用户名: 密码: 验证码:
不对称Hantzsch 1,4-二氢吡啶类化合物的合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1,4-二氢吡啶(1,4-dihydropyridines, 1,4-DHPs)是一类重要的含氮杂环化合物,大多具有生理活性,在药物合成与应用等领域得到广泛研究。二氢吡啶类钙离子(Ca~(2+))拮抗剂是近30年来临床应用最广泛的一类治疗心脑血管疾病的药物。硝苯地平(Nifedipine)作为第一代二氢吡啶类钙离子(Ca~(2+))拮抗剂主要作为冠脉舒张药。第二代二氢吡啶类钙离子(Ca~(2+))拮抗剂尼莫地平(Nimodipine)、尼群地平(Nitrendipine)、尼卡地平(Nicardipine)、尼索地平(Nisoldipine)、非洛地平(Felodipine)、伊拉地平(Isradipine)和第三代二氢吡啶类钙离子(Ca~(2+))拮抗剂拉西地平(Lecidipine)、马尼地平(Manidipine)、氨氯地平(Amlodipine)、西尼地平(Cilnidipine)也相继被广泛应用于心脑血管疾病。二氢吡啶类钙离子(Ca~(2+))拮抗剂具有调节钙离子通道及降血压等作用,同时还具有抗病毒、抗菌和消炎的作用。此类化合物及其衍生物在抗癌等领域也具有广阔的前景。
     除硝苯地平外,这一类药物分子中大多具有一个或多个手性中心。目前此类化合物一般都以外消旋体的形式应用。
     Hantzsch 1,4-二氢吡啶合成法广泛应用于1,4-二氢吡啶类化合物的合成,但该方法反应时间较长、产率较低。关于Hantzsch 1,4-二氢吡啶类化合物合成方法的改良已有很多报道,但是仍存在着溶剂毒性较高、催化剂昂贵、合成步骤繁琐等缺点,不符合绿色化学的要求。
     本工作旨在进行不对称取代的1,4-二氢吡啶类化合物的合成研究。
     1.在无溶剂、无催化、微波照射条件下,以芳香醛、乙酰乙酸甲(乙、丁)酯、苯甲酰乙酸乙酯、乙酸铵为原料,通过改良的Hantzsch反应,一锅法两步合成了不对称取代的1,4-二氢吡啶类化合物50个,其中45个新化合物。
     2.从反应温度、微波功率、溶剂、催化剂、投料比、反应时间等方面优化了反应条件。
     3.目标化合物已经核磁共振氢谱(1H NMR)、核磁共振碳谱(13C NMR)、红外光谱(IR)、质谱(MS)和元素分析(EA)等表征,其中两个化合物的结构通过单晶X-射线衍射分析得以确证。
     本工作较系统地研究了三个系列不对称取代的1,4-二氢吡啶类化合物的合成方法。我们在无溶剂、无催化、微波照射的条件下,通过改良的Hantzsch合成法,实现了一锅法两步合成不对称取代的1,4-二氢吡啶类化合物。我们通过对反应原料的选择、合成路线的设计、反应条件的优化以及对目标产物的结构表征系统地证明了该方法的有效性。此外,该方法具有反应环境友好、条件温和、操作简便、产率高、经济、无毒、无污染、省时高效等优点。
     我们希望这种以绿色、环境友好的方式合成不对称取代的1,4-二氢吡啶类化合物,以此够完善Hantzsch合成法在二氢吡啶类化合物合成中的应用,为建立此类化合物库并筛选新的药物提供理论基础。
1,4-Dihydropyridines (1,4-DHPs) are a kind of important nitrogen-containing heterocyclic compounds, mostly with physiological activities, which also have a wide range of applications in biology and medicine. In recent 30 years, DHPs calcium channel blockers have found broad clinical applications in the treatment of cardiovascular diseases. Nifedipine, the first generation of DHPs calcium channel blocker, is primarily used as coronary diastolic medicine. The second generation of DHPs calcium channel blockers such as Nimodipine, Nitrendipine, Nisoldipine, Nicardipine, Isradipine and the third generation of DHPs calcium channel blockers, for example, Amlodipine Lacidipine, Manidipine, Cilnidipine are also used constantly as cardiovascular drugs. Most of them can regulate calcium ion channels and lower blood pressure. Moreover, they have the functions of antivirus, antibacterial and antiphlogistic. Noteworthly, such compounds and the derivatives also have broad prospects in the field of anti-cancer.
     Except for nifedipine, most of this kind of the drugs have one or more chiral center. At present, these compounds are commonly used in the form of racemic modification.
     The best known procedure for the preparation of 1,4-DHPs is the classical Hantzsch reaction. However, this method involves a long reaction time and unsatisfactory yields. A number of improved procedures have been reported, but many of them suffer from drawbacks such as hazardous organic solvents, expensive catalysts and tedious work-up. These are also not acceptable in the context of green synthesis.
     The present thesis is aimed at the synthesis of unsymmetrically substituted Hantzsch 1,4-dihydropyridines.
     1. Under microwave irradiation and solvent- and catalyst-free conditions, 50 of unsymmetrically substituted 1,4-dihydropyridines have been synthesized via one-pot two-step modified Hantzsch condensation reaction of acromatic aldehydes, acetoacetate, ethyl benzoylacetate and ammonium acetate, of which 45 of the compounds have not been reported in the literature.
     2. We have optimized the reaction conditions from reaction temperature, microwave power, solvents, catalysts, reactant ratio and reaction time.
     3. The structures of the compounds prepared have been characterized by the 1H NMR, IR, 13C NMR, MS spectra and elemental analysis. Two crystals structures of the compounds have been achieved by single crystal X-ray crystallographic analysis. The molecular structures have been confirmed unambiguously and have not been reported in the literature.
     In the thesis, one-pot two-step synthesis of unsymmetrically substituted Hantzsch 1,4-dihydropyridines which promoted by microwave irradiation under solvent- and catalyst-free conditions have been performed and studied comprehensively. It is the correct target products that proved the feasibility and availability of this method. Furthermore, these protocols have the advantages of environmentally benign, economy, short reaction time, high yields, and simple work-up procedure, which are acceptable in the context of green synthesis.
     The present thesis improved and modified the Hantzsch synthesis of the unsymmetrically substituted 1,4-dihydropyridines, which enriched the reserch of these kind of 1,4-dihydropyridines and promoted the further studies of medicinal applications of the unsymmetrically substituted 1,4-dihydropyridine compounds.
引文
[1] Tokuma, Y.; Noguchi, H. Stereoselective pharmacokinetics of dihydropyridine calcium antagonists. J. Chromatogr. A. 1995, 694, 181-193.
    [2] Dagnino, L.; Li, K. K. Synthesis and calcium channel antagonist activity of dialkyl 4-(dihydropyridinyl)-1,4-dihydro-2,6-dimethyl-3,5-pyridine dicarboxylates. J. Med. Chem. 1987, 30, 640-646.
    [3] Wang, X. M.; Du, L.; and Peterson, B. Z. Calcicludine binding to the outer pore of L-type calcium channels is allosterically coupled to dihydropyridine binding. Biochemistry 2007, 46 , 7590–7598.
    [4] Takahata, Y. J.; Costa, M. C. A.; Gaudio, A. C. Comparision between neural networks (NN) and principal component analysis (PCA):structure activity relationships of 1,4-dihydropyri- dine calcium channel antagonists (Nifedipine Analogues). J. Chem. Inf. Comput. Sci. 2003, 43, 540–544.
    [5] Bova, S.; Saponara, S.; Rampa, A.; Gobbi, S.; Cima, L. Anthracene based compounds as new L-type Ca2+ channel blockers: design, synthesis, and full biological profile. J. Med. Chem. 2009, 52, 1259–1262.
    [6] Raju, P.; Ravindra, V.; Mathad, V. T.; Dubey, P. K.;Reddy, P. P. A facile, one-pot synth- esis of lacidipine using in situ generation of wittig intermediates. Org. Process Res. Dev. 2009, 13, 710–715.
    [7] Vater, W.; Kroneberg, G.; Hoffmeister, F.; Kaller, H. Zur pharmakologie van 4-(2-nitrophenyl)-2-6-dimethyl 1,4-dihydropyridine-3,5-dicarbonsaure-dimethyl ester. Arzneim-Forsch 1972, 22, 1-14.
    [8] Kondo, S.; Kuchiki, A.; Tamamoto, K.; Akimoto,K. Identification of nifedipine metabolites and their determination by gas chromatography. Chem. Pharm. Bull. 1980, 28, 1-7.
    [9] K. Stoepel, A. Heise, S. Kazda, Armeim. Production. of 1,4-dihydropyridine derivatives used for treating hypertension. Arzneim-Forsch 1981, 31, 2056-2064.
    [10] Nyborg, N. C. B.; Mulvany, M. J. Effect of felodipine, a new dihydropyridine vasodilator, on contractile responses to potassium, noradrenaline, and calcium in mesenteric resistance vessels of the rat. J. Cardiovasc. Pharmacol. 1984, 6, 499-505.
    [11] Iwanami, M.; Shibanuma, T.; Fujimoto, M. Synthesis of new water-soluble dihydropyri- dine vasodilators. Chem. Pharm. Bull. 1979, 27, 1426-1440.
    [12] Fox, H.; Lewis, J.; Wenner, W. Derivatives of 1,3-dimethyl-2-azafluorene (1,3-dimethyl- 9-indeno[2,1-c]pyridine). J. Org. Chem. 1951, 16, 1259-1270.
    [13] Ko, S.; Sastry, M. N. V.; Lin, C.; Yao, C-F. Molecular iodine-catalyzed one-pot synthesis of 4-substituted-1,4-dihydropyridine derivatives via Hantzsch reaction. Tetrahedron Lett. 2005, 46, 5771-5774.
    [14] Lakshmi Kantam, M.; Ramani, T.; Chakrapani, L. Synthesis of 1,4-DHP deriatives using nanocrystalsline copper(Ⅱ) oxide catalyst. Catal. Commun. 2009, 10, 370-372.
    [15] Jiang, J.; Yu, J.; Sun, X. X. Organocatalytic asymmetric three-component cyclizationof cinnamaldehydes and primary amines with 1,3-dicarbonyl compounds:straight forward access to enantiomerically enriched dihydropyridines. Angew. Chem. Int. Ed. 2008, 47, 2458–2462.
    [16] Wan, J. P.; Gan, S. F.; Sun, G. L. Novel regioselectivity: three-component cascade synthesis of unsymmetrical 1,4- and 1,2-dihydropyridines. J. Org. Chem. 2009, 74, 2862–2865.
    [17] Bartoli, G.; Babiuch, K.; Bosco, M.; Carlone, A. Magnesium perchlorate as efficient lewis acid: a simple and convenient route to 1,4-dihydropyridines. Synlett 2007, 18, 2897-2901.
    [18] Sridhar, R.; Perumal, P. T. A new protocol to synthesize 1,4-dihydropyridines by using 3,4,5-trifluorobenzeneboronic acid as a catalyst in ionic liquid: synthesis of novel 4-(3-carboxyl-1h-pyrazol-4-yl)-1,4-dihydropyridines. Tetrahedron 2005, 61, 2465-2470.
    [19] Suzuki, I.; Suzumura, Y.; Takeda, K. Metal triflimide as a Lewis acid catalyst for Biginelli reactions in water. Tetrahedron Lett. 2006, 47, 7861-7864.
    [20] Shi, D. Q.; Yu, C. X.; Zhuang, Q. Y. Theree-component one-pot synthesis of unsymmetri- cal 1,4-dihydropyridines derivatives in aqueous media. J. Chem. Res. 2008, 8, 441-443.
    [21] Gupta, R.; Gupta, R.; Paul, S.; Loupy, A. Covalently anchored sulfonic acid on silica gel as an efficient and reusable heterogeneous catalyst for the one-pot synthesis of Hantzsch 1,4-dihydropyridines under solvent-free conditions. Synthesis 2007, 2835– 2838.
    [22] Samai, S.; Nandi, G. C.; Kumar, R. Multicomponent one-pot solvent-free synthesis of functionalized unsymmetrical dihydro-1H-indeno[1,2-b]pyridines . Tetrahedron Lett. 2009, 50, 7096-7098.
    [23] Pasunooti, K. K.; Jensen, C. N.; Chai, H. Microwave-assisted copper(ii)-catalyzed one-pot four-component synthesis of multifunctionalized dihydropyridines. J. Comb. Chem. 2010, 12, 577–581.
    [24] Sapkal, S. B.; Shelke, K. F.; Shingate, B. B. Nickel nanoparticle-catalyzed facile and efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-free conditions. Tetrahedron Lett. 2009, 50, 1754-1756.
    [25]骆文博,张三奇.超声波法合成1,4-二氢吡啶类钙拮抗剂.第四军医大学学报1995, 16(1), 58-61.
    [26] Singh, L.; Singh Ishar, M. P.; Elango, M. Synthesis of unsymmetrical substituted1,4-dihydropyridines through thermal and microwave assisted [4+2] cycloadditions of 1-azadienes and allenic esters. J. Org. Chem. 2008, 73, 2224- 2233.
    [27] Gedye, R.; Smith, F.; Westaway, K. et al. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett. 1986, 27(3), 279-282.
    [28] Larhed, M.; Moberg, C.; Hallberg, A. Microwave-accelerated homogeneous catalysis in organic chemistry. Acc. Chem. Res. 2002, 35, 717-727.
    [29] Botella, L.; Najera, C. Synthesis of methylated resveratrol and analogues by Heck reactions in organic and aqueous solvents. Tetrahedron 2004, 60, 5563-5570.
    [30] Leadbeater, N. E.; Marco, M. Ligand-free palladium catalysis of the Suzuki reaction in water using microwave heating. Org. Lett. 2002, 4, 2973-2976.
    [31] Thomas, A. W.; Ley, S. V. Modern synthetic methods for copper-mediated C(aryl)[bond]O, C(aryl)[bond]N, and C(aryl)[bond]S bond formation. Angew. Chem. Int. Ed. 2003, 42, 5400-5449.
    [32] Wu, Y. J.; He, H. Copper-catalyzed cross-coupling of aryl halides and thiols using micro- wave heating. Synlett 2003, 1789-1790.
    [33] He, H.; Wu, Y. J. Synthesis of diaryl ethers through the copper-catalyzed arylation of phenols with aryl halides using microwave heating. Tetrahedron Lett. 2003, 44, 3445-3446.
    [34] Leadbeater, N. E.; Torenius, H. M. A study of the ionic liquid mediated microwave heating of organic solvents. J. Org. Chem. 2002, 67, 3145-3148.
    [35] Baxendale, I. R.; Lee, A. I.; Ley, S. V. A concise synthesis of carpanone using solid- supp- orted reagents and scavengers. J. Chem. Soc.,Perkin Trans. 2002, 16, 1850-1857.
    [36] Clark, J. S.; Clark, M. R; Clough, A. J. Asymmetric allylic oxidation of bridged-bicyclic alkenes using a copper-catalysed symmetrising-desymmetrising Kharasch-Sosnovsky reaction. Tetrahedron Lett. 2004, 45, 9447-9450.
    [37] Lehmann, F.; Pilotti, A. Microwave-assisted Mannich-type three-component reactions. Mol. Diversity 2003, 7, 135-144.
    [38] Jennings, L. D.; Foreman, K. W.; Rush, T. S. Combinatorial synthesis of substituted 3-(2-indolyl)piperidines and 2-phenyl indoles as inhibitors of ZipA-FtsZ interaction.. Bioorg. Med. Chem. 2004, 12, 5115-5131.
    [39] Dyker, G. Transition metal catalyzed coupling reactions under C-H. activation. Angew. Chem. Int. Ed. 1999, 38, 1699-1712.
    [40] Tan, K. L.; Vasudevan, A.; Bergman, R. G. Microwave assisted C-H bond activation: a rapid entry into functionalized heterocycles. Org. Lett. 2003, 5, 2131-2134.
    [41] Stiasni, N.; Kappe, C. O. A tandem intramolecular Michael-addition/elimination sequence in dihydropyrimidone to quinoline rearrangements. ARKIVOC 2002, 8, 71-79.
    [42] Alexandre, F, R.; Berecibar, A.;Wriggles, R. Efficient synthesis of thiazoloquinazolinone derivatives. Tetrahedron Lett. 2003, 44, 4455-4458.
    [43] Steinreiber, A.; Sradler, A.; Mayer, S. F. High-speed microwave-promoted Mitsunobu inversions. Application toward the deracemization of sulcatol. Tetrahedron Lett. 2001, 42, 6283-6286.
    [44] Lampariello, L. R.; Piras, D. Solid-phase synthesis of conformationally constrained peptidomimetics based on a 3,6-disubstituted-1,4-diazepan-2,5- dione core. J. Org. Chem. 2003, 68, 7893-7895.
    [45] Mathew, F.; Jayaprakash, K. N. Microwave-assisted saccharide coupling with n-pentenyl glycosyl donors. Tetrahedron Lett. 2003, 44, 9051-9054.
    [46] Lohman, G. J. S.; Seeberger, P. A stereochemical surprise at the late stage of the synth- esis of fully n-differentiated heparin oligosaccharides containing amino, acetamido, and n-sulfonate groups. J. Org. Chem. 2004, 69, 4081-4093.
    [47] Paoli, M. L.; Piccini, S. Sensible improvements induced by ionic liquids in the reaction of modified carbasugars with bases for the building of constrained carbanucleosides. J. Org. Chem. 2004, 69, 2881-2883.
    [48] Mohan, H.; Gemma, E.; Ruda, S. Efficient synthesis of spacer-linked dimers of n-acety- llactosamine using microvawe-assisted pyridinium triflate-promoted glycosylations with oxazoline donors. Synlett 2003, 1255-1256.
    [49] Saulnier, M. G.; Zimmermann, K. Microwave-assisted synthesis of primary amine HX salts from halides and ammonia in methanol . Tetrahedron Lett. 2004, 45, 397-399.
    [50] Ju, Y.; Varma, R. S. Aqueous n-alkylation of amines using alkyl halides: direct generation of tertiary amines under microwave irradiation. Green Chem. 2004, 6, 219-221.
    [51] Romera, J. L.; Cid, J. M. Potassium iodide catalysed monoalkylation of anilines under microwave irradiation . Tetrahedron Lett. 2004, 45, 8797-8800.
    [52] Bose, K. A.; Ganguly, S. N.; Manhas, M. S. Microwave assisted synthesis of an unusual dinitro phytochemical. Tetrahedron Lett. 2004, 45, 1179-1181.
    [53] Shackelford, S. A.; Anderson, M. B. Electrophilic tetraalkylammonium nitrate nitration. II. improved anhydrous aromatic and heteroaromatic mononitration with tetramethyl ammo- nium nitrate and triflic anhydride, including selected microwave examples. J. Org. Chem. 2003, 68, 267-275.
    [54] Ohberg, L.; Westman, J. One-pot three-step solution phase syntheses of thiohydantoins using microwave heating. Synlett 2001, 1893-1896.
    [55] Baran, P. S.; Richter, J. M. Direct coupling of indoles with carbonyl compounds: short, enantioselective, gram-scale synthetic entry into the hapalindole and fischerindole alkaloid families. J. Am. Chem. Soc. 2004, 126, 7450-7451.
    [56] Gustafsson, T.; Schou, M. A total synthesis of hydroxylysine in protected form and investigations of the reductive opening of p-methoxybenzylidene acetals. J. Org. Chem. 2004, 69, 8694-9701.
    [57] Lindsay, K. B.; Payne, S. G.. Studies on the synthesis of croomine: synthesis of the tricyclic B,C,D-ring core structure. Synlett 2004, 779-782.
    [58] Jaipuri, F. A.; Jofre, M. F.; Schwarz, K. A. Microwave-assisted cleavage of Weinrebamide for carboxylate protection in the synthesis of a (R)-3-hydroxyalkanoic acid. Tetrahedron Lett. 2004, 45, 4149-4152.
    [59] Belema, M.; Nguyen, V. N.; Zusi, F. C. Synthesis of 1,1-diarylethylenes from anα-stannylβ-silylstyrene. Tetrahedron Lett. 2004, 45, 1693-1697.
    [60] Wetter, C.; Studer, A. Microwave-assisted free radical chemistry using the persistent radical effect. Chem. Commun. 2004, 174-175.
    [61] Ericsson, C.; Engman, L. Microwave-assisted group-transfer cyclization of organotellurium compounds. J. Org. Chem. 2004, 69, 5143-5146.
    [1] Vater, W.; Kroneberg, G.; Hoffmeister, F.; Kaller, H. Zur pharmakologie van 4-(2-nitrophe- nyl)-2-6-dimethyl 1, 4-dihydropyridine-3, 5-dicarbonsaure-dimethyl ester. Arzneim-Forsch 1972, 22, 1-14.
    [2] Kondo, S.; Kuchiki, A.; Tamamoto, K.; Akimoto,K. Identification of nifedipine metabolites and their determination by gas chromatography. Chem. Pharm. Bull. 1980, 28, 1-7.
    [3] K. Stoepel, A. Heise, S. Kazda, Armeim. Production. of 1,4-dihydropyridine derivatives used for treating hypertension. Arzneim-Forsch 1981, 31, 2056-2064.
    [4] Nyborg, N. C. B.; Mulvany, M. J. Effect of felodipine, a new dihydropyridine vasodilator, on contractile responses to potassium, noradrenaline, and calcium in mesenteric resistance vessels of the rat. J. Cardiovasc. Pharmacol. 1984, 6, 499-505.
    [5] Iwanami, M.; Shibanuma, T.; Fujimoto, M. Synthesis of new water-soluble dihydropyridine vasodilators. Chem. Pharm. Bull. 1979, 27, 1426-1440.
    [6] Ji, S. J.; Jiang, Z. Q.; Lu, J. Facile ionic liquids-promoted one-pot synthesis of polyhy- droquinoline derivatives under solvent free conditions. Synlett 2004, 5, 831-835.
    [7] Massi, A.; Minghini, E.; Sabbatini, S.; Bertoasi, V. Model studies toward the synthesis of dihydropyrimidinyl and pyridylα-amino acids via three-component Biginelli and Hantzsch Cyclocondensations. J. Org. Chem. 2003, 68, 6172-6183.
    [8] Debache, A.; Boulcina, R.; Belfaitah, A.; Rhouati, S.; Carboni, B. One-pot synthesis of 1,4-dihydropyridines via a phenylboronic acid catalyzed Hantzsch three-component reaction. Synlett 2008, 4, 509–512.
    [9] Wang, L. M.; Sheng, J.; Zhang, L.; Han, J. W.; Fan, Z. Y.; Tian, H.; Qian, C. T. Facile Yb(OTf)3 promoted one-pot synthesis of polyhydroquinoline derivatives through Hantzsch reaction. Tetrahedron 2005, 61, 1539-1543.
    [10] Ko, S.; Sastry, M. N. V.; Lin, C.; Yao, C. F. Molecular iodine-catalyzed one-pot synthesis of4-substituted-1,4-dihydropyridine derivatives via Hantzsch reaction. Tetrahedron Lett. 2005, 46, 5771-5774.
    [11] Sabitha, G.; Reddy, G. S. K. K.; Reddy, C. S.; Yadav, J. S. A novel TMSI-mediated synthesis of Hantzsch 1,4-dihydropyridines at ambient temperature. Tetrahedron Lett. 2003, 44, 4129-4131.
    [12] Tewari, N.; Dwivedi, N.; Tripathi, R. P. Tetrabutylammonium hydrogen sulfate catalyzed eco-friendly and efficient synthesis of glycosyl 1,4-dihydropyridines. Tetrahedron Lett. 2004, 45, 9011-9014.
    [13] Lee, J. H. Synthesis of Hantsch 1,4-dihydropyridines by fermenting bakers’yeast. Tetrahedron Lett. 2005, 46, 7329-7330.
    [14] Ko, S.; Yao, C. F. Ceric Ammonium Nitrate (CAN) catalyzes the one-pot synthesis of polyhydroquinoline via the Hantzsch reaction. Tetrahedron 2006, 62, 7293-7299.
    [15] Sharma, G. V. M.; Reddy, K. L.; Lakshmi, P. S.; Krishna, P. R.‘In situ’generated‘HCl’- an efficient catalyst for solvent-free Hantzsch reaction at room temperature: synthesis of new dihydropyridine glycoconjugates. Synthesis 2006, 55-58.
    [16] Gupta, R.; Gupta, R.; Paul, S.; Loupy, A. Covalently anchored sulfonic acid on silica gel as an efficient and reusable heterogeneous catalyst for the one-pot synthesis of Hantzsch 1,4-dihydropyridines under solvent-free conditions. Synthesis 2007, 2835-2838.
    [17] Trost, M. B. The atom economy–a search for synthetic efficiency. Science 1991, 254(5037), 1471-1477.
    [18] Anastas, P. T.; Kirchhoff, M. M. Origins, current status, and future challenges of Green Chemistry. Acc. Chem. Res. 2002, 35(9), 686-694.
    [19]刘文莉,姜海波.发展绿色化学推进可持续发展.中国人口资源与环境2000, (2), 81-82.
    [20]于燕,米镇涛,李家玲,张香.异氰酸酯的绿色新工艺.化工进展2001, (7), 18-21.
    [21]陈晓祥,季诚建,胡跃华.亚磷酸二甲酯的绿色生产工艺.化学世界2000, 41(12), 638-640.
    [22]宫红,姜恒,吕振波.己二酸绿色合成新途径.高等学校化学学报2000, 21(7), 1121-1123.
    [23]朱晨燕,朱宪.苯甲醛绿色生产新工艺.高校化学工程学报2000, 14(5), 448-451.
    [24]闵恩泽,傅军.绿色化学的进展.化学通报1999, (1), 10-15.
    [25]丁克毅,刘军,张铭让.绿色化学及化学工业的绿色革命.西南民族学院学报(自然科学版) 1999, 25(1), 84-88.
    [26] Kappe, C. O. Recent Advances in the Biginelli Dihydropyrimidine Synthesis. New Tricks from an Old Dog. Acc. Chem. Res. 2000, 33(12), 879-888.
    [27]谢有刚.仿酶催化与绿色化学.中国科技大学第一届国际绿色化学高级研讨班论文摘要汇编1998, 32-33.
    [28] Wallace, G. A.; Heathcock, C. H. Further Studies of the Daphniphyllum Alkaloid Polycyclization Cascade. J. Org. Chem. 2001, 66(2), 450-454.
    [29] Anastas, P. T.; Kirchhoff, M. M.; Williamson, T. C. Catalysis as a foundational pillar of green chemistry. Appl. Catal. A-Gen. 2001, 221(1-2), 3-13.
    [30] Jessop, P. G.; Ikarya, T.; Noyori, R. Homogeneous catalytic hydrogenation of supercritical carbon dioxide. Nature 1994, 368, 231-233.
    [31]黄培强,高景星.绿色合成:一个逐步形成的学科前沿.化学进展1998, 10(3), 265-272. [32 ] Tanaka, K.; Aoki, H. One-pot synthesis of photochromic naphthopyrans in the solid state. Org. Lett. 2000, 2, 2133-2134.
    [33] Kaupp, G.; Naimi-Jamal, M. R. Quantitive cascade condensations of o-phenylenediamines and 1,2-dicarbonyl compounds without producing wastes. Eur. J. Org. Chem. 2002, 8, 1368-1373.
    [34] Hon, Y.; Lee, C. Acetonyltriphenylphosphonium bromide in organic synthesis: a useful catalyst in the cyclotrimerization of aldehydes. Tetrahedron 2001, 57, 6181-6188.
    [35] Bandger, B. P.; Kasture, S. P. Zinc-mediated fast sulfonylation of aromatics. Synth. Commun. 2001, 31, 1065-1068.
    [36] Khodaei, M. M.; Meybodi, F. A.; Rezai, N.; Salehi, P. Solvent free beckmann rearrange- ment of ketoximes by anhydrous ferric chloride. Synth. Commun. 2001, 31, 2047- 2050.
    [37] Tokitoh, N.; Arai, Y.; Sasamori, T.; Okazaki, R.; Nagase, S.; Uekusa, H.; Ohashi, Y. A unique crystalsline-state reaction of an overcrowded distibene with molecular oxygen, the first example of a single crystals to a single crystals reaction with an external reagent. J. Am. Chem. Soc. 1998, 120(2), 433-434.
    [38] Toda, F.; Mori, K. Enantioselective reduction of ketones in optically active host compounds with a BH3-ethylenediamine complex in the solid state. J. Chem. Soc., Chem. Commun. 1989, (17), 1245-1246.
    [1] Jennings, L. D.; Foreman, K. W.; Rush, T. S. Combinatorial synthesis of substituted 3-(2-indolyl)piperidines and 2-phenyl indoles as inhibitors of ZipA-FtsZ interaction. Bioorg. Med. Chem. 2004, 12, 5115-5131.
    [2] Wan, J. P.; Gan, S. F.; Sun, G. L. Novel Regioselectivity: Three-component cascade synthesis of unsymmetrical 1,4- and 1,2-dihydropyridines. J. Org. Chem. 2009, 74, 2862–2865.
    [3] Dyker, G. Transition metal catalyzed coupling reactions under C-H. activation. Angew. Chem. Int. Ed. 1999, 38, 1699-1712.
    [4] Steinreiber, A.; Sradler, A.; Mayer, S. F. High-speed microwave-promoted Mitsunobu inversions. Application toward the deracemization of sulcatol. Tetrahedron Lett. 2001, 42, 6283-6286.
    [5] Tan, K. L.; Vasudevan, A.; Bergman, R. G. Microwave assisted C-H bond activation: a rapid entry into functionalized heterocycles. Org. Lett. 2003, 5, 2131-2134.
    [6] Sridhar, R.; Perumal, P. T. A new protocol to synthesize 1,4-dihydropyridines by using 3,4,5-trifluorobenzeneboronic acid as a catalyst in ionic liquid: synthesis of novel 4-(3-carboxyl-1H-pyrazol-4-yl)-1,4-dihydropyridines. Tetrahedron 2005, 61, 2465– 2470.
    [7] Stiasni, N.; Kappe, C. O. A tandem intramolecular Michael-addition/elimination sequence in dihydropyrimidone to quinoline rearrangements. ARKIVOC 2002, 8, 71-79.
    [8] Lampariello, L. R.; Piras, D. Solid-phase synthesis of conformationally constrained peptidomimetics based on a 3,6-disubstituted-1,4-diazepan-2,5-dione core. J. Org. Chem. 2003, 68, 7893-7895.
    [9] Bandger, B. P.; Kasture, S. P. Zinc-mediated fast sulfonylation of aromatics. Synth. Commun. 2001, 31, 1065-1068.
    [10] Mathew, F.; Jayaprakash, K. N. Microwave-assisted saccharide coupling with n-pentenyl glycosyl donors . Tetrahedron Lett. 2003, 44, 9051-9054.
    [11] Alexandre, F, R.; Berecibar, A.;Wriggles, R. Efficient synthesis of thiazoloquinazolinone derivatives. Tetrahedron Lett. 2003, 44, 4455-4458.
    [12] Lohman, G. J. S.; Seeberger, P. A stereochemical surprise at the late stage of the synthesis of fully N-differentiated heparin oligosaccharides containing amino, acetamido, and N-sulfonate groups. J. Org. Chem. 2004, 69, 4081-4093.
    [13] Hon, Y.; Lee, C. Acetonyltriphenylphosphonium bromide in organic synthesis: a useful catalyst in the cyclotrimerization of aldehydes. Tetrahedron 2001, 57, 6181-6188.
    [14] Paoli, M. L.; Piccini, S. Sensible improvements induced by ionic liquids in the reaction of modified carbasugars with bases for the building of constrained carbanucleosides. J. Org. Chem. 2004, 69, 2881-2883.
    [15] Bartoli, G.; Babiuch, K.; Bosco, M.; Carlone, A. Magnesium perchlorate as efficient lewis acid: a simple and convenient route to 1,4-dihydropyridines. Synlett 2007, 18, 2897-2901.
    [16] Mohan, H.; Gemma, E.; Ruda, S. Efficient synthesis of spacer-linked dimers ofN-acetyllactosamine using microvawe-assisted pyridinium triflate-promoted glycosylations with oxazoline donors. Synlett 2003, 1255-1256.
    [17] Pasunooti, K. K.; Jensen, C. N.; Chai, H. Microwave-assisted copper(II)-catalyzed one-pot four-component synthesis of multifunctionalized dihydropyridines. J. Comb. Chem. 2010, 12, 577–581.
    [18] Kondo, S.; Kuchiki, A.; Tamamoto, K.; Akimoto,K. Identification of nifedipine metabolites and their determination by gas chromatography. Chem. Pharm. Bull. 1980, 28, 1-7.
    [19] Iwanami, M.; Shibanuma, T.; Fujimoto, M. Synthesis of new water-soluble dihydropyridine vasodilators. Chem. Pharm. Bull. 1979, 27, 1426-1440.
    [20] Sapkal, S. B.; Shelke, K. F.; Shingate, B. B. Nickel nanoparticle-catalyzed facile and efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-free conditions. Tetrahedron Lett. 2009, 50, 1754-1756.
    [21] Khodaei, M. M.; Meybodi, F. A.; Rezai, N.; Salehi, P. Solvent free beckmann rearrangement of ketoximes by anhydrous ferric chloride. Synth. Commun. 2001, 31, 2047-2050.
    [22] Suzuki, I.; Suzumura, Y.; Takeda, K. Metal triflimide as a Lewis acid catalyst for Biginelli reactions in water. Tetrahedron Lett. 2006, 47, 7861-7864.
    [23] Tokitoh, N.; Arai, Y.; Sasamori, T.; Okazaki, R.; Nagase, S.; Uekusa, H.; Ohashi, Y. A uniq- ue crystalsline-state reaction of an overcrowded distibene with molecular oxygen, the first example of a single crystals to a single crystals reaction with an external reagent. J. Am. Chem. Soc. 1998, 120(2), 433-434.
    [24] Gedye, R.; Smith, F.; Westaway, K. et al. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett. 1986, 27, 279-282.
    [25] Larhed, M.; Moberg, C.; Hallberg, A. Microwave-accelerated homogeneous catalysis in organic chemistry. Acc. Chem. Res. 2002, 35, 717-727.
    [26] Thomas, A. W.; Ley, S. V. Modern synthetic methods for copper-mediated C(aryl)[bond]O, C(aryl)[bond]N, and C(aryl)[bond]S bond formation. Angew. Chem. Int. Ed. 2003, 42, 5400-5449.
    [27] Botella, L.; Najera, C. Synthesis of methylated resveratrol and analogues by Heck reactions in organic and aqueous solvents. Tetrahedron 2004, 60, 5563-5570.
    [28] Toda, F.; Mori, K. Enantioselective reduction of ketones in optically active host compounds with a BH3-ethylenediamine complex in the solid state. J. Chem. Soc., Chem. Commun., 1989, 17, 1245-1246.
    [29] Leadbeater, N. E.; Marco, M. Ligand-free palladium catalysis of the Suzuki reaction in water using microwave heating. Org. Lett. 2002, 4, 2973-2976.
    [30] Wu, Y. J.; He, H. Copper-catalyzed cross-coupling of aryl halides and thiols using microwave heating. Synlett 2003, 1789-1790.
    [31] Leadbeater, N. E.; Torenius, H. M. A study of the ionic liquid mediated microwave heating of organic solvents. J. Org. Chem. 2002, 67, 3145-3148.
    [32] Gupta, R.; Gupta, R.; Paul, S.; Loupy, A. Covalently anchored sulfonic acid on silica gel as an efficient and reusable heterogeneous catalyst for the one-pot synthesis of Hantzsch 1,4-dihydropyridines under solvent-free conditions. Synthesis 2007, 2835-2838.
    [33] Baxendale, I. R.; Lee, A. I.; Ley, S. V. A concise synthesis of carpanone using solid- supported reagents and scavengers. J. Chem. Soc., Perkin Trans. 2002, 16, 1850-1857.
    [34] He, H.; Wu, Y. J. Synthesis of diaryl ethers through the copper-catalyzed arylation of phenols with aryl halides using microwave heating. Tetrahedron Lett. 2003, 44, 3445-3446.
    [35] Clark, J. S.; Clark, M. R; Clough, A. J. Asymmetric allylic oxidation of bridged-bicyclic alkenes using a copper-catalysed symmetrising-desymmetrising Kharasch-Sosnovsky reaction. Tetrahedron Lett. 2004, 45, 9447-9450.
    [36] Fox, H.; Lewis, J.; Wenner, W. Derivatives of 1,3-dimethyl-2-azafluorene (1,3-dimethyl- 9-indeno[2,1-c]pyridine). J. Org. Chem. 1951, 16, 1259-1270.
    [37] Lehmann, F.; Pilotti, A. Microwave-assisted Mannich-type three-component reactions. Mol. Diversity 2003, 7, 135-144.
    [38] Shi, D. Q.; Yu, C. X.; Zhuang, Q. Y. Three-component one-pot synthesis of unsymmetrical 1,4-dihydropyridines derivatives in aqueous media. J. Chem. Res. 2008, 8, 441-443.
    [39] K. Stoepel, A. Heise, S. Kazda, Armeim. Production. of 1,4-dihydropyridine derivatives used for treating hypertension. Arzneim-Forsch 1981, 31, 2056-2064.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700