用户名: 密码: 验证码:
碰撞诱导转动传能中的量子干涉效应理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文将报道我们对碰撞过程中量子干涉效应(Collisional Quantum
     Interference)的深入研究。碰撞过程中量子干涉效应是分子碰撞导致的无辐射跃迁过程中的干涉,本质上是属于德布罗意波之间的干涉。Sha和Zhang等人[J.Chem.Phys.102(1995)2772.]导出了包含干涉相位角的传能截面表达式,并用光学光学双共振多光子电离光谱(OODR-MPI)的方法研究了CO A~1Π(v=0)/e~3∑~-(v=1)单叁重态之间的碰撞传能,首次观测到了量子干涉效应。Chen等在Na_2A~1 sum from n=u to +(v=8)~b~3Π_(0u)(v=14)体系和Na(3s)碰撞的实验中也发现了量子干涉效应。
     本文所获得的主要研究成果是首次从理论上得到了计算干涉相位角的方法,得出了干涉相位角和实验条件中各相关量的关系,并且计算结果和实验符合的很好。扩展原有的理论体系到极性分子-分子体系。为分子束实验做了尝试性的实验(在静态池中)。具体成果如下:
     1.应用含时微扰理论和量子非弹性散射理论,考虑一级含时波恩近似,长程相互作用和直线轨迹近似,建立了原子-双原子分子体系分子转动传能中的量子干步模型。首次得到了从理论中计算干涉相位角的方法,得出了干涉相位角和实验条件中各相关量的关系,并计算了COA~1Π(v=0)/e~3∑~-(v=1)和He碰撞诱导转动能量传递过程中量子干涉效应的实验,计算结果和实验符合的很好,但是对于碰撞伴是Ne和Ar的实验,计算结果不是很好,原因是随着碰撞伴质量和极化率的增大,相互作用势更强,应该考虑短程相互作用势的贡献。
    
    2.应用含时微扰理论和量子非弹性散射理论,考虑一级含时波恩近似,长程
     相互作用势,短程相互作用势和直线轨迹近似,完善了原子一双原子分子体
     系分子转动能量传递中的量子干涉模型。在考虑短程作用势以后,对于碰
     撞伴是Ne和Ai实验的理论计算值和实验观测值一致。
    3.原子一分子体系与极性分子一极性分子的长程作用势有明显的不同,对于原子
     一分子体系,长程相互作用势v oc R(O场,而极性分子一分子体系的长程相互
     作用势V二R(O一,。所以从理论上他们对量子千涉的影响应该有不同的效
     果。根据原子一分子体系的实验,随着相互作用势的增强,干涉会减弱,干
     涉角增大。极性分子一分子体系的相互作用势明显比原子一分子体系的大,所
     以干涉会减弱。这个模型可以定性的指导正在进行的实验。
    4.为了在分子束实验条件下进行实验,用光学一光学双共振多光子电离光谱
     (oonR一MPI)的方法,在静态池条件下,对较长寿命的eo(a’n,v=18)
    /(D’△,v=10)单重态一三重态之间的碰撞传能实验进行了尝试。用2+l’+l’
    双色共振多光子电离实验进一步证实和丰富了间接预解离的理论和实验,
    并研究了间接预解离对不同转动能级的影响程度。由于在实验中发现偶然
    预解离,解离和电离的竞争对实验的影响很大,较难在此条件下观察转动
    传能中的量子干涉效应。
In this dissertation we are reporting our study on Collision Quantum Interference (CQI) effect. Collisional quantum interference takes place in radiationless transitions and is inherently the interference between de Broglie waves. Sha, Zhang and co-workers [J. Chem. Phys. 102, 2772 (1995)] derived a CQI formula, which embodies an interference phase angle, for the cross section of energy transfer between singlet-triplet mixed states. Using optical-optical double resonance multiphoton ionization, they observed CQI for the fist time in energy transfer within mixed states of CO A1п(v = 0)/e3∑-(v =1). Chen et. al also observed the collisioanl quantum interference in the Na2
    A1∑+u(v = 8) -b3п0u,(v = 14) system collision with Na (3s).
    The principle results obtained in this Ph. D thesis are that we firstly derived the method of calculating interference angle theoretically, and obtained the relationships between the interference angles with the corresponding experimental conditions. The calculated values are consistent with the experimental results very well. Then we extended the theoretical model in atom-diatom system to the system in polar diatom-diatom system. We took some experiments using OODR-MPI technique in the static cell for the preparation of the experiment in the molecular beam. The detailed results are listed as follows:
    
    
    
    
    1. We presented the theoretical model of collisional quantum interference on rotational energy transfer in atom-diatom system, using the theories of time dependent Born approximation and quantum inelastic scattering, and taking into account the long-range interaction potentials. The key factors in the determination of the differential and integral interference
    angles are obtained. CO A1∏ (v = 0) ~ e3 ∑-(v = l) system in collision with He is calculated, the calculated values are consistent with
    the experimental results, but for the partners being Ne and Ar, the calculated values are not so good. The main reason is that the short-range potential is ignored.
    2. We presented the theoretical model of collisional quantum interference on rotational energy transfer in atom-diatom system, using the theories of time dependent Born approximation and quantum inelastic scattering, and taking into account not only the long-range interaction potentials, but also short-range interaction potential. Using the modified theoretical
    model, CO A1∏(v = 0) ~ e3∑-(v = l) system in collision with Ne
    and Ar is calculated, the calculated values are consistent with the experimental results. The calculated values are consistent with experimental results.
    3. The potentials of the long-range interactions are much different for the system in the atom-diatom [V∝R (t )-6], and that in diatom-diatom
    [ V ∝ R(t)-3], so the interference effects are different theoretically. So
    
    
    
    we presented the theoretical model in the polar diatom-diatom system. With the increase of the interaction potentials, the interference will decrease. This model can direct our experiment taking on.
    4. We attempted to carry out the experiment of CO a3(v = 18) /
    D1(v = 10) collision with He in a static cell using OODR-MPI
    technique for the preparation of doing experiment in a molecular beam machine. In the experiment of 2+1'+1' two-color REMPI, we
    conformed the accidental predissociation of CO (E1,v = l) state, and studied the effect of the accidental predissociation of CO (E1, v = 1) state for different rotational states. Due to the presence of
    accidental predissociation as well as competition between dissociation and ionization), the accurate measurement of collisional rotational energy transfer with the interference effect became very difficult.
引文
1. T. Yardley, Introduction to Molecular Energy Transfer, New York, Academic Press, 1980.
    2. A, Schiffman and D. W. Chandler, Experimental measurements of state-resolved rotational inelastic energy transfer, Int. Rev. Phys. Chem. 1995(14) 371.
    3. B.J. Whitaker, E Brechignace, The physical origin of fitting laws for rotational energy transfer, Laser Chem., 1986 (6)61-84.
    4. R. N. Dixon, D. W. Huang, X. F. Yang, S. Harich, J. J. Lin, and X. Yang, Chemical "Double Slits": Dynamical Interference of Photodissociation Pathways of H_2O, Science. 1999 (285) 1249.
    5. K.T. Lorcnz, D.W. Chandler, J.W. Barr, W. Chen, G.L. Barnes, and J.I. Cline, Direct measurement of the preferred sense of NO rotation after collision with argon, Science. 2001 (293)2063-2066.
    6. X. H. Liu, J. J. Lin, S. Harich, G. C. Schatz and X. M. Yang, A quantum state-resolved insertion reaction: O (D_1)+H_2 (J=O)→OH (~2∏,v, N)+H(S_2) Science. 2000 (289)1536.
    7. D. H. Zhang, M. A. Collins, S. Y. Lee, Theory for the H+H_2O,D_2O Reaction, Science. 2000 (290) 961.
    8. W.M. Gelbart and K. F. Freed, Intramolecular perturbations and the quenching of luminescence in small molecules, Chem. Phys. Lett. 1973 (18) 470.
    9. L. Li, Q.S. Zhu, A. M. Lyyra, T.J. Wang, W.C. Stwalley, R.W. Field, M.H. Alexander, Collision-induced transition between A~1∑_u~+ and b~3∏_u states of Na_2 "the gateway" effect of perturbed levels, J. Chem. Phys. 1992 (97) 8835.
    10. H. Lefebvre-Brion, R.W. Field, Perturbations in the Spectra of Diatomic
    
    Molecules, Academic Press, New York, 1986.
    11. R. W. Field, C. R. Jones and H. P. Broida, Gas-phase reaction of Ba with N_1O. Ⅱ. Mechanism of reaction, J. Chem. Phys. 1974(60)4377.
    12. L. Li and R. W. Field, CW optical-optical double resonance studies of the 2~2Π_g,3~3Π_g,4~3∑_g~+ and 1~3 Δ_g rydberg states of Na_2, J. Mol. Spectroc. 1986(117)245.
    13. A. V. Dentamaron, and D. H. Katayama, Collision induced transitions between the A~2Π_1(v=0) and X~∑~+(v=10) transitions of CO~+, J. Chem. Phys. 1989 (90)91.
    14. M. H. Alexander, Dipolar Model for Collisional energy transfer between dark and radiating excited electronic states: CaO(A~1Π, a~3Π)+N_2O→CaO(A~1∑~+)+N_2O, J. Chem. Phys. 1982(76)429.
    15. J. Boissels, C. Boulet, D. Robert, S. Green, State-to-state rotational phase coherence effect on the vibration-rotation band shape: an accurate quantum calculation for CO-He, J. Chem. Phys.1989(90)5392.
    16. G-H. Sha, J-B. He, B. Jiang and C-H. Zhang, Evidence for quantum interference in collision-induced intramolecular energy transfer within CO singlet-triplet mixed states, J. Chem. Phys. 1995(102)2772.
    17. X-L. Chen, G-H. Sha, B. Jiang, J-B. He, and C-H. Zhang, Further study on collisional quantum interference effect inenergy transfer within CO singlet-triplet mixed states, J. Chem. Phys. 1996(105)8661.
    18. X-L. Chen, H.M. Chen, J. Li, Y.M. Liu, X.C. Dai, G-H. Sha, J.C. Xie, C.H.Zhang, Li Li, Quantum interference effect on collisional energy transfer within
    
    singlet-triptet mixed states of Na_2 A~1∑_u~+(v=8)~b~3Π_(0u),(v=14), Chem. Phys.Lett. 2000(318) 107.
    19. H. Bitto, J. R. Hubber, Molecular quantum beats. High-resolution spectroscopy in the time domain, Acc. Chem. Res. 1992(25)65.
    20. R M. Felker, Rotational coherence spectroscopy: studies of the geometries of large gas-phase species by picosecond time-domain methods, J. Phys. Chem, 1992(96)7844.
    21. M. Shapiro and P. Brumer, Coherent and Incoherent Laser Control of Photochemical-Reactions, Int. Rev. in Phys. Chem. 1994(13)187.
    22. L. Zhu V. Kleiman, X. Li, S. P. Lu, K.Trentelman, R. J. Gordon, Coherent laser control of the produc distribution obtained in the photoexcitation of HI, Science, 1995 (270) 77.
    23. S. A. Rice, New Ideas for Guiding the Evolution of a Quantum System, Science, 1992 (258) 412.
    24. E. A. Donley, N. R. Claussen, S. L. Cornish, J. L. Roberts, Eric A. Cornell, Carl E. Wieman, Dynamics of collapsing and exploding Bose-Einstein condensates, Nature, 2001(412)295.
    25. J. Liu, M. T Sun, B. Jiang, G. H. Sha, Collisional quantum interference of CO A~1Π(v=0)~e~3∑~-(v=1) system collision with HCl, Chem. Phys. Lett. In preparation.
    26. M.T. Sun, G. H. Sha, S. L. Cong, F. C. Ma, J. C. Xie, C. H. Zhang, Collisional quantum interference effect on rotational energy transfer in an atom-diatom System, Chem. Phys. Lett. 2001(339)413.
    
    
    27. M.T. Sun, J. Liu, F. C. Ma, G. H. Sha, Collisional quantum interference on rotational energy transfer: physical interpretation of the interference angle, Chem. Phys. 2001 (274) 175.
    28. H.M. Tian, M. T. Sun, G. H. Sha, Further study of collisional quantum interference effect on rotational energy transfer in an atom-diatom System, Phys. Chem. Chem. Phys. 2002 (4) 5123.
    29. M. T. Sun, H. M. Tian, G. H. Sha, Collisional quantum interference on rotational energy transfer: (Ⅱ) in a polar diatom-diatom system, Chem. Phys. Lett. 2002 (361) 8.
    30. B. A. Garetz, C. Kittrell and A. C. Le Floch, Analysis of the 2-photon D~1Δ-X~1∑~- transition in CO-perturbations in the (10-0) band, J. Chem. Phys. 1991 (94) 843.
    31. C. H. Zhang, G. H. Sha, Double Resonance spectroscopy and molecular dynamics, Science, 1984 (86) 62.
    32. M.T. Sun, J.Liu, B. Jiang and G. H. Sha, 2+1+1 two-color REMPI study of the ←D′Δ(v=10)←X~1∑~+(v=0) transition in CO: influence of the accidental predissociation in the CO E~1Π(v=1) state at j=9 and 10, Chem. Phys. Lett. 2002 (359) 520.
    33. M. Eidelsberg and Rostas, Astron. Astrophys. 1990 (235) 472.
    34. G. Stark, P. L. Smith, K. Ito and K. Yoshino, Astrophys. J. 1992 (395)750.
    35. J. Baker, J. L. Lemaire, S. Couris, A. Vient, D. Malmasson and F. Rostas, A 2+1 REMPI study of the E-X transition in CO. Indirect predissociations in the E~1 Π state, Chem. Phys. 1993 (178) 569.
    
    
    36. P. Cacciani, W. Hogervorst and W. Ubachs, Accidental predissociation phenomena in the E~1Π,v=0 and v=1 states of ~(12)C~(16)O and ~(13)C~(16)O, J. Chem. Phys. 1995 (102) 8308.
    37. W. Ubachs, I. Velchev and P. Cacciani, Predissociation in the E~1Π, v=1 state of the six natural isotopomers of CO, J. Chem. Phys. 2000 (113) 547-560.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700