Firstly,much attention was paid to the sensitivity of SPR instrument itself.A highly sensitive SPR spectrometer equipped with a bicell detector was constructed and combined with a microbore flow injection device.As a result,the angle resolution was as small as 10~(-5)degree.Such a resolution is lower than that available on most commercial SPR instrument.Secondly,optimal immobilization conditions of biomolecules were investigated.For example, 11-mercaptoundecanoic acid(MUA)instead of carboxylmethylated dextran was used to immobilize metallothionein,and the approch afforded a much low concentration detection level for metal ions.The detection level for Cd~(2+)(0.1μM or 15 ppb)compares well with other well-established sensitive analytical techniques.The reason is due to compactness of the preformed MUA layer and our highly sensitive SPR. Thirdly,an enzyme-catalyzed precipitation reaction is used to amplify the SPR signal.In the presence of H_2O_2,the horseradish peroxidase enzyme catalyzes oxidation of 4-chloro-1-naphthol(CN)to form a precipitate on the sensor surface.The precipitated film significantly lowers the detection level,allowing detection of oligodeoxynucleotide(ODN)target concentration as low as 10 fM.
     To verify whether the native structure and function of biomolecules may alter after their immobilization on SPR chip surface,a solution-based,viz,affinity capillary electrophoresis(ACE),is used to confirm the binding constant K_b obtained by SPR.The K_b value between ferulic acid(FA)and bovine serum albumin(BSA)determined from the SPR measurements((5.1±0.6)×10~4 M~(-1))is in excellent agreement with the value obtained by the ACE mobility ratio assay((5.6±0.4)×10~4 M~(-1)). The consistency of measurements between ACE and SPR,a technique addressing interfacial processes,confirms that immobilization of the protein onto surfaces does not alter its interaction with other molecules.
     Finally,three different immobilization methods are carried out to investigate the binding between antimicrobial agent(triclosan)and enoyl-acyl carrier protein(ACP)reductase(FabI).The similar K_b values indicate that all of the immobilization methods do not alter the interaction of this protein with a potential antimicrobial molecule(triclosan).CE is utilized for the qualitative and quantitative analysis of the protein/ligand complex recovered after the SPR analysis.Our method provides a new route for screening potential antimicrobial agents.
引文
[1] Liedberg B, Nylander C, Lundstrom I. Surface-Plasmon Resonance for Gas-Detection and Biosensing. Sens. Actuators, 1983,4: 299-304
    
    [2] Wood R W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Phil. Mag., 1902, 4: 396-402
    [3] Fano U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves). J. Opt. Soc. Am., 1941, 31: 213-222
    [4] Ritchie R H. Plasma losses by fast electrons in thin films. Phys. Rev., 1957,106: 874-881
    [5] Otto A. Excitation of nonradiative surface plasmon waves in silver by the method of frustrated total reflection. Z. Physik., 1968,216: 398-410
    [6] Kretschmann E. The determination of the optical constants of metals by the excitation of surface plasmons. Z. Physik., 1971, 241: 313-324
    [7] Boardman A D. Electromagnetic surface modes. New York: John Wiley & Sons, 1982.
    
    [8] Biacore Technology Note BR-9001-15, 2001.
    [9] Kolomenskii A A, Gershon P D, Schuessler H A. Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance. Appl. Optics, 1997, 36: 6539-6547
    [10] Cullen D C, Brown R G, Lowe C R. Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings. Biosensors, 1987,3:211-225
    
    [11] Homola J, Koudela I, Yee S S. Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sens. Actuators, B, Chem., 1999, 54: 16-24
    
    [12] Jorgenson R C, Yee S S. A Fiberoptic Chemical Sensor-Based on Surface-Plasmon Resonance. Sens. Actuators, B, Chem., 1993, 12: 213-220
    [13] Weiss M N, Srivastava R, Groger H, Lo P, Luo S F. A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors. Sens. Actuators, A, Phys., 1995, 51: 211-217
    [14] Salamon Z, Macleod H A, Tollin G. Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems .1. Theoretical principles. Biochim. Biophys. Acta, 1997, 1331: 117-129
    [15] Zynio S A, Samoylov A V, Surovtseva E R, Mirsky V M, Shirshov Y M. Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance. Sensors, 2002, 2: 62-70
    [16] Ong B H, Yuan X C, Tjin S C, Zhang J W, Ng H M. Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor. Sens. Actuators, B, Chem., 2006, 114: 1028-1034
    [17] Zhai P, Guo J, Xiang J, Zhou F. Electrochemical surface plasmon resonance spectroscopy at bilayered silver/gold films. J. Phys. Chem. C, 2007, 111: 981-986
    
    [18] 达道安. 真空设计手册. 北京: 国防工业出版社, 2004.
    [19] Frey B L. Surface plasmon resonance measurements of ulthin organic films at electrode surfaces: [Ph.D. thesis]. Madison: University of Wisconsin, 1996
    [20] Hlady V, Buijs J. Protein adsorption on solid surfaces. Curr. Opin. Biol., 1996, 7: 72-77
    [21] Gray J J. The interaction of proteins with solid surfaces. Curr. Opin. Struct. Biol., 2004, 14: 110-115
    [22] Bain C D, Troughton E B, Tao Y T, Evall J, Whitesides G M, Nuzzo R G. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J. Am. Chem. Soc, 1989, 111: 321-335
    [23] Ulman A. Self-Assembled Monolayers of Thiols (Thin Films) San Diego: Academic Press, 1998.
    [24] Morgan H, Taylor D M. A Surface-Plasmon Resonance Immunosensor Based on the Streptavidin Biotin Complex. Biosens. Bioelectron., 1992, 7: 405-410
    [25] Pei R J, Yang X R, Wang E K. Enhanced surface plasmon resonance immunosensing using a streptavidin-biotinylated protein complex. Analyst, 2001, 126: 4-6
    [26] Porath J, Carlsson J, Olsson I, Belfrage G. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature, 1975, 258: 598-599
    [27] Lopatin S A, Varlamov V P. New Trends in Immobilized Metal Affinity-Chromatography of Proteins - (Review). Appl. Biochem. Microbiol., 1995,31:221-227
    [28] Sigal G B, Bamdad C, Barberis A, Strominger J, Whitesides G M. A self-assembled monolayer for the binding and study of histidine tagged proteins by surface plasmon resonance. Anal. Chem., 1996, 68: 490-497
    [29] Ulman A. An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly. San Diego: Academic Press, 1997.
    [30] Lai E P C, Fafara A, VanderNoot V A, Kono M, Polsky B. Surface plasmon resonance sensors using molecularly imprinted polymers for sorbent assay of theophylline, caffeine, and xanthine. Can. J. Chem., 1998, 76: 265-273
    [31] Li P, Huang Y, Hu J Z, Yuan C W, Lin B P. Surface plasmon resonance studies on molecular imprinting. Sensors, 2002,2: 35-40
    [32] Taniwaki K, Hyakutake A, Aoki T, Yoshikawa M, Guiver M D, Robertson G P. Evaluation of the recognition ability of molecularly imprinted materials by surface plasmon resonance (SPR) spectroscopy. Anal. Chim. Acta, 2003, 489: 191-198
    [33] Rich R L, Myszka D G. Survey of the 2003 surface plasmon resonance biosensor literature. J. Mol. Recognit., 2005,18: 1-39
    [34] Burstein E, Chen W P, Chen Y J, Hartstein A. Surface polaritons—propagating electromagnetic modes at interfaces. J. Vac. Sci. Technol., 1974,11: 1004
    [35] Knobloch H, Brunner H, Leitner A, Aussenegg F, Knoll W. Probing the evanescent field of propagating plasmon surface polaritons by fluorescence and Raman spectroscopies J. Chem. Phys., 1993, 98: 10093-10095
    [36] Hahnefeld C, Drewianka S, Herberg F W. Determination of kinetic data using surface plasmon resonance biosensors. Methods Mol. Med., 2004, 94: 299-320
    [37] Myszka D G. Kinetic, equilibrium, and thermodynamic analysis of macromolecular interactions with BIACORE. Methods Enzymol., 2000, 323: 325-340
    [38] Myszka D G. Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Curr. Opin. Biotechnol., 1997, 8: 50-57
    [39] Karlsson R, Falt A. Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. J. Immunol. Methods, 1997,200: 121-133
    [40] Herberg F W, Zimmermann B In Protein Phosphorylation—A Practical Approach; Hardie D. G., Ed.; Oxford University Press: Oxford, 1999; Vol. 2, pp 335-371.
    [41] Chang Y P, Tseng M J, Chu Y H. Using surface plasmon resonance to directly measure slow binding of low-molecular mass inhibitors to a VanX chip. Anal. Biochem., 2006, 359: 63-71
    [42] Strandh M, Persson B, Roos H, Ohlson S. Studies of interactions with weak affinities and low-molecular-weight compounds using surface plasmon resonance technology. J. Mol. Recognit., 1998, 11: 188-190
    [43] Adamczyk M, Moore J A, Yu Z. Application of surface plasmon resonance toward studies of low-molecular weight antigen-antibody binding interactions. Methods, 2000, 20: 319-328
    [44] de Mol N J, Fischer M J E. Applications of surface plasmon resonance (SPR) in ligand-receptor binding studies: affinity, kinetics and thermodynamics. Recent Res. Dev. Anal. Biochem., 2003, 3: 61-80
    [45] de Mol N J, Plomp E, Fischer M J E, Ruijtenbeek R. Kinetic analysis of the mass transport limited interaction between the tyrosine kinase Ick SH2 domain and a phosphorylated peptide studied by a new cuvette-based surface plasmon resonance instrument. Anal. Biochem., 2000,279: 61-70
    [46] Schuck P. Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annu. Rev. Biophys., 1997,26:541-566
    [47] Hancock M A, Spencer C A, Koschinsky M L. Definition of the Structural Elements in Plasminogen Required for High-Affinity Binding to Apolipoprotein(a): A Study Utilizing Surface Plasmon Resonance. Biochemistry, 2004,43: 12237-12248
    [48] Forzani E S, Zhang H, Chen W, Tao N. Detection of heavy metal ions in drinking water using a high-resolution differential surface plasmon resonance sensor. Environ. Sci. Technol., 2005, 39: 1257-1262
    [49] Schuck P, Minton A P. Analysis of mass transport-limited binding kinetics in evanescent wave biosensors. Anal. Biochem., 1996,240: 262-272
    [50] Rich R L, Myszka D G. Advances in surface plasmon resonance biosensor analysis. Curr. Opin. Biotechnol., 2000,11: 54-61
    [51] Rich R L, Myszka D G. Survey of the 1999 surface plasmon resonance biosensor literature. J. Mol. Recognit., 2000,13: 388-407
    [52] Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: Review. Sens. Actuators, B, Chem., 1999, 54: 3-15
    [53] Salamon Z, Macleod H A, Tollin G. Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems .2. Applications to biological systems. Biochim. Biophys. Acta, 1997,1331:131-152
    [54] Johne B, Gadnell M, Hansen K. Epitope mapping and binding kinetics of monoclonal antibodies studied by real time biospecific interaction analysis using surface plasmon resonance. J. Immunol. Methods, 1993, 160: 191-198
    [55] Jost J P, Munch O, Andersson T. Study of protein-DNA interactions by surface plasmon resonance (real time kinetics). Nucleic Acids Res., 1991,19: 2788
    [56] Wink T, van Zuilen S J, Bult A, van Bennekom W P. Liposome-mediated enhancement of the sensitivity in immunoassays of proteins and peptides in surface plasmon resonance Spectrometry. Anal. Chem., 1998, 70: 827-832
    [57] Dubs M C, Altschuh D, Vanregenmortel M H V. Interaction between Viruses and Monoclonal-Antibodies Studied by Surface-Plasmon Resonance. Immunol. Lett., 1992,31:59-64
    [58] Kawatake S, Nishimura Y, Sakaguchi S, Iwaki T, Doh-ura K. Surface plasmon resonance analysis for the screening of anti-prion compounds. Biol. Pharm. Bull., 2006, 29: 927-932
    [59] Stolz L. The use of surface plasmon resonance based biosensors in drug discovery. Ann. Rep. Med. Chem., 1998, 33: 293-299
    [60] Schlattner U, Wallimann T. Interaction proteomics with surface plasmon resonance spectroscopy: membrane interaction of mitochondrial creatine kinase. Recent Res. Dev. Biol. Chem., 2002,1: 93-98
    [61] Yu P, Cui X Q, Yang F, Li J N, Yang X R. Progress on studying biomembrane by surface plasmon resonance technique. Chin. J. Anal. Chem., 2005, 33: 575-579
    [62] Dawkes A, Nunnerley C, Davies J. The use of surface plasmon resonance in the design and development of clinical immunoassays. Nanobiology, 1998, 4: 189-196
    [63] Sun Y G, Xia Y N. Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal. Chem., 2002, 74: 5297-5305
    [64]BI-SPR1000技术手册,2006.
    [65]Tao N J,Boussaad S,Huang W L,Arechabaleta R A,J.D A.High resolution surface plasmon resonance spectroscopy.Rev.Sci.Instrum.,1999,70:4656-4660
    [66]Yao X,Wang J,Zhou F,Wang J,Tao N.Quantification of redox-induced thickness changes of 11-ferrocenylundecanethiol self-assembled monolayers by electrochemical surface plasmon resonance.J.Phys.Chem.B,2004,108:7206-7212
    [67]Yao X,Li X,Toledo F,Zurita-Eopez C,Gutova M,Momand J,Zhou F.Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification.Anal.Biochem.,2006,354:220-228
    [68]Song F,Zhou F,Wang J,Tao N,Lin J,Vellanoweth R L,Morquecho Y,Wheeler-Laidman J.Detection of oligonucleotide hybridization at femtomolar level and sequence-specific gene analysis of the Arabidopsis thaliana leaf extract with an ultrasensitive surface plasmon resonance spectrometer.Nucleic Acids Res.,2002,30:e72
    [69]Kolomenskii A A,Gershon P D,Schuessler H A.Sensivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance.Appl.Optics,1997,36:6539-6547
    [70]Tiselius A W K.The moving boundary method of studying the electrophoresis of proteins:[Ph.D.thesis].Uppsala:University of Uppsala,1930
    [71]Hjerten S.Free zone electrophoresis.Chromatogr.Rev.,1967,9:122-219
    [72]Jorgenson J W,Lukacs K D.Zone electrophoresis in open-tubular glass capillaries.Anal.Chem.,1981,53:1298-1302
    [73]罗国安,王义明.毛细管电泳的原理及应用.色谱,1995,13:254-256
    [74]Lukacs K D,Jorgenson J W.Capillary Zone Electrophoresis-Effect of Physical Parameters on Separation Efficiency and Quantitation.J.High Resolut.Chrom.Chrom.Comm.,1985,8:407-411
    [75]Terabe S,Otsuka K,Ichikawa K,Tsuchiya A,Ando T.Electrokinetic separations with micellar solutions and open-tubular capillaries.Anal.Chem.,1984,56:111-113
    [76] Ghowsi K, Foley J P, Gale R J. Micellar Electrokinetic Capillary Chromatography Theory Based on Electrochemical Parameters - Optimization for 3 Modes of Operation. Anal. Chem., 1990, 62: 2714-2721
    [77] Hjerten S. High-performance electrophoresis: the electrophoretic counterpart of high-performance liquid chromatography. J. Chromatogr. A, 1983, 270: 1-6
    [78] Guttman A. High-resolution carbohydrate profiling by capillary gel electrophoresis. Nature, 1996, 380: 461-462
    [79] Hjerten S, Zhu M. Adaptation of the equipment for high-performance electrophoresis to isoelectric focusing. J. Chromatogr., 1985, 346: 265-270
    [80] Hjerten S, Elenbring K, Kilar F, Liao J, Chen A J C, Siebert C J, Zhu M. Carrier-free zone electrophoresis, displacement electrophoresis and isoelectric focusing in a high-performance electrophoresis apparatus. J. Chromatogr., 1987, 403:47-61
    [81] Knox J H, Grant I H. Miniaturization in pressure and electroendosmotically driven liquid chromatography: some theoretical considerations. Chromatographia, 1987, 24: 135-143
    [82] Knox J H, Grant I H. Electrochromatography in packed tubes using 1.5 to 50 μm silicagels and ODS bonded silicagels. Chromatographia, 1991, 32: 317-327
    [83] Arlinger L. Preparative Capillary Isotachophoresis Principle and Some Applications. J. Chromatogr., 1976,119: 9-24
    [84] Svoboda M, Vacik J. Capillary Isotachophoresis with Ultraviolet Detection Some Quantitative Aspects. J. Chromatogr., 1976, 119: 539-547
    [85] Walbroehl Y, Jorgenson J W. On-Column Uv Absorption Detector for Open Tubular Capillary Zone Electrophoresis. J. Chromatogr., 1984, 315: 135-143
    [86] Riekkola M L. Recent advances in nonaqueous capillary electrophoresis. Electrophoresis, 2002,23: 3865-3883
    [87] Chu Y H, Avila L Z, Gao J M, Whitesides G M. Affinity Capillary Electrophoresis. Accounts Chem. Res., 1995,28: 461-468
    [88] Chu Y H, Whitesides G M. Affinity capillary electrophoresis can simultaneously measure binding constants of multiple peptides to vancomycin. J. Org. Chem., 1992, 57: 3524-3525
    [89] Kolhed M, Hinsmann P, Svasek P, Frank J, Karlberg B, Lendl B. On-line Fourier transform infrared detection in capillary electrophoresis. Anal. Chem., 2002, 74: 3843-3848
    [90]Li Y,Yan X P,Jiang Y.Interfacing capillary electrophoresis and electrothermal atomic absorption spectroscopy to study metal speciation and metal-biomolecule interactions.Angew.Chem.-Int.Edit.,2005,44:6387-6391
    [91]Suarez C A,Gine M F.A reactor/phase separator coupling capillary electrophoresis to hydride generation and inductively coupled plasma optical emission spectrometry(CE-HG-ICP OES)for arsenic speciation.J.Anal.At.Spectrom.,2005,20:1395-1397
    [92]罗国安,王义明.毛细管电泳的原理及应用.色谱,1995,13:437-440
    [93]Park S,Lunte C E.On-column sample concentration of high-ionic-strength samples in capillary electrophoresis.J.Microcolumn Sep.,1998,10:511-517
    [94]杨永坛,梁冰,欧庆瑜.毛细管电泳中的样品浓缩技术.色谱,2000,18:115-119
    [95]刘书慧.高效毛细管电泳柱内堆积的研究:[博士学位论文].兰州:兰州大学,2002
    [96]Altria K D.Capillary electrophoresis guidebook:principles,operation,and applications Methods Mol.Biol.,1995,52:3-118
    [97]王义明,罗国安.毛细管电泳的柱技术.色谱,1996,14:111-114
    [98]Huang X,Coleman W F,Zare R N.Analysis of factors causing peak broadening in capillary zone electrophoresis.J.Chromatogr.,1989,480:95-110
    [99]Dolnik V.Capillary zone electrophoresis of proteins.Electrophoresis,1997,18:2353-2361
    [100]Ermakov S V,Zhukov M Y,Capelli L,Righetti P G.Wall Adsorption in Capillary Electrophoresis-Experimental Study and Computer-Simulation.J.Chromatogr.A,1995,699:297-313
    [101]Ahmadzadeh H,Dovichi N J,Krylov S In Capillary Electrophoresis of Proteins and Peptides;Strege M.,Lagu A.L.,Eds.;Humana Press:Totowa,2004;Vol.276,pp 15-27.
    [102]Horvath J,Dolnik V.Polymer wall coatings for capillary electrophoresis.Electrophoresis,2001,22:644-655
    [103]Nashabeh W,Elrassi Z.Capillary zone electrophoresis of proteins with hydrophilic fused-silica capillaries.J.Chromatogr.A,1991,559:367-383
    [104]Tanaka Y,Terabe S.Estimation of binding constants by capillary electrophoresis.J.Chromatogr.B,2002,768:81-92
    [105]陈义.毛细管电泳技术及应用.北京:化学工业出版社,2000.
    [106]邓延倬.高效毛细管电泳.北京:科学出版社,2000.
    [107]Skoog D A,Holler F J,Nieman T A.Principles of instrumental analysis.5th ed.Philadelphia:Saunders College Publishing,1992.
    [108]Taylor H E.Inductively coupled plasma mass spectrometry:Practices and techniques.San Diego:Academic Press,2001.
    [109]Bard A J,Faulkner L R.Electrochemical methods:Fundamentals and applications.2nd ed.New York:John Wiley & Sons,2000.
    [110]Wang J.Stripping analysis:Principles,instrumentation,and applications.Deerfield:VCH,1985.
    [111]Rothenhausler B,Knoll W.Surface-plasmon microscopy.Nature,1988,332:615-617
    [112]Hanken D G,Jordan C E,Frey B L,Corn R M In Electroanalytical Chemistry:A Series of Advances;Bard A.J.,Rubenstein I.,Eds.;Marcel Dekker:New York,1998;Vol.20,pp 141-225.
    [113]Piscevic D,Lawall R,Vieth M,Liley M,Okahata Y,Knoll W.Oligonucleotide hybridization observed by surface plasmon optical techniques.Appl.Surf.Sci.,1995,90:425-436
    [114]Su X,Wu Y-J,Knoll W.Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance techniques for studying DNA assembly and hybridization.Biosens.Bioelectron.,2005,21:719-726
    [115]Nelson B P,Grimsrud T E,Liles M R,Goodman R M,Corn R M.Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays.Anal.Chem.,2001,73:1-7
    [116]Goodrich T T,Lee H J,Corn R M.Direct detection of genomic DNA:by enzymatically amplified SPR imaging measurements of RNA microarrays.J.Am.Chem.Soc.,2004,126:4086-4087
    [117]Peterlinz K A,Georgiadis R M,Herne T M,Tarlov M J.Observation of hybridization and dehybridization of thiol-tethered DNA using two-color surface plasmon resonance spectroscopy.J.Am.Chem.Soc.,1997,119:3401-3402
    [118]Wolf L K,Fullenkamp D E,Georgiadis R M.Quantitative angle-resolved SPR imaging of DNA-DNA and DNA-drug kinetics.J.Am.Chem.Soc.,2005,127: 17453-17459
    [119] Zayats M, Kharitonov A B, Pogorelova S P, Lioubashevski 0, Katz E, Willner I. Probing photoelectrochemical processes in Au-CdS nanoparticle arrays by surface plasmon resonance: Application for the detection of acetylcholine esterase inhibitors. J. Am. Chem. Soc., 2003, 125: 16006-16014
    [120] He L, Musick M D, Nicewarner S R, Salinas F G, Benkovic S J, Natan M J, Keating C D. Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J. Am. Chem. Soc, 2000, 122: 9071-9077
    [121] Bates P J, Dosanjh H S, Kumar S, Jenkins T C, Laughton C A, Neidle S. Detection and kinetic studies of triplex formation by oligodeoxynucleotides using real-time biomolecular interaction analysis (BIA). Nucleic Acids Res., 1995,23:3627-3632
    [122] Phillips K S, Han J H, Martinez M, Wang Z, Carter D, Cheng Q. Nanoscale glassification of gold substrates for surface plasmon resonance analysis of protein toxins with supported lipid membrane. Anal. Chem., 2006, 78: 596-603
    [123] Wilkop T, Wang Z, Cheng Q. Analysis of μ-contact printed protein patterns by SPR imaging with a led light source. Langmuir, 2004, 20: 11141-11148
    [124] Kang X, Jin Y, Cheng G, Dong S. Surface plasmon resonance studies on the electrochemical doping/dedoping processes of anions on polyaniline-modified electrode. Langmuir, 2002,18: 10305-10310
    [125] Kai E, Sawata S, Ikebukuro K, Iida T, Honda T, Karube I. Detection of PCR products in solution using surface plasmon resonance. Anal. Chem., 1999, 71: 796-800
    [126] Fagerstam L G, Frostell-Karlsson A, Karlsson R, Persson B, Ronnberg I. Biospecific interaction analysis using surface plasmon resonance detection applied to kinetic, binding site and concentration analysis. J. Chromatogr., 1992, 597:397-410
    [127] Chah S, Yi J, Zare R N. Surface plasmon resonance analysis of aqueous mercuric ions. Sens. Actuators, B, Chem., 2004, 99: 216-222
    [128] Gooding J J, Chow E, Finlayson R. Biosensor for detecting metal ions: New trends. Aust. J. Chem., 2003, 56: 159-162
    [129] Gooding J J, Hibbert D B, Yang W. Electrochemical metal ion sensors. Exploiting amino acids and peptides as recognition elements. Sensors, 2001, 1: 75-90
    
    [130] Vallee B L. Introduction to metallothionein. Methods Enzymol., 1991, 205: 3-7
    [131] Kagi J H. Overview of metallothionein. Methods Enzymol., 1991, 205: 613-626
    
    [132] Stillman M J. Metallothioneins. Coordin. Chem. Rev., 1995,144: 461-511
    [133] Otvos J D, Petering D H, Shaw C F. Structure-reactivity relationships of metallothionein, a unique metal-binding protein. Comments Inorg. Chem., 1989, 1: 1-35
    [134] Stillman M J, Zelazowski A J. Domain specificity in metal binding to metallothionein. A circular dichroism and magnetic circular dichroism study of cadmium and zinc binding at temperature extremes. J. Biol. Chem., 1988, 263: 6128-6133
    
    [135] Hamer D H. Metallothionein. Ann. Rev. Biochem., 1986, 55: 913-951
    [136] Chan J, Huang Z, Merrifield M E, Salgado M T, Stillman M J. Studies of metal binding reactions in metallothioneins by spectroscopic, molecular biology, and molecular modeling techniques. Coordin. Chem. Rev., 2002,233-234: 319-339
    [137] Robbins A H, McRee D E, Williamson M, Collett S A, Xuong N H, Furey W F, Wang B C, Stout C D. Refined crystal structure of Cd, Zn metallothionein at 2.0 A resolution. J. Mol. Biol., 1991, 221: 1269-1293
    [138] Wu C-M, Lin L-Y. Immobilization of metallothionein as a sensitive biosensor chip for the detection of metal ions by surface plasmon resonance. Biosens. Bioelectron., 2004, 20: 864-871
    [139] Saber R, Piskin E. Investigation of complexation of immobilized metallothionein with Zn(II) and Cd(II) ions using piezoelectric crystals. Biosens. Bioelectron., 2003,18: 1039-1046
    [140] Bontidean I, Ahlqvist J, Mulchandani A, Chen W, Bae W, Mehra R K, Mortari A, Csoregi E. Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection. Biosens. Bioelectron., 2003,18: 547-553
    [141] Munoz J, Baena J R, Gallego M, Valcarcel M. Development of a method for the determination of inorganic cadmium and cadmium metallothioneins in fish liver by continuous preconcentration on fullerene and flame atomic absorption Spectrometry. J. Anal. At. Spectrom., 2002, 17: 716-720
    [142] Xiang J, Guo J, Zhou F. Scanning electrochemical microscopy combined with surface plasmon resonance: Studies of localized film thickness variations and molecular conformation changes. Anal. Chem., 2006, 78: 1418-1424
    [143] Simonian A L, Revzin A, Wild J R, Elkind J, Pishko M V. Characterization of oxidoreductase-redox polymer electrostatic film assembly on gold by surface plasmon resonance spectroscopy and Fourier transform infrared-external reflection spectroscopy. Anal. Chim. Acta., 2002, 466: 201-212
    [144] Huang E, Zhou F, Deng L. Studies of surface coverage and orientation of DNA molecules immobilized onto preformed alkanethiol self-assembled monolayers. Langmuir, 2000, 16: 3272-3280
    [145] Casero E, Vazquez L, Martin-Benito J, Morcillo M A, Lorenzo E, Pariente F. Immobilization of metallothionein on gold/mica surfaces: Relationship between surface morphology and protein-substrate interaction. Langmuir, 2002, 18: 5909-5920
    [146] Lahiri J, Isaacs L, Grzybowski B, Carbeck J D, Whitesides G M. Biospecific binding of carbonic anhydrase to mixed SAMs presenting benzenesulfonamide ligands: A model system for studying lateral steric effects. Langmuir, 1999, 15: 7186-7198
    [147] Davis J J, Hill H A O, Kurz A, Jacob C, Maret W, Vallee B L. A scanning tunneling microscopy study of rabbit metallothionein. PhysChemComm, 1998, 1: 12-22
    [148] Yuan Y, Oberholzer M R, Lenhoff A M. Size does matter: Electrostatically determined surface coverage trends in protein and colloid adsorption. Coll. Surf. A, 2000, 165:125-141
    [149] Jacob C, Maret W, Vallee B L. Control of zinc transfer between thionein, metallothionein, and zinc proteins. Proc. Nati. Acad. Sci. USA, 1998, 95: 3489-3494
    [150] CanoGauci D F, Sarkar B. Reversible zinc exchange between metallothionein and the estrogen receptor zinc finger. FEBS Lett., 1996, 386: 1-4
    [151] Bontidean I, Berggren C, Johansson G, Csoregi E, Mattiasson B, Lloyd J R, Jakeman K J, Brown N L. Detection of heavy metal ions at femtomolar levels using protein-based biosensors. Anal. Chem., 1998, 70: 4162-4169
    [152] Stillman M J, Cai W, Zelazowski A J. Cadmium binding to metallothioneins. Domain specificity in reactions of alpha and beta fragments, apometallothionein, and zinc metallothionein with Cd~(2+). J. Biol. Chem., 1987, 262:4538-4548
    [153] Zangger K, Shen G, Oz G, Otvos J D, Armitage I M. Oxidative dimerization in metallothionein is a result of intermolecular disulphide bonds between cysteines in the alpha-domain. Biochem. J., 2001, 359: 353-360
    [154] Vallee B L, Maret W In Metallothionein III; Suzuki K. T., Imuira N., Kimura M., Eds.; Birkhauser Verlag: Basel, 1993, pp 1-27.
    [155] Otvos J D, Engeseth H R, Nettesheim D G, Hilt C R. Interprotein metal exchange reactions of metallothionein. Experientia Suppl., 1987, 52: 171-178
    [156] Romero-Isart N, Jensen L T, Zerbe O, Winge D R, Vasak M. Engineering of metallothionein-3 neuroinhibitory activity into the inactive isoform metallothionein-1. J. Biol. Chem., 2002,277: 37023-37028
    [157] Jiang L J, Vasak M, Vallee B L, Maret W. Zinc transfer potentials of the α- and β- clusters of metallothionein are affected by domain interactions in the whole molecule. Proc. Natl. Acad. Sci. USA, 2000, 97: 2503-2508
    [158] Jaw S, Jeffery E H. Role of metallothionein in biliary metal excretion. J. Toxicol. Env. Health, 1989,28: 39-51
    [159] Wang Y, Mackay E A, Kurasaki M, Kagi J H R. Purification and characterisation of recombinant sea urchin metallothionein expressed in Escherichia coli. Eur. J. Biochem., 1994, 225: 449-457
    [160] Munoz A, Rodriguez A R. Electrochemical behavior of metallothioneins and related molecules. Part III: metallothionein. Electroanalysis, 1995, 7: 674-680
    [161] Jiang D T, Heald S M, Sham T K, Stillman M J. Structures of the cadmium, mercury, and zinc thiolate clusters in metallothionein: XAFS Study of Zn_7-MT, Cd_7-MT, Hg_7-MT, and Hg_(18)-MT formed from rabbit liver metallothionein 2. J. Am. Chem. Soc, 1994,116: 11004-11013
    [162] Cai W, Stillman M J. Hg_(18)-Metallothionein. J. Am. Chem. Soc., 1988, 110: 7872-7873
    [163] Ju H, Leech D. Electrochemical study of a metallothionein modified gold disk electrode and its action on Hg~(2+) cations. J. Electroanal. Chem., 2000, 484: 150-156
    [164] Korri-Youssoufi H, Makrouf B. Electrochemical biosensing of DNA hybridization by ferrocenyl groups functionalized polypyrrole. Anal. Chim. Acta., 2002,469: 85-92
    [165] Hwang S, Kim E, Kwak J. Electrochemical detection of DNA hybridization using biometallization. Anal. Chem., 2005,77: 579-584
    [166] Nie L B, Chen J R, Miao Y Q, He N Y. Gold nanoparticle-based layer-by-layer enhancement of DNA hybridization electrochemical signal at carbon nanotube modified carbon paste electrode. Chin. Chem. Lett., 2006,17: 795-798
    [167] Wang J, Liu G, Jan M R, Zhu Q. Electrochemical detection of DNA hybridization based on carbon-nanotubes loaded with CdS tags. Electrochem. Commun., 2003, 5: 1000-1004
    [168] Wang J, Polsky R, Xu D. Silver-enhanced colloidal gold electrochemical stripping detection of DNA hybridization. Langmuir, 2001, 17: 5739-5741
    [169] Wang J, Song F, Zhou F. Silver-enhanced imaging of DNA hybridization at DNA microarrays with scanning electrochemical microscopy. Langmuir, 2002, 18: 6653-6658
    [170] Asian K, Malyn S N, Geddes C D. Fast and sensitive DNA hybridization assays using microwave-accelerated metal-enhanced fluorescence. Biochem. Biophys. Res. Commun., 2006, 348: 612-617
    [171] Wu Z-S, Jiang J-H, Fu L, Shen G-L, Yu R-Q. Optical detection of DNA hybridization based on fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal. Biochem., 2006, 353: 22-29
    [172] Algar W R, Massey M, Krull U J. Fluorescence resonance energy transfer and complex formation between thiazole orange and various dye-DNA conjugates: Implications in signaling nucleic acid hybridization. J. Fluoresc, 2006, 16: 555-567
    [173] Gill R, Willner I, Shweky I, Banin U. Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: Probing hybridization and DNA cleavage. J. Phys. Chem. B, 2005, 109: 23715-23719
    [174] Wang J, Jiang M. Dendritic nucleic acid probes for DNA biosensors. J. Am. Chem. Soc, 1998, 120: 8281-8282
    [175] Bardea A, Dagan A, Ben-Dov I, Amitb B, Willner I. Amplified microgravimetric quartz-crystal-microbalance analyses of oligonucleotide complexes: a route to a Tay-Sachs biosensor device. Chem. Commun., 1998, 998: 839-840
    [176] Cheng Q, Peng T Z, Zhang S L, Yang C F. Enhanced electrogravimetric detection of DNA hybridization on an electrochemical quartz crystal microbalance. Indian J. Chem. Sect. A, 2003,42: 797-800
    [177] Guillo C, Ferrance J P, Landers J P. Use of a capillary electrophoresis instrument with laser-induced fluorescence detection for DNA quantitation-comparison of YO-PRO-1 and PicoGreen assays. J. Chromatogr. A, 2006,1113:239-243
    [178] Zhu H P, Clark S M, Benson S C, Rye H S, Glazer A N, Mathies R A. High-sensitivity capillary electrophoresis of double-stranded DNA fragments using monomeric and dimeric fluorescent intercalating dyes. Anal. Chem., 1994, 66: 1941-1948
    [179] Zhou D J, Sinniah K, Abell C, Rayment T. Label-free detection of DNA hybridization at the nanoscale: A highly sensitive and selective approach using atomic-force microscopy. Angew. Chem.-Int. Edit., 2003, 42: 4934-4937
    [180] Han S, Lin J, Zhou F, Velanoweth R L. Oligonucleotide-capped gold nanoparticles for improved atomic force microscopic imaging and enhanced selectivity in polynucleotide detection. Biochem. Biophys. Res. Commun., 2000,279: 265-269
    [181] Mo Z, Wang H, Liang Y, Liu F, Xue Y. Highly reproducible hybridization assay of zeptomole DNA based on adsorption of nanoparticle-bioconjugate. Analyst, 2005,130: 1589-1594
    [182] Malmqvist M. BIACORE: an affinity biosensor system for characterization of biomolecular interactions. Biochem. Soc. Trans., 1999,27: 335-340
    [183] Pockrand I. Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings. Surf. Sci., 1978, 72: 577-588
    [184] Swalen J D, Gordon J G, Philpott M R, Brillante A, Pockrand I, Santo R. Plasmon surface polariton dispersion by direct optical observation. Am. J. Phys., 1980,48: 669-672
    [185] Economou E N. Surface plasmons in thin films. Phys. Rev., 1969, 182: 539-554
    [186] Wink T, Zuile S J v, Bult A, Bennekom W P v. Liposome-mediated enhancement of the sensitivity in immunoassays of proteins and peptides in surface plasmon resonance Spectrometry. Anal. Chem., 1998, 70: 827-832
    [187] Frostell-Karlsson A, Remaeus A, Roos H, Andersson K, Borg P, Hamalainen M, Karlsson R. Biosensor analysis of the interaction between immobilized human serum albumin and drug compounds for prediction of human serum albumin binding levels. J. Med. Chem., 2000,43: 1986-1992
    [188] Tao N J, Boussaad S, Huang W L, Arechabaleta R A, D'Agnese J. High resolution surface plasmon resonance spectroscopy. Rev. Sci. Instrum., 1999, 70:4656-4660
    [189] Okamoto T, Yamaguchi I. Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique. J. Phys. Chem. B, 2003, 107: 10321-10324
    [190] Pieper-Furst U, Stocklein W F M, Warsinke A. Gold nanoparticle-enhanced surface plasmon resonance measurement with a highly sensitive quantification for human tissue inhibitor of metalloproteinases-2. Anal. Chim. Acta, 2005, 550: 69-76
    [191] Hutter E, Pileni M P. Detection of DNA hybridization by gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. J. Phys. Chem. B,2003, 107: 6497-6499
    [192] Natan M J, Lyon L A In Metal Nanoparticles; Feldheim D. L., Foss C. A., Jr., Eds.; Marcel Dekker Inc.: New York, N. Y, 2002, pp 183-205.
    [193] Yamaguchi H, Harada A. Supramolecular formation of antibodies with viologen dimers: Utilization for amplification of methyl viologen detection signals in surface plasmon resonance sensor. Biomacromolecules, 2002, 3: 1163-1169
    [194] Kim M G, Shin Y B, Jung J M, Ro H S, Chung B H. Enhanced sensitivity of surface plasmon resonance (SPR) immunoassays using a peroxidase-catalyzed precipitation reaction and its application to a protein microarray. J. Immunol. Methods, 2005, 297: 125-132
    [195] Lee H J, Li Y, Wark A W, Corn R M. Enzymatically amplified surface plasmon resonance imaging detection of DNA by exonuclease III digestion of DNA microarrays. Anal. Chem., 2005, 77: 5096-5100
    [196] Goodrich T T, Lee H J, Corn R M. Enzymatically amplified surface plasmon resonance imaging method using RNase H and RNA microarrays for the ultrasensitive detection of nucleic acids. Anal. Chem., 2004, 76: 6173-6178
    [197] Huang Y Y, Hsu H Y, Huang C J. A protein detection technique by using surface plasmon resonance (SPR) with rolling circle amplification (RCA) and nanogold-modified tags. Biosens. Bioelectron., 2006, 22: 980-985
    [198] Lumley-Woodyear T d, Campbell C N, Heller A. Direct enzyme-amplified electrical recognition of a 30-base model oligonucleotide. J. Am. Chem. Soc., 1996,118:5504-5505
    [199] Alfonta L, Singh A, Willner I. Liposomes labeled with biotin and horseradish peroxidase: a probe for the enhanced amplification of antigen-antibody or oligonucleotide-DNA sensing processes by the precipitation of an insoluble product on electrodes. Anal. Chem., 2001, 73: 91-102
    [200] Patolsky; F, Zayats; M, Katz; E, Willner I. Monolayer electrodes for biosensor applications:characterization by faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance analyses. Anal. Chem., 1999, 71: 3171-3180
    [201] Peng H, Soeller C, Cannell M B, Bowmaker G A, Cooney R P, Travas-Sejdic J. Electrochemical detection of DNA hybridization amplified by nanoparticles. Biosens. Bioelectron., 2006,21: 1727-1736
    [202] Liu S-f, Li Y-f, Li J-r, Jiang L. Enhancement of DNA immobilization and hybridization on gold electrode modified by nanogold aggregates. Biosens. Bioelectron, 2005, 21: 789-795
    [203] Wang J, Li J, Baca A J, Hu J, Zhou F, Yan W, Pang D-w. Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates. Anal. Chem., 2003, 75: 3941-3945
    [204] Kuhn R, Hoffstetter-Kuhn S. Capillary Electrophoresis: Principles and Practice. New York: Springer-Verlag, 1993.
    [205] Landers J P. Handbook of Capillary Electrophoresis. Boca Raton: CRC Press, 1997.
    
    [206] Kuhr W G. Capillary Electrophoresis. Anal. Chem, 1990, 62: R403-R414
    [207] Kawaoka J, Gomez F A. Use of mobility ratios to estimate binding constants of ligands to proteins in affinity capillary electrophoresis. J. Chromatogr. B, 1998, 715:203-210
    [208] He X Y, Ding Y S, Li D Z, Lin B C. Recent advances in the study of biomolecular interactions by capillary electrophoresis. Electrophoresis, 2004, 25: 697-711
    [209] Busch M H A, Boelens H F M, Kraak J C, Poppe H. Vacancy affinity capillary electrophoresis, a new method for measuring association constants. J. Chromatogr. A, 1997, 775: 313-326
    [210] Rippel G, Corstjens H, Billiet H A H, Frank J. Affinity capillary electrophoresis. Electrophoresis, 1997,18: 2175-2183
    [211] Avila L Z, Chu Y-H, Blossey E C, Whitesides G M. Use of affinity capillary electrophoresis to determine kinetic and equilibrium constants for binding of arylsulfonamides to bovine carbonic anhydrase. J. Med. Chem., 1993, 36: 126-133
    [212] Heegaard N H H, Nilsson S, Guzman N A. Affinity capillary electrophoresis: important application areas and some recent developments. J. Chromatogr. B, 1998,715:29-54
    [213] Atkins G L, Nimmo I A. Current trends in the estimation of Michaelis-Menten parameters. Anal. Biochem., 1980,104: 1-9
    [214] Connors K A. Binding Constants: The Measurement of Molecular Complex Stability. New York: John Wiley&Sons, Inc., 1987.
    [215] Rundlett K L, Armstrong D W. Methods for the estimation of binding constants by capillary electrophoresis. Electrophoresis, 1997,18: 2194-2202
    [216] Yang J, Rose S, Hage D S. Improved reproducibility in capillary electrophoresis through the use of mobility and migration time ratios. J. Chromatogr. A, 1996, 735: 209-220
    [217] Heintz J, Hernandez M, Gomez F A. Use of a partial-filling technique in affinity capillary electrophoresis for determining binding constants of ligands to receptors. J. Chromatogr. A, 1999, 840: 261-268
    [218] Brown J R. Structural origins of mammalian albumin. Fed. Proc, 1976, 35: 2141-2144
    [219] Kragh-Hansen U. Molecular aspects of ligand binding to serum albumin. Pharmacol. Rev., 1981, 33: 17-53
    [220] Ou S Y, Kwok K C. Ferulic acid: pharmaceutical functions, preparation and applications in foods. J. Sci. Food Agric, 2004, 84: 1261-1269
    [221] Guo M, Su X, Kong L, Li X, Zou H. Characterization of interaction property of multicomponents in Chinese Herb with protein by microdialysis combined with HPLC. Anal. Chim. Acta., 2006, 556: 183-188
    [222] Rawel H M, Meidtner K, Kroll J. Binding of selected phenolic compounds to proteins. J. Agric. Food Chem., 2005, 53: 4228-4235
    [223] Kang J, Liu Y, Xie M-X, Li S, Jiang M, Wang Y-D. Interactions of human serum albumin with chlorogenic acid and ferulic acid. Biochim. Biophys. Acta, 2004, 1674: 205-214
    [224]Li L N,Li N B,Luo H Q.Permanganate-based chemiluminescence analysis of ferulic acid using flow injection.Anal.Sci.,2005,21:963-966
    [225]Taborelli M,Eng L,Descouts P,Ranieri J P,Bellamkonda R,Aebischer P.Bovine serum albumin conformation on methyl and amine functionalized surfaces compared by scanning force microscopy.J.Biomed.Mater.Res.,1995,29:707-714
    [226]Huang X H,Gordon M J,Zare R N.Effect of Electrolyte and Sample Concentration on the Relationship between Sensitivity and Resolution in Capillary Zone Electrophoresis Using Conductivity Detection.J.Chromatogr.A,1989,480:285-288
    [227]Bose S,Yang J,Hage D S.Guidelines in selecting ligand concentrations for the determination of binding constants by affinity capillary electrophoresis.J.Chromatogr.B,1997,697:77-88
    [228]John W,Campell J E,Cronan J R.Bacterial fatty acid biosynthesis:targets for antibacterial drug discovery.Ann.Rev.Microbiol.,2001,55:305-332
    [229]Heath R J,White S W,Rock C O.Lipid biosynthesis as a target for antibacterial agents.Prog.Lipid Res.,2001,40:467-497
    [230]王思袭,周伟澄.新型抗菌剂:脂烯酰基酰基载体蛋白还原酶抑制剂的研究进展.药学进展,2006,30:341-349
    [231]武临专,王以光.脂肪酸生物合成—发现抗菌药物的靶位.国外医药抗生素分册,2003,24:208-212
    [232]Surolia A,Ramya T N C,Ramya V,Surolia N.'FAS't inhibition of malaria.Biochem.J.,2004,383:401-412
    [233]McDevitt D,Payne D J,Holmes D J.Novel tragest for the future development of antibacterial agents.J.Appl.Microbiol.,2002,92(Suppl.):28S-34S
    [234]Roujeinikova A,Levy C W,Rowsell S,Sedelnikova S,Baker P J,Minshull C A,Mistry A,Colls J G,Camble R,Stuitje eta.Crystallographic analysis of triclosan bound to enoyl reductase.J.Mol.Biol.,1999,294:527-535
    [235]Stewart M J,Parikh S,Xiao G,Tonge P J,Kisker C.Structural basis and mechanism of enoyl reductase inhibition by triclosan.J.Mol.Biol.,1999,290:859-865
    [236]Pidugu L S,Kapoor M,Surolia N,Surolia A,Suguna K.Structural basis for the ariation in triclosan affinity to enoyl reductases.J.Mol.Biol.,2004,343: 147-155
    [237] Suguna K, Surolia A, Surolia N. Structural basis for triclosan and NAD binding to enoyl-ACP reductase of Plasmodium falciparum. Biochem. Biophys. Res. Commun., 2001, 283: 224-228
    [238] Ward W H J, Holdgate G A, Rowsell S, McLean E G, Pauptit R A, Clayton E, Nichols W W, Colls J G, Minshull C A, Jude D A, Mistry A, Timms D, Camble R, Hales N J, Britton C J, Taylor I W F. Kinetic and structural characteristics of the inhibition of enoyl (acyl carrier protein) reductase by triclosan. Biochemistry, 1999, 38: 12514-12525
    [239] Sivaraman S, Zwahlen J, Bell A F, Hedstrom L, Tonge P J. Structure-activity studies of the inhibition of FabI, the enoyl reductase from Escherichia coli, by triclosan: kinetic analysis of mutant FabIs. Biochemistry, 2003,42: 4406-4413
    [240] Sivaraman S, Sullivan T J, Johnson F, Novichenok P, Cui G L, Simmerling C, Tonge P J. Inhibition of the bacterial enoyl reductase FabI by triclosan: A structure-reactivity analysis of FabI inhibition by triclosan analogues. J. Med. Chem., 2004, 47: 509-518
    [241] Kapoor M, Reddy C C, Krishnasastry M V, Surolia N, Surolia A. Slow-tight-binding inhibition of enoyl-acyl carrier protein reductase from Plasmodium falciparum by triclosan. Biochem. J., 2004, 381: 735-741
    [242] Kapoor M. Kinetic studies on enoyl-ACP reductase from Plasmodium falciparum: A potent target of antimalarials. [Ph.D. thesis]. Bangalore: Indian Institute of Science, 2003
    [243] Kapoor M, Mukhi P L S, Surolia N, Suguna K, Surolia A. Kinetic and structural analysis of the increased affinity of enoyl-ACP (acyl-carrier protein) reductase for triclosan in the presence of NAD(+). Biochem. J., 2004, 381: 725-733
    [244] Borch J, Roepstorff P. Combinations of SPR arid MS for characterization of native and recombinant proteins in cell lysates. Mol. Biotechnol., 2006, 33: 179-190
    [245] Storri S, Santoni T, Minunni M, Mascini M. Surface modifications for the development of piezoimmunosensors. Biosens. Bioelectron., 1998, 13: 347-357
    [246] Sauerbrey G Z. Use of quartz crystal vibrator for weighting thin films on a microbalance. Z. Physik., 1959, 155: 206-209
    [247] Sonksen C P, Nordhoff E, Jansson O, Malmqvist M, Roepstorff P. Combining MALDI mass spectrometry and biomolecular interaction analysis using a biomolecular interaction analysis instrument.Anal.Chem.,1998,70:2731-2736
    [248]Sonksen C P,Roepstorff P,Markgren P O,Danielson U H,Hamalainen M D,Jansson O.Capture and analysis of low molecular weight ligands by surface plasmon resonance combined with mass spectrometry.Eur.J.Mass Spectrom.,2001,7:385-391
    [249]聂松,陈平,梁宋平.表面等离子体共振-质谱法对相互作用的生物分子在10-15mol水平的微量鉴定.高等学校化学学报,2005,26:68-72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700