用户名: 密码: 验证码:
生物大分子ATP的计算机模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡大坝是世界上最大也是最受瞩目的水利枢纽工程。水库于2003年6月正式蓄水,坝前水位保持在135m。成库后,水体由河流变为典型的河道型水库。过水断面增大,在上游流量不变情况下,流速自库尾至坝前逐渐减缓,水体的富营养化变成为危害水库水域环境的主要问题。当175m蓄水时,平均流速由2m/s降至0.25m/s甚至更低,水流对污染物的输移扩散能力下降,在同样的排污方式,相同的排污负荷下污染混合区必将加大。成库后,水流速度减缓,大量泥沙沉积,水质变清,透明度增高,冬季水温升高、雾日减少,水面日照时间增加,有利于水生植物特别是藻类的光合作用,导致藻类的生长繁殖,增加了三峡库区水体发生富营养化的可能性。由于水文条件的改变,水生生态系统结构、功能必然受到一定程度的影响。
     库区内的水体污染主要是由于长江流域及其支流周围的工业废水及生活污水排放造成。这些污水中包含了大量的有利于藻类生长的营养盐,氮、磷是藻类生长的必需的营养元素,他们构成藻类细胞的结构分子,并参与植物生长的新陈代谢,是水域的生产力的限制因子。在适宜的温度、光照条件下由于营养盐的存在会导致水体内的藻类异常增殖,严重的情况就会导致水华现象的发生。对于淡水湖泊的藻类来说,磷是必需的营养元素,是各种藻类体内的主要营养成分,常常是湖水产生富营养化的限制性因子。当水体中有其他生长促进因素存在时,磷浓度提高会加速水体的富营养化。磷参与构成三磷酸腺苷(ATP)、磷酸肌酸等供能(贮能)物质,在能量的产生、传递过程中起着非常重要的作用。
     本文主要从量子力学的角度研究了ATP分子在溶剂中的物理化学性质。并与通常在气态条件下对分子的就算进行了对比。实际上,细胞体内ATP分子的转化过程都发生在溶剂介质中。气态环境获得的微观性质尽管有参考性,但于与真实生物体系中ATP环境存在较大差距,很难客观、正确地表征ATP分子在生物细胞体内的生化性质。经计算以及对结果的分析表明,考虑溶剂效应的计算结果才能符合真实生物环境下ATP分子的物理化学性质。此外,本文还借助了虚拟细胞的思想,对于计算中难以收敛的大分子ATP的共轭环部分进行了适当的简化,以一个较简单的共轭环替代了原来较复杂的杂环。试图以此减少机时并能够实现一些原来难以完成的理论计算。
The eutrophication of water system is one of common ecological problem. The Three Gorges Reservoir started water storage in June 2003 and water level of the dam fluctuated around 135 meters. Since then, part of the Yangtze River became a typical channel reservoir, consequently, flow velocity of water in this area sharply decreased as hydraulic condition changed. Moreover, water level of the dam would finally reach up to 175 meters in 2009, and water flow velocity would decrease from 2 m/s to 0.25-0.5 m/s, which would seriously impair its transport and diffusion capacity for contaminants. With the same load of nitrogen and phosphor as well as the same discharge method, water quality of the Three Gorges Reservoir would definitely deteriorate. As another consequence, a series of factors resulted from damming, such as lower water flow velocity, higher transparence, depositon of suspended solid, higher water temperature, fewer foggy day and increased sunlight in winter, would be optimal for photosynthesis of aquatic plant, especially algae, which could potentially lead to eutrophication. Therefore, the structure and function of local aquatic ecosystem would be influenced by changing hydraulic condition.
     The pollution of The Three Gorges Reservoir was mainly due to the discharged industrial wastewater of factories which surround the Yangtze River valley and its tributaries and also the living wastewater. There are a large number of nutrients which is helpful to the growth of algae in the water. Nitrogen and phosphorus which form the structural molecules of algae cell and participate in the metabolism of plant growth are necessary for the growth of algae. The present of nutrients will lead to the unusual proliferation of algae in appropriate temperature and light conditions. More sever, it will lead to eutrophication. To those algae in freshwater lake, phosphorus is main nutrients of all kind of algae. When there are others growth factors for algae, the increase of phosphorus concentration will accelerate eutrophication. Phosphorus participates in formulation of energy storage material such as adenosine triphosphate (ATP) and creatine phosphate etc. It also plays a very important role in the process of generation and transportation of energy.
     The article is mainly about quantum-mechanical study of physical chemistry characters of ATP in solvent. Quantum computation of physical chemistry characters of ATP in gas phase is also provided to show differences in comparison with those in solvent condition. In reality, the process of transformation of ATP which is in cells will never take place without solvent. Though characters computed in gas phase has its referenced value, there are lots of differences compared with environment of ATP in real biologic system. Computed characters of ATP in gas phase are difficult to token biochemical characters in real cells. It is showed that, computation results considered the solvent effect are in according with physical chemistry characters of ATP in real biologic environment. Moreover, the concept of virtue cell was referenced to simplify ATP molecule in computation so as to decrease the computational cost. The original conjugate ring was replaced by a simple one. Characters of the simplified molecule are also computed to compare with those of original ATP. The work, simplification of ATP was designed mainly to cut large molecules computational costs without severely affect the computational results.
引文
[1]傅伯杰,陈利顶.长江流域可持续发展的资源环境评价.21世纪长江人型水利工程中的生态与环境保护.北京:中国环境科学出版社,1998:32-40.
    [2]钱易.论二峡水库水污染的防治.资源环境,2004,3:3-6.
    [3]黄秀山.三峡库区水污染及其治理政策.重庆大学学报(自然科学版),2002,25(6):155-158.
    [4]王锡桐.二峡库区生态环境建设问题研究.决策,2004,3:17-20.
    [5]李崇明.三峡库区次级河流富营养化防治研究,重庆市环境保护局,2003年12月.
    [6]重庆环境科学研究所.三峡水库水污染控制研究专题报告-长江干流入库断面背景浓度及库区污染源排污负荷现状与预测研究报告,1998.
    [7]闫庆松.浅谈水体甯营养化.山尔环境,1994,2:43.
    [8]陈水勇,吴振明等.水体富营养化的形成、危害和防治.环境科学与技术,1999,2:11-15.
    [9]Tortell PD,Reinfelder JR,Morel FMM.Active uptake of bicarbonate by diatoms.Na mr e,390(20):24 3-244.
    [10]Morel FMM,Reinfelder JR,Roberts SB,Chamberlain CP,Lee JG Yee D.Zinc and carbon co-limitation of marine phytoplankton.Nature,1 994,3 69:74 0-74 2.
    [11]Anderson MA,Morel FMM,Guillard RRL.Growth limitation of a coastal diatomby low zincion activity.Nature,1978,27 6:7071.
    [12]Bruland KW.Oceanic zinc speciation:Complexation of zinc by natural organic ligands in the central North Pacific.Limnol.And Oceanogr.,19 89,34:269-285.
    [13]Bruland KW,Donat JR,Hutchins DA.Interactive influences of bioactive tracemetals on biological production in oceanic waters.Limnol.And O ceanogr.,19 91,36:15 55-1 577.
    [14]Ellwood MJ,Van den Berg CMG.Zinc speciation in the Northeastern Atlantic Ocean.Mar.Chem.,2 000,6 8:2 95-306.
    [15]Kuenzler EJ.Dissolved organic phosphorus excretion by marine phytoplankton.J.Ph ycol.,1970,6:715.
    [16]Huang B,Hong H.Alkaline phosphatase activity and utilization of dissolved organic phosphorus by algae in subtropical coastal waters.Mar.Poilu.Bull.,1999,39:205-211.
    [17]Cotner JB,Wetzel RG.Uptake of dissolved inorganic and organic phosphorus compounds by phytoplankton and bacterioplankton.Limnol.Oceanogy.,1992,37:232-243.
    [18]Karl DM,Tien G.Temporal variability in dissolved phosphorus concentrations in the subtropical North Pacific Ocean.Mar.Chem.,1997,56:77-96.
    [19]张正斌,陈镇东,刘莲生等。海洋化学原理和应用-中国近海的海洋化学。海洋出版社, 1999.pp119-144.
    [20]沈国英,施并章。海洋生态学,第二版。厦门大学出版社,1996,pp237-247.
    [21]唐森铭,林昱,陈孝麟等。围隔体内赤潮对扰动的反应。海洋与湖泊,1995,26(1):7-11.
    [22]陈水土。九龙江口、厦门西海域无机氮与磷的关系.海洋通报,1993,12(5):26-32.
    [23]S V Smith.Phosphorus versus nitrogen limitation in the marine environment.Limnol.Oceanogr.1984,29(6):1149-1160.
    [24]王正方,张庆,龚敏。海洋原甲藻增殖最适起始浓度及其同温度的关系。海洋环境科学,1993,12(2):44-47.
    [25]王正方,张庆,卢勇等。氮、磷、维生素和微量金属对赤潮生物海洋原甲藻的增殖效应。东海海洋,1996,14(3):33-38.
    [26]张诚,邹景忠。尖刺拟菱形藻吸收动力学以及氮磷限制卜的增殖特征。海洋与湖沼,1997,28(6):599-603.
    [27]齐雨藻,楚建华,黄奕华。诱发海洋褐胞藻赤潮的环境冈素分析.海洋通报,1993,12(2):30-34.
    [28]洪君超,黄秀清,蒋晓山等。长江口中肋骨条藻赤潮发生过程环境要素分析-营养盐状况。海洋与湖沼。1994,2 5(2):1 79-184.
    [29]焦念忐。海洋浮游生物氮吸收动力学及其粒级特征。海洋与湖沼,1995,26(2):19 1-19 8.
    [30]Antia N J.Comparative evaluation of certain organic and inorganic sources of n it rogen for phototrophic growth of marine microalgae.J.M a r.B iol.A ss.U.K.,1975,55:5 19-53.
    [31]126JTurner M F,Nutrition of some marine microalgae with special reference to vitamin requirements and utilization of nitrogen and carbon sources.J.Mar.
    [32]Biol.Ass.U.K,1979,59:535-552.
    [33]洪君超,黄秀清,蒋晓山等。嵘山水域中肋骨条藻赤潮发生过程主导因子分析。海洋学报,1993,1 5(6):1 35-141.
    [34]陆田生等.小角刺藻生长过程中溶解游离氨基酸含量在海水中的变化。海洋与湖沼,199 7,2 8(3):256-261.
    [35]McCarihy J J,The uptake 0f urea by natural population 0f marine phytoplankton,Limn01.O ceanogr.,1972.17:738-748.
    [36]徐立,吴瑜端。有机氮化合物对海洋、浮游植物的影响。厦门大学学报(自然科学版),1995,34(5):824-828.
    [37]陈于望,陈慈美,黄健。营养物质和环境因素对三种微藻生长的综合效应。海洋环境科学,1987,6(4):20-26.
    [38]王正方,张庆,龚敏。海洋原甲藻增殖最适起始密度及其同温度的关系。海洋环境科学,1993,12(2):44-47.
    [39]RedfieId,A.C.(1934).In:."James Johnston Memorial Volume"(R.J.DanieI,ed.),University of Liverpool press,Liverpool,U.K.pp 176-192.
    [40]陈慈美,包建军,吴瑜端。纳污海域营养物质形态、含量与浮游植物增殖竞争关系(工工)。海洋环境科学,1990,9(2):1-7.
    [41]陈慈美,包建军,吴瑜端。纳污海域营养物质形态及含量水平与浮游植物增殖竞争关系(Ⅰ)。海洋环境科学,1990,9(1):6-10.
    [42]林琼芳。国外赤潮调查研究概况。海洋环境科学,1988,7(1):26-33.
    [43]唐森铭,庄栋法。林显等。围隔生态系内富营养对水体营养盐结构的扰动。海洋学报,1993,15(2):135-139.
    [44]Hudson,J.J,W.D.Taylor and D.W Schindler.Phosphoruscn centrationsin lakes.Nature 2000,406(6791):54-56.
    [45]吴重华,王晓蓉,孙吴.几种物质磷形态的生物有效性模拟研究,环境科学.1998,19(3):58-61.
    [46]金相灿,刘鸿亮,屠清瑛,章宗涉,朱管编.中国湖泊富营养化.中国环境科学出版社.1990.
    [47]Martin JH,Fitzwater SE.Irondeficiency limits phytoplankton growth in the north-east subarctic Pacific.Nature,19 88,33 1(6154):341-34.
    [48]王莹.硕士学位论文.成都:四川大学,2006.
    [49]徐光宪,黎乐民.量子化学基本原理和从头计算法(上册).科学出版社,北京,1981.
    [50]Young D C.Computational Chemistry.New York:John Wiley & Sons,2001.
    [51]陈念陔,高坡,乐征宁.量子化学理论基础.哈尔滨工业大学出版社,哈尔滨,2002.
    [52]林梦海.量子化学计算方法与应用.科学出版社,北京,2004.
    [53]王志中,李向东.半经验分子轨道理论与实践.科学出版社,北京,1981.
    [54]R.G.Parr,W.Yang,Density-functional Theory of Atoms and Molecules.Oxford Univ,Oxford,1989.
    [55]Koch W,Holthausen M C.A Chemist's Guide to Density Functional Theory[M]Weinheim,Germany:Wiley-VCH,2000.
    [56]王龙耀,范利华,肖安风等.ATP的分析方法综述[A].天津化工,2003,17(2):30.http://202.202.12.14/kns50/detail.aspx?QuerylD=S&CurRec=5.
    [57]http://baike.baidu.com/view/46441.htm.
    [58]赵玉芬,赵国辉,麻远.磷与生命化学Phosphorus and Life Chemistry.北京:清华大学出版社,2005:6,141,123.
    [59]Mark L.Richter,Hardeep S.Samra,et al.Coupling Proton Movement to ATP Synthesis in the Chloro-plast ATP Synthase.Journal of Bioenergetics and Biomembranes.2005,17(6).Egber J.Boekema,Uwe Lǔcken.The Structure of the CF1 Part of the ATP-Synthase Complex from Chloroplasts.Advances in Photosynthesis and Respiration.2006.
    [60]Richard E.McCarty.An Overview of the function,Composition and Structure of the Chloroplast ATP Synthase.in Photosynthesis and Respiration.2006.4.
    [61]P.Gaspard,E.Gerritsma.the stochastic chemomechanics of the Fl-ATPase molecule motor.Journal of Theoretical Biology.April 2007.
    [62]MARKUS DITTRICH.QUANTUM MECHANICAL/MOLECULAR MECHANICAL STU-DIES OF Fl-ATPASE AND A PLANT PHOTORCETOR.Unversitat Regensburg,2000.http://proquest.calis.edu.cn/umi/index.jsp.
    [63]REN Hui-Miao,WEI Jia-Mian.Progress in the Study on Structure,Function and Regulation of Chloroplast ATP Synthase.Plant Physiology Communication.1994,30(3):161-169.http://202.202.12.14/kns50/detail.aspx?QuerylD=15&CurRec=17.
    [64]中国科学院大科学计划概述.蛋白质数据银行计划.http://www.cas.ac.cn/html/Dir/2004/02/23/9746.htm.
    [65]Thomas Steinbrecher,Oliver Hucke et al.Binding affinities and protein ligand complex geometries of nucleotides at the F1 part of the mitochondrial ATP synthase obtained by ligand docking calculations.FEBS Letter 530.2002:100.http://www.sciencedirect.com/science?_ob=ArticleURL& udi=B6T36-46THJF7-F& user=2176452& coverDate=10%2F23%2F2002& al id=587146035&_rdoc=2&_fmt=summary&_orig=search&_cdi=4938&_sort=d&_docanchor=&view=c&_ct=5&_acct=C000006499& version=1& urlVersion=0& userid=2176452&md5=44359218656cfl 8d3861 d2752fSccf06.
    [66]AEleen Frisch,Michael J.Frisch,Gary W.Trucks.Gaussian 03[M].2006:59.
    [67]JIANG Hua-Liang,CHENG Kai-Xian,JI Ru-Yun.Chemistry Online,1995,4:1-6
    [蒋华良,陈凯先,稀汝运.化学通报,1995,4:1-6].
    [68]NING Yong-Cheng.Identification of Organic Compound and Organic Spectroscopy.Beijing:Publishing Company ofScience,2000:335
    [李永成.有机化合物结构鉴定与有机波谱学.北京:科学出版社,2000:335].
    [69]JIANG Shou-Ping,Xuan Jian-Cheng.Chinese Science(B Edition),1987,6:609-614
    [江寿平,宣建成.中国科学(B版),1987,6:609-614].
    [70]http://www.ccl.net/cca/software/MS-WIN95-NT/mopac6/nbo/index.shtml.
    [71]G.D.CHRISTIAN,J.E.O'REILLY 王镇浦,王镇棣译.仪器分析.北京:北京大学出版社[M].1991:180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700