用户名: 密码: 验证码:
川东北地区下三叠统飞仙关组天然气成藏条件研究及目标评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以成烃(含油气)系统理论和成藏动力学为基础,以碳酸盐岩沉积学、储层地质学和油气藏地球化学原理与方法为指导,详细地研究了烃源层、储层、盖层和圈闭的形成与演化,论述了烃源岩的有机质热演化史、油气生成的时间和期次以及油气运、聚、散特点。在石油地质静态要素定量评价的基础上,以“四史”演化及时空配置关系为主线,阐明了气藏形成机制和分布规律,对气藏形成的有利地带和勘探目标作出预测与评价。取得以下主要成果:
     1.飞仙关期,川东北地区基本处于一碳酸盐孤立台地—海槽(盆地)环境之中,台地四周由深水的开江—梁平海槽、南秦岭洋和鄂西海槽(盆地)围绕。台地边缘鲕粒滩是储层分布的有利地区,海槽相细粒沉积物则有利于烃源岩形成。
     2.川东北地区海槽区上二叠统(P_2)和下三叠统飞仙关组一段(T_1f~1)碳酸盐岩有机质丰度相对最高,目前已处于过成熟阶段,生烃强度高,属于好烃源岩。
     3.埋藏史和热演化史的恢复结果表明海槽区上二叠统烃源岩在下三叠统沉积期开始进入生烃门限,在中侏罗统沉积期则达到生油高峰期,在白垩系沉积期达到生气高峰期,白垩纪末达到最大埋深。
     4.川东北地区飞仙关组鲕滩气藏天然气属于高含硫干气,平均硫化氢含量在10%以上,二氧化碳含量中等。
     5.综合天然气碳同位素组成、源岩、储层沥青地球化学特征等,并结合四川盆地不同地质时代天然气碳同位素组成特点,经对比确定该区天然气主要属于海相碳酸盐烃源岩成因,而且主要属于油型裂解气,其次为干酪根裂解气,主体与海槽区上二叠统(P_2)和下三叠统下部(T_1f~1)碳酸盐岩有机质成因有关。
     6.通过岩石学特征,硬石膏、硫化氢、硫磺和黄铁矿的硫同位素,碳酸盐和交代硬石膏结核的方解石的氧、碳同位素组成等的详细研究,证实该区天然气中H_2S为热化学硫酸盐还原作用(TSR)成因。
     7.储层有四期溶蚀作用,其中同生期一次,埋藏期三次。同生期溶蚀与大气淡水淋滤有关,溶蚀强度较低;第一期埋藏溶蚀与海槽相烃源岩产生的有机酸性水有关,溶蚀强度大;第二期埋藏溶蚀与泻湖相热化学硫酸盐还原过程中产生的H_2S有关,溶蚀强度也较大;第三期埋藏溶蚀与喜山
Based on the theory of hydrocarbon (petroleum) system and pool-formation dynamics, and guided by the theory and method of carbonate sedimentology, reservoir geology and petroleum geochemistry, formation and evolution of source rock, reservoir, cap rock and trap have been studied in considerable detail. Thermal evolution history of organic matter of source rock, time and period of hydrocarbon generation, and characteristics of oil and gas migration, accumulation and dispersion have been documented. On the basis of quantitative evaluation of petroleum geological static elements, and by taking the evolution and arrangement of "four histories" in the time and space as a main clue, formation mechanism and distribution rule of gas pool have been illustrated, and the favorable zones of gas pool-formation and exploration targets have been predicted and evaluated. The main conclusions are stated as below:1. In Feixianguan period, Northeast Sichuan was largely located in a environment of carbonate isolated platform-trough (basin). The platform is surrounded by deep-water Kaijiang-Liangping trough, south Qinling ocean and Exi trough (basin). Oolitic shoal on the platform margin is the favorable area of reservoir distribution, whereas fine sediments of trough facies are beneficial for the formation of source rock.2. The abundance of carbonate organic matter is comparatively the highest in trough areas, Upper Pemian and Member 1 of Feixianguan Formation, Northeast Sichuan. The organic matter is post-mature at present. The capacity of their hydrocarbon generation is strong. These carbonates belong to good source rock.3. Results from the resumption of burial history and thermal
    evolution history show that Upper Permian source rock of trough area entered into hydrocarbon-generating threshold when Lower Triassic sediments began to deposit. The source rock achieved oil-generating peak during middle-Jurassic sedimentation and reached gas-generating peak in Cretaceous sedimentation. The largest burial depth was realized at the end of the Cretaceous period.4. Nature gas of Feixianguan oolitic shoal belongs to high sulphur dry gas in northeast Sichuan, whose average content of hydrogen sulfide is above 10% and the content of carbon dioxide is of middle level.5. By integrating carbon isotope composition of natural gas, source rock, and geochemical characteristics of reservoir bitumen, and combining carbon isotope characteristics of natural gas during different geological periods of Sichuan basin, it is considered that natural gas of study area mainly comes from marine carbonate source rock. Moreover, it is principally oil cracking gas, and secondly kerogen cracking gas. The natural gas is mainly related to carbonate organic matter in Upper Permian(P2) and lowest Triassic(T_1f~1) in trough facies.6. It confirmed that H_2S in natural gas is formed by thermal chemical sulphate reduction (TSR) according to exhaustive research of lithology characteristics, sulphur isotope of anhydrite, hydrogen sulfide and pyrite, and oxygen and carbon isotope composition of carbonate and calcite which replaces anhydrite nodule.7. There are four periods of solution in carbonate reservoir, one in contemporaneous period and three in burial period. Contemporaneous solution was caused by the meteoric water, and its intensity was comparatively low. The first burial solution was linked to organic acidic water produced by trough source rock, and its intensity was strong. The second burial solution was connected with H_2S generated by TSR (Thermal chemical Sulfate Reduction) in lagoon facies, and its intensity was also strong. The third burial solution was linked to reallocation and adjustment of underground water caused by tectonic activity in Himalayan period, and its intensity was low.
    8. There are three types of dolomitization in Feixianguan Formation. Mixing-water dolomitization exists in Oolitic shoal on the platform margin. Seepage-reflux dolomitization occurs in lagoons and point bank sediments. The burial dolomitization is weak. Dolomites distribute mainly along fracture and stylolite or replace oolith selectively. Dolomite characteristics of all genetic types are quite different from each other in the aspects of sedimentology, lithology and geochemistry.9. Pore evolution of the reservoir is studied in detail, and evolutionary model of reservoir "four histories" is put forward, by which we can combine occurrence, development and disappearance of pores in reservoir with tectonic burial conditions, hydrocarbon generation and trap evolution.10. The dolomite reservoir in oolitic shoal rise from the internal part of the platform to the edge in the horizon. Furthermore, the nearer the location to the platform edge is, the better the physical property of the reservoir is and the thicker the thickness of the reservoir is. The analysis of factors which control the formation of reservoir indicates that oolitic shoal sediments of platform margin is the basis for high-quality reservoir, while mixing-water dolomitization is essential condition and burial dissolution is the key.11. P-T hydrocarbon system of northeast Sichuan can be named as Upper Permian - Changxing organic reef and Feixianguan oolitic shoal hydrocarbon system(!) of Kaijiang-Liangping trough area. Key times for oil and gas formation in this hydrocarbon system are in the middle of Middle-Jurassic and middle Cretaceous respectively.12. Oolitic shoal gas pool in Feixianguan Formation is an independent pool-formation dynamic system, namely P2 — T^ pool-formation dynamic system, or oolitic shoal gas pool-formation dynamic system of northeast Sichuan. It can be named as normal pressure, mixed source, and semi-enclosed pool-formation dynamic system. Paleofluid potential of oil and gas formation periods of the dynamic system has been resumed. There are totally four modes of oil and gas migration and accumulation in the P2—Tif pool-formation
    dynamic system of northeast Sichuan. They are not isolated from each other, but are connected and constitute a unified fluid migration and accumulation system. They are a historical, systematic and dynamic process.13. Oolitic shoal gas pool in Feixianguan Formation is formed through three processes, namely the formation of palaeo oil pool in late Indosinian - early Yanshan priod, the formation of primary gas pool in the middle and late Yanshan period, and the reformation, regulation and reallocation of primary gas pool in Himalayan period. Formation model of oolitic shoal gas pool in Feixianguan Formation of northeast Sichuan has been established according to migration rule, and generating time of oil and gas, trap formation history, reservoir evolution history and pool formation history in the pool-formation dynamic system.14. Traps are evaluated by adopting expert system. Among 31 traps for evaluation, there are 15 traps of categories I and II, with trap area of 181.9 Km2 and resource quantity 1549.82 x 108m3. Two favorable oil and gas exploration zones are pointed out: One is in the northwest direction of Dukouhe until the south section of Tieshanpo structure, and the other is Wenqianjing tectonic zone. Finally, the thesis makes comprehensive geological evaluation to the most favorable category I traps, providing scientific basis for the selection of exploration targets.
引文
1.李明诚,1984,石油与天然气运移(第一版),石油工业出版社
    2.汪吉安等,1985,石油与地热,科学出版社
    3.刘德汉等,1985,碳酸盐生油岩中沥青变质程度和沥青热变质实验,地球化学,第三期
    4.周中毅等,1985,塔里木盆地古地温与深部找油(气)前景,地球化学,第三期
    5.王一刚等,1986,川东下三叠统飞仙关组鲕粒灰岩的分布及其含油气性研究,西南油气田分公司研究报告
    6.唐泽尧等,1987,中国石油地质志四川油气区,石油工业出版社
    7.丰国秀、陈盛吉,1988,岩石中沥青反射率与镜质体反射率之间的关系,天然气工业,第三期
    8.杨远聪等,1989,川东地区上二叠统长兴组油气成因,石油勘探与开发,第三期
    9.戴金星等,1989,天然气地质学概论,石油工业出版社
    10.傅家谟等,1990,煤成油地球化学,科学出版社
    11.戴金星等,1990,概论有机成因气碳同位素系列倒转的成因问题,天然气工业,第六期
    12.华保欣等,1990,东濮凹陷流体势和天然气运移、聚集,沉积学报,第三期
    13.周中毅、潘长春,1992,沉积盆地古地温测定方法及其应用,广东科技出版社
    14.张水昌,1993,我国南方海相地层的生物标志化合物特征,《下扬子地区海相地质与油气》,石油工业出版社
    15.杨瑞召译,Magoon,L.B.,主编,1994,含油气系统及其研究方法,地质出版社
    16.黄第藩等,1994,塔里木盆地石油地球化学,科学出版社
    17.王兰生等,1994,四川盆地大中型气田天然气特征探索研究,“八五”国家重点科技攻关项目研究报告
    18.陈盛吉,1994,四川盆地三叠系烃源岩分布及有机质演化研究,西南油气田分公司研究报告
    19.王培荣等,1994,塔里木盆地油源对比及主力油源层的确认,“八五”国家重点科技攻关项目研究报告
    20.王廷栋等,1994,四川盆地磨溪、卧龙河气田主要气藏气源探素研究,“八五”国家重点科技攻关项目研究报告
    21.王廷栋等,1994,塔里木盆地凝析油气地化特征及成因,“八五”国家重点科技攻关项目研究报告
    22.郑永坚,1995,碳酸盐岩复合型气田成藏条件及模式——四川盆地卧龙河气田解剖研究,电子科技大学出版社
    23.黄第藩等,1995,煤成油的形成和成烃机理,石油工业出版社
    24.郝石生等,1996,高过成熟海相烃源岩,石油工业出版社
    25.田世澄等,1996,论成藏动力学系统,勘探家,第二期
    26.陈义才、张茂林等,1996,板桥凹陷区域古流体势模拟计算及其应用,西南石油学院学报,第三期
    27.范土芝等,1996,地下流体势的空间分布模式与油气运移聚集关系,地球科学——中国地质大学学报,第二期
    28.李延钧、陈义才等,1996,板桥凹陷古流体势与油气聚集运移史研究,沉积学报,第四期
    29.卢焕章,1997,成矿流体,北京科技出版社
    30.田世澄等,1997,论成藏动力学系统的划分和类型,石油工业出版社
    31.王兰生等,1997,四川盆地天然气的有机地球化学特征及其成因,沉积学报,第二期
    32.徐景祯等,1997,圈闭地质综合评价的专家系统模型,石油学报,第三期
    33.王一刚等,1998,流体包裹体在建立四川盆地古地温剖面研究中的应用,地球科学——中国地质大学学报,第三期
    34.杨雨、王一刚等,1999,川东飞仙关组岩相古地理与油气富集关系研究,西南油气田分公司研究报告
    35.王一刚、杨雨等,2000,四川盆地东北部长兴组—飞仙关组气藏成藏条件研究及勘探目标选择,“九五”国家重点科技攻关项目研究报告
    36.杨雨等,2000,四川盆地东北部地区长兴组—飞仙关组沉积相与礁、滩分布规律研究,“九五”国家重点科技攻关项目研究报告
    37.郝芳等,2000,油气成藏动力学及其研究进展,地学前缘,第三期
    38.田世澄、毕研鹏,2000,论成藏动力学,地震出版社
    39.刘全稳等,2000,油气圈闭评价与管理系统,石油工业出版社
    40.童晓光、何登发,2001,油气勘探原理和方法,石油工业出版社
    41.田世澄等,2001,论成藏动力系统中的流体动力学机制,地学前缘,第四期
    42.徐人芬,2001,四川盆地东北部地区飞仙关组鲕滩勘探目标评价,西南油气田分公司研究报告
    43.李剑锋等,2002,长庆气田奥陶系储层天然气中硫化氢的成因研究,《有机地球化学新进展》,梁狄刚等主编,石油工业出版社
    44.王一刚、刘划一等,2002,四川盆地东部飞仙关组鲕滩天然气成藏条件与有利勘探区块评价研究,西南油气田分公司研究报告
    45.耿安松、熊永强等,2002,鄂尔多斯盆地和四川盆地川东复杂低渗气田勘探技术研究,中国科学院广州地球化学研究所
    46.王兰生等,2002,四川盆地东部碳酸盐岩高硫天然气成因及地球化学特征研究,西南油气田分公司研究报告
    47.杨雨、魏小微等,2003,四川盆地东北部地区飞仙关组鲕滩储层分布规律研究 及勘探目标选择,西南油气田分公司研究报告
    48. Allan, J. R. and Wiggins, W. D., 1993, Dolomite reservoirs: Geochemical techniques for evaluation origin and distribution, American Association of Petroleum Geologists Continuing Education Course Note Series #36
    49. Anderson, R. N., He Wei, Hobart M. A., et al., 1991, Active fluid flow in the Eugene Island Area, Offshore Louisiana, Geophysics, V10. No.4. P6
    50. Barton, P. B.,1967, Possible role of organic matter in the precipitation of the Mississippi Valley ores. In: Brown, J. S. (ed.),Genesis of Stratiform Lead-Zine-Barite-Fluorite Deposits, Economic Geology, Monograph No3. P371-378
    51. Bethke, C M, Reed J D, Oltz D F. 1991, Long—range petroleum migration in the Illinois Basin, AAPG, V75. No5. P925-945
    52. Bosence, D.W.J.; Rose, E.P.F. ; Wood, J.L.; Qing, H., 2000,Low and high frequency sea-level changes control peritidal carbonate cycles, facies and dolomitization in the rock of Gibraltar (early Jurassic, Iberian Peninsula), J. Geol Soc London. V157. Pt1.P61-74
    53. Budd, P.A.,1997, Cenozoic dolomities of carbonate islands: their attributes and origin, Earth Science Reviews, V42.P1-47
    54. Choquette, P. W. and Pray, L.C.,1970, Geologic nomenclature and classification of porosity in sedimentary carbonates, AAPG Bulletin. V54.P207-250
    55. Cross,T.M., 2000,CSME3D: A 3D forward carbonate stratigraphic model based on energy and sediment flux Ⅰ: theory and algorithms, J.CSM.No1.P25-32
    56. Dahlberg, E. C., 1982, Applied hydrodynemics in Petroleum exploration. Springer Verlay Berlin Heidberg New York
    57. Dickey, P. A., 1975, Possible primary migration ofoil from source rock in oil phase, AAPG Bull., V59.No2. P337-345
    58. Dow, W. G., I972, Application of oil correlation and source rock data to exploration in Willistion Basin(abs.), AAPG Bulletin, No56. P615
    59. Durocker, S. and Al-Aasm, I.S., 1997, Dolomitization and neomorphism of Mississippian (Visean) Upper Debolt Formation, Blueberry Field, Northeastern British Colubia: Geologic, Petrologic and Chemical Evidence, AAPG Bulletin. V81. No 6. P 954-977
    60. England, W. A., et al., 1987, The movement, and entrapment of petroleum fluids in the subsurface, Journal of the Geological Society, London, V144. P327-344
    61. Falvey, D. A., et al., 1981, Recent advances in burial and thermal geohistory analysis, APEA, V22. No4. P65-73
    62. Galimov, E. M., 1975, Carbon isotopes in oil-gas geology: NASA technical translation NASA TT F-682, P395
    63. Galimov, E. M., 1980, 13C/12C in kerogen. In: Kerogen-insoluble organic matter from sedimentary rocks (Edited by B. Durand), Editions Technip, Paris, P271-299
    64. Given, R. K. and Wilkinson, B. H., 1987, Perspectives: dolomite abundance and stratigraphic age: constraints on rates and mechanisms of phanerozoic dolostone formation, J. Sediment. Petro. V57.P1068-1078
    65. Hanor, J. S., 1994, Origin of saline fluids in sedimentary basins, Geological Society Special Publications, V78. P 151-174
    66. Heydari, E.; Moore, C.H.; and Sassen, R.., 1988, Late burial diagenesis driven by thermal degradation of hydrocarbons and thermochemical sulfate reduction: Upper Smackover caronates, southeast Mississippi salt basin, AAPG Bulletin, V72. P197
    67. Heydari, E. and Moore, C. H., 1989, Burial diagenesis and thermo-chemical sulfate reduction, Smackover Formation, southeastern Mississippi salt basin, Geology. V17.P1080-1084
    68. Hill,1995,H_2S-Related Porosity and Sulfuric Acid Oil-Field Karst, AAPG Mem.37. P301-305
    69. Hooper, E. C. D., Fluid migration along growth fault in compacting sediments, Journal of Petroleum Geology, V14. No2. P161-180
    70. Hubbert, M. K., 1953, Entrapment of petroleum under hydrodynamic conditions, AAPG Bulletin, V37. No8. P1954-2026
    71. Hunt, J. M., 1991, Generation of gas and oil from coal and other terrestrial organic matter, Org. Goochem., V17. No6. P674-680
    72. Jacob, H., 1989, Classification,structure,genesis and practical importance of natural solid oil bitumen, Int. J. Coal Geol., V11. P65-79
    73. James, A. T., 1983, Correlation of natural gas by use of carbon isotopic distrbution between hydrocarbon components, AAPG, V67. P1176-1191
    74. Land, L.S.,1986, Limestone diagenesis- some geochemical considerations, In: F. A. Mumpton(Eds), Studies in diagenesis, U.S. Geol. Surv. Bull. P 129-137
    75. Longman, M.W., 1980, Carbonate diagenetie textures from near surface diagenetic environments, Am. Asoc. Petrol. Geol. Bull., V64.P461-487
    76. Luczaj, J.A.; Goldstein, R.H., 2000, Diagenesis of the lower Permian Krider Member, southwest Kansas, U.S.A.: fluid-inclusion, u-pb, and fission-track evidence for reflux dolomitization during latest Permian time, J.Sediment Res, Sect A. V70. No3. P762-773
    77. Lundegard, P.D. and Land, L.S., 1986, Carbon dioxide and inorganic acids: their role in porosity enhancement and cementation, Paleogene of the Texas Gulf Coast. in D.L. Gautier. ed., Roles of organic matter in sediment diagenesis, SEPM Special Publication. No38.P129-146
    78. Magara, K. 1978, Compaction and fluid migration — practical petroleum geology, Amsterdam, Elsevier Scie. Publ. Co.
    79. Macbel, H. G., 1987, Saddle dolomite as a by-product of chemical compaction and termochemical sulfate reduction, Geology, V15. P 936-940
    80. Machel, H. G., 1989, Relationships between sulphate reduction and oxidation of organic compounds to carbonate diagenesis,hydrocarbon accumulations,salt domes,and metal sulfide deposits: Carbonates and Evaporites, No4. P137-151
    81. Machel, G.H.; Krouse, H.R. and Sassen,R., 1995, Products and distinguishing criteria of bacterial and thermo-chemical sulfate reduction, Applied Geochemistry. V10.P373-389
    82. Magoon, L. B., and Dow W. G., 1994, The Petroleum System:from source to trap, AAPG Memoir 60
    83. Mazzullo, S.J. and Harris, P.M., 1992, Mesogenetic dissolution: Iits role in porosity development in carbonate reservoir, AAPG Bulletin, V76. No5.P607-620
    84. Mazzullo, S.J.; Teal, C.S.; Wilhite, B.W.; Bischoff, W.D., 1999, Holocene subtidal dolomitization in Belize: a new paradigm for dolomites and syndepositional dolomitization in some Permian basin hydrocarbon reservoirs, West Texas Geol Soc Fall Symp Proc. P63-70
    85. Mazzullo, S.J, 2000, Organogenic dolomitization in peritidal to deep-sea sediments, J.SEDIMENT RES, SECT A.V70. No1.P10-23
    86. Mckenzie, J.A., 1981, Holocene dolomitization of calcium carbonate sediments from the coastal sabkhas of Abu Dhabi, U.A.E. a stable isotope study, J. Geol. V89.P185-198
    87. Melodye,a. r. et al., 1995, Modeling thermogenie gas generation using carbon isotope ratios of natural gas hydrocarbons, Chem. Geol., V126. P219-231
    88. Moore, C.H., 1989, Carbonate diagenesis and porosity, Elsevier. Amsterdam Developments in Sedimentology. V46.P338
    89. Moore, C.H.; Cowdhury, A. and Chart, L., 1988(inpress), Upper Jurassic Smackover platform dolomitization northwestern Gulf of mexico a tale of two waters. In: V. Shukla and P.A. Baker(Eds), Sedimentology and geochemistry of dolostones, SEPM. Pub. No. 43.
    90. Morrow, D.W., 1982b, Diagenesis 2. Dolomite - part 2: dolomitization models and ancient dolostones, Geosic. Can. 9.P 95-100
    91. Ohmoto, H. and Rye, R. O., 1979, Isotopes of sulfur and carbon, In: Barnes, H. L(ed.), Geochemistry of Hydrothermal Ore Deposits, Wile, New York: P509-565
    92. Orr, W. L., 1974, Changes in sulfur content and isotopic ratios of sulfur during petroleum maturation-study of Big Horn Basin Paleozoic oils, AAPG Bulletin, V58. P2295-2318
    93. Peter, K. E. and Moldowan, J. M., 1993, The biomarker guide, interpreting molecular fossils in petroleum and ancient sediments. New Jersey, Prentice Hall, Inc., P182-186
    94. Prinzhofer A. and Alain Y. Huc., 1995, Genetic and post-genetic molecular and isotopic fractionations in natural gases. Chemical Geology, V126.No3. P281-290
    95. Schmidt, V. and Mcdonald, D.A., 1979, The role of secondary porosity in the course of sandstone diagenesis In: P.A. Scholle and P.R. Schluge(Eds), Aspects of diagenesis, SEPM Spec. pub. No26. P175-207
    96. Seifert, W. K., and Moldowan, J M. 1981, Paleoreconstruction by biological markers, Geochim. et Cosmoch. Acta, V45. P783-794
    97. Siebert, R. M., 1985, The origin of hydrogen sulfide, elemental sulfur, carbon dioxide and nitrogen in reservoirs, Sixth Annual Research Conference, Gulf Coast Section: P30-31
    98. Sun, S., 1994, A Reappraisal of dolomite abundance and occurrences in the phanerozoic, J. Sediment. Res. SECT A. V64A. No2. P396-404
    99. Surdam, R.C.; Boese, S.W. and Crossey, L.J., 1984, The chemistry of secondary porosity, In: D.A. Mecdonald and R.C. Surdam(Eds), Clastic Diagenesis, AAPG Mem.37. P127-149
    100. Surdam, R. C.,1989, Organic-inorganic interaction and sandstone diagenesis, AAPG Bulletin. V73.No1.
    101. Tissot, B. P., Welte D H, 1978, Petroleum formation and occurrence, a new approach to oil and gas exploration, Springer Verlay Berlin Heidberg New York
    102. Tissot, B. P., et al., 1987, Mmigration of hydrocarbons in sedimentary basins, 2nd LEP Exploration Research Conference Carcans, France
    103. Toth, J. Cross—formatonal gravity flow groundwater:a mechanics of the transport and accumulation of petroleum,problems of petroleum migration, AAPG Studies in Geology, No10. P121-167
    104. Trudinger, P. A., Chambers, L. A. and Smith, J. M. , 1985, Low-temperature sulphate reduction:biological versus abiological, Canadian Journal of Earth Science, V22. P1910-1918
    105. Tucker, Wright and Dickson, 1990, Chapter2,8, Carbonate Sedimentology, Blackwell Scientific Publication
    106. Tucker, M.E.,1993, Carbonate diagenesis and sequence stratigraphy, Sedimentology Review/1 Edited by V. Paul Wright, Blackwell Scientific Publication, P51-72Tucker, Wright and Dickson, 1990, Chapter2,8, Carbonate Sedimentology, Blackwell Scientific Publication
    107. Tucker, M.E.,1993, Carbonate diagenesis and sequence stratigraphy, Sedimentology Review/1 Edited by V. Paul Wright, Blackwell Scientific Publication, P51-72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700