用户名: 密码: 验证码:
二苯烯酮类化合物的合成及其荧光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光探针具有高灵敏性、高选择性、非破坏性、特异性和时间可控性等优点,被广泛应用于分析化学、生物化学、细胞生物化学、医学等领域,特别是在生命科学领域。由于荧光探针技术在诸多领域中的重要应用,尤其在蛋白质基因工程中的应用,使得其成为目前国内外研究的热点。
     在本文中,以无毒、药效广泛的可食用性色素姜黄素为母体化合物,设计合成了一系列共七十个化合物。这类化合物结构中存在着二苯烯酮结构,可作为荧光探针的“荧光团”,而且烯酮结构中存在酮式与烯醇式之间的转换亦可为化合物提供特殊的光学性能。
     由此,本文用荧光法研究了二苯烯酮类化合物与pH值、酪氨酸酶、BSA之间的荧光响应。主要研究工作和结果如下:
     1二苯烯酮类化合物的合成
     本文选用常见的取代苯甲醛与酮为原料,在碱性条件下,以醛酮缩合机理,合成了七十个化合物。并用核磁共振、质谱等对其结构进行了表征。
     2二苯烯酮类化合物对pH值的响应
     研究了合成的化合物的紫外吸收光谱与荧光光谱对溶液pH值间的关系。结果显示,化合物的紫外吸收光谱与荧光光谱对pH值有强烈的依赖性。紫外吸收光谱在溶液酸碱性发生变化时,最大吸收峰发生红移,使得溶液颜色产生明显变化。同时,荧光光谱强度随着pH值的增加发生显著性增大。上述特性表明二苯烯酮类化合物可作为可视化pH荧光探针使用。其中3'-OCH3-4'-OH结构的类似物(A4、B4、C4、D4和E4)具有良好荧光性能。
     构效关系研究表明:4’-OH是化合物荧光性能的主要基团。在酚羟基邻位引入甲氧基能提高化合物的荧光性能,而引入溴则降低其荧光性能。此外,环戊酮类化合物相对于丙酮、环己酮、噻喃酮和吡喃酮类化合物具有较高的荧光性能。
     3二苯烯酮类化合物对酪氨酸酶的响应
     研究了酪氨酸酶对化合物荧光的猝灭。同时,发现化合物对酪氨酸酶有抑制作用。结果表明,酪氨酸酶对化合物的荧光具有猝灭功能。随着酪氨酸酶浓度的增加,化合物的荧光强度逐渐被猝灭,其中以含有邻二酚羟基结构的类似物猝灭性能最好。另一方面研究显示,化合物特别是带有酚羟基的二苯烯酮类似物对酪氨酸酶有显著的抑制作用。随着化合物浓度的增加,酪氨酸酶的活性逐渐降低,以含有邻二酚羟基结构的类似物(A6、B6、C6、D6和E6)抑制效果明显。最终分析表明酶动力学法和荧光光谱法所得结果可以相互验证。
     4二苯烯酮类化合物对BSA荧光的响应
     研究了合成化合物对BSA荧光的猝灭作用。结果显示,化合物对BSA荧光的有猝灭效果。其中,含有邻二酚羟基结构的类似物(A6、B6、C6、D6和E6)对BSA的猝灭常数和结合常数最大。
     构效关系研究表明,以芳香环上对位羟基为基准,在邻位引入羟基或者溴时,猝灭常数和结合常数变大;而引入甲氧基时猝灭常数和结合常数则变小。另外环戊酮类化合物相对于其他酮类化合物具有较高的猝灭常数和结合常数。
It is well-known that fluorescent probes owning preferential properties such as high sensitivity, non-destructivity, specificity and timecontrollability had been widely used in analytical chemistry, bioanalytical chemistry, medicine and cellular biology, especially in the life sciences. Fluorescent probe technology was widely used in many fields, especially in Protein-Gene engineering, which made fluorescent probe techniques to be the hot research topics.
     In this study, seventy compounds were designed and synthesized based on curcumin, which was an eatable pigment with low toxicity and wildely medical and pharmacal activity. The distyryl ketone structure contained in those compounds was ordered as a "fluorophore". Further more, the conversion between keto form and enli form in ketene structure colud provide special optical properties. Since those compounds were derived from nature product curcumin, they also had the low toxicity.
     The studies of fluorescence properties of compounds mainly included the fluorescence response of compounds to pH values, tyrosinase and BSA. The main research works and results were sumerized as follows:
     1) Synthesis of compounds containing diphenyl ketene structure
     In this paper, seventy compounds were synthesized with substituted benzaldehyde and ketone by aldol condensation under alkaline conditions. The structure was characterized by'H-NMR and MS.
     2) Fluorescent response of diphenyl ketene analogues to pH value
     The UV-absorption spectra and fluorescence spectra of compounds were investigated in different pH values. The results indicated that UV-absorption spectra and fluorescence spectra were strongly dependent on pH values. The maximum absorption peaks of absorption spectra of compounds were red shifted, while the environment changed from acidity to alkalinity, which made the solution of compounds undergo a distinct color change. Fourther more, the intensity of fluorescence spectra was enhanced significantly with the increase of pH values in alkaline conditions. Those features made compounds to be used as visable pH fluorescent probes. Compounds containing the 3'-OCH3-4'-OH on benzene ring (A4, B4, C4, D4, and E4) had favorable fluorescence property.
     Analyzing the relationship of stucture,4'-OH on benzene ring was found to be the key group for fluorescence, and fluorescence properties improved when a methoxy was introducted at the position of ortho-phenolic hydroxyl, while bromine made the contrary. In addition, fluorescence properties of compounds with cyclopentanone searies were better than compounds with acetone, cyclohexanone, thiapyrones and pyrones searies.
     3) Fluorescent response of diphenyl ketene analogues to tyrosinase
     The fluorescence quenching of tyrosinase on diphenyl ketene analogs and the inhibition of diphenyl ketene analogs on tyrosinase were studied. The tyrosinase showed the function to quenching the fluorescence of compounds. Fluorescence of compounds was gradually quenchinged by tyrosinase. Amongst, compounds containing ortho dihydroxyl groups did the best. At the same time, we found compounds had the inhibility on tyrosinase. Activity of tyrosinase was gradually reduced with increasing concentrations of compounds. Compounds containing ortho dihydroxyl groups showed remarkably potent inhibitory effects on tyrosinase. The results of enzyme kinetics and Fluorescent Spectrometry could check each other.
     4) Fluorescent response between diphenyl ketene analogues to BSA
     The fluorescence quenching of diphenyl ketene analogues on BSA were investigated. The results indicated that compounds could quench the fluorescence of BSA. The quenching constant and binding constant of compounds containing ortho dihydroxyl groups were the largest.
     Analyzing the relationship of stucture,4'-OH on benzene ring was found to be the major groups, the quenching constants became larger when introducting the phenolichydroxyl or bromine at the ortho-position of 4'-OH, however the methoxy could make the quenching constants smaller. The quenching constants of cyclopentanone searies were better than other searies.
引文
[1]韩婷,密鹤鸣.姜黄的化学成分及药理活性研究进展[J].解放军药学学报,2001,17(2):95-97.
    [2]俞定岳.姜黄素衍生物合成的研究进展[J].海峡药学,2011,23(3):6-8.
    [3]许实波.姜黄素的药理作用研究概况[J].中草药,1991,22(8):137-139.
    [4]杜志云,古练权,徐学涛,等.姜黄素及其衍生物对醛糖还原酶的抑制作用[J].化学研究与应用,2007,8(1):22-26.
    [5]王旗,王夔.姜黄素的代谢研究[J].中国药理学通报,2003,5(10):21-25.
    [6]薛妍,夏天,赵建斌.姜黄素的抗癌作用机制研究进展[J].中草药,2000,12(2):72-75.
    [7]Hong X Q, Huang Y F, Fn M M, et al. Effect s of bisdeme thoxy curcumin in decreasing lip ids and anti peroxidized lipop rot ein[J]. Chin J Nat Med,2006, 4(2):1212-1241.
    [8]于冬青,邓华聪.姜黄素的药理作用研究进展[J].山东医药,2005,7(2):76-77.
    [9]韩苏夏,张晓智.姜黄素抗肿瘤作用及其机制研究进展[J].陕西医学杂志,2002(11):47-49.
    [10]Chen, Warr Mu. Heterocyclic[J]. Chem,1997,3(1):221-222.
    [11]Pabon, H. J. J. A synthesis of curcumn and related compounds[J]. Rec. Trav. Chim. Pays-Bas.,1964,83:379-386.
    [12]Xu Qiu, Zhong Liu,Wei-Yan Shao,et al. Synthesis and evaluation of curcumin analogues as potential thioredoxin reductase inhibitors [J]. Bioorganic & Medicinal Chemistry,2008,16:8035-8041.
    [13]邹怀波,丁伟,周刚.姜黄素二硝基苯肼衍生物的合成与活性评价[J].西南农业大学学报(自然科学版),2006,28(1):58-60.
    [14]程桂芳,何克勤.姜黄素衍生物的设计合成[J].药学学报,1996,11(3):878-879.
    [15]马晓华,沃兴德,梁海曼.姜黄素抗肿瘤作用与诱导肿瘤细胞凋亡的研究概况[J].国外医学肿瘤学分册,1999,26(1):21-24.
    [16]李少博.姜黄素衍生物的合成及其生物活性研究[D]2007.
    [17]张慧娜.姜黄素在前列腺肿瘤细胞L N Ca中对人同源盒基因N K X 3.1表达的下调作用[J].山东大学:2000.
    [18]涂增清.姜黄素类似物的合成及其对酪氨酸酶抑制活性研究[D].广州,2010.
    [19]Kumar S, Narain U, Tripathi S, et al. Syntheses of curcum in bioconjugates and Study of their ant ibact erial activities against a-lact amase producing microorganisms[J].Bioconj Chem,2001,12(4):464-469.
    [20]Stoskar R R, Shahh S J, Shenoy S G. Evolut ion of antiirrflammat ory propert y of curcumin in patient s w ith post operat ive irrflammat ion[J]. Int. J. Clin Pharm acol Their Toxicol,1986,24:651-654.
    [21]Govindrajan V S. Turmeric chemistry, technology and quality [J]. CRC Crit Rev Food Sci,1979,12:199-301.
    [22]吴文君,刘惠霞,朱靖博.天然产物杀虫剂-原理·方法·实践[M].西安:陕西科学技术出版社,1998:275-276.
    [23]张磊,李杰,陈国良.姜黄素衍生物生物活性的研究进展[J].沈阳药科大学学报,2008,25(4):331-336.
    [24]韦星船,杜志云,涂增清,张煜,徐学涛.姜黄素衍生物与类似物的构效关系研究进展[J].化学研究与应用,2010,22(5):527-537.
    [25]Aggarwal B B, Harikumar K B. Potential the rapeutic effects of curcum in, the anti-inflamm atory agent, against neurode generative, cardiovascular, pulmonary, metabolic, auto immune and neoplastic diseases[J]. Int. J. Biochem. C ell Bio.,2008, 41:40-59.
    [25]糖传核,彭志英.姜黄素类物质的生物功能及其氧化机制,中国食品添加剂,2000,4:40-44.
    [26]Masuda T, Hidaka K, Shinohara A,et al. Chemical studies on antioxidant mechanism of curcuminoid:Analysis of radical reaction products from curcumin[J]. J. Agric. Food Chem.1999,47:71-77.
    [27]Masuda T, Toi Y, Bando H,et al. Structural Identification of New Curcumin Dimers and Their Contribution to the Antioxidant Mechanism of Curcumin[J]. J. Agric. Food Chem.2002,50:2524-2530.
    [28]Masuda T, Bando H, Maekawa T, et al. A novel radical terminated compound produced in theantioxidation process of curcumin against oxidation of a fatty acid ester [J]. Tetrahedron Letters,2000,41:2157-2160.
    [29]魁革平,沃兴德.姜黄素及其衍生物的抗氧化作用研究概况[J].浙江中医学院学报,1998,22(6):10-12.
    [30]Sharma O P. Antiox idant activity o f curcum in and related compounds[J]. Biochem Pharmacol.,1976,25:1811-1812.
    [32]Wright J S. Predicting the antioxidant activity o f curcum in and curcuminoids[J]. Mol Struct,2002,591:207-217.
    [31]Priyadarsini K I, Maity D K, Naik G H, etal. Role of phenolic O-H and methylene hydrogen on the free radical reactions and antiox idant activity of curcumin[J]. FreeRadic Biol M ed.,2003,35:475-484.
    [34]Srinivasan M, Sudheer A R, Menon V P. Ferulic acid:therapeutic potential through its antiox idant property[J]. J. Clin. Biochem. Nutr.,2007,40(2):92-100.
    [34]邓兵,杜志云,唐煌,等.姜黄素类似物的合成及其清除自由基的研究[J].化学研究与应用,2005,18(9):1124-1126.
    [35]Ka Heng Lee, Farida Haryani A, etal. Syn thesis and biological evaluation of Curcumin-like diarylpen tanoidana logues for anti-inflammatory, antiox idant and anti-tyrosinase activities[J]. Europ ean Journal of M ed icinal Chemistry, 2009,44:3195-3200.
    [36]Srinivasan A, Menon V P, Rajasekaran K N. Protection of pencreatic betacells by the potential antioxidants biso hydroxyc innamoyl methane, analogue of natural curcumcoid in experimental diabetes[J]. J. P harm. Pharm. Sci.,2003,6:327-333.
    [37]Ya Jing Shang, Xiao Ling Jin, Xian Ling Shang, etal. Antioxidant capacity of Curcumin directed ana logues:structure activity relationsh ip and influence of microenvironment[J]. Food Chemistry,2010,119(4):1435-1442.
    [38]郑彩霞,邵丽丽.姜黄素类似物体外抗氧化活性研究[J].江西中医药,2010,41(5):52-53.
    [39]Bonte F, Noel-Hudson M S, Wepierre J, etal. Protective effect of curcuminoids on epidermal skin cells under free oxygen radical stress[J]. Planta Med,1997,63(3): 265-266.
    [40]Sreejayan R M N. Curcuminoids as potent inhibitors of lipid peroxidation[J]. J Pharm Pharmacol,1994,46(12):1013-1016.
    [41]Leonid G N, Oded S,Hanne T H, etal. Study on curcumin and curcuminoids:XXV Antioxidant effects of curcumin on the red blood cell membrane[J]. Pharmaceutics, 1996,132(122):251-257.
    [42]Mukhopadhyay A, Basu N, Ghatak N, Gujral P K. Anti-inflammatory and irritant activities of curcumin analogues in rats[J]. Agents Actions,1982,12:508-515.
    [43]Nurfina A N, Reksohadiprodjo M S, Timmerman H, etal. Synthes is of some symmetrical curcum in derivatives and the irantiin flamm atory activity[J]. Eur. J. Med. Chem.,1997,32:321-328.
    [44]Selvam C, Jachak S M, Thilagavathi R, etal. Design, synthesis, biological evaluation and molecular docking of curcum in analogues as antioxidant, cyclooxygenase inhibitory and anti-inflammatory agents[J]. Bioorg. Med. Chem. Lett.,2005,15: 1793-1797.
    [45]Guang Liang, Xiaokun Li, Li Chen, etal. Synthesis and anti-inflammatory activities of mono-carbonyl analogues of curcumin[J]. Bioorg. Med. Chem. Lett.,2008,18: 1525-1529.
    [46]Kuttan R, Kuttan G. Inhibition of lung metastasis in mice induced by BI6FIO melonama cells by polyphenolic compounds [J]. Cancer Lett.,1985,29:197.
    [47]Holy J M, Jon M. Curcumin disrupts mitotic spindle structure and induces micronucleation in MCF27 breast cancercells[J].Mut Res,2002,518(1):71-84.
    [48]Squires M S, Hudson E A, Howells L, etal. Relevance of mitogenactivated protein kinase (MAPK) and phosphotidylinositol-3-kinase protein kinase B(PI3K/PKB) pathways to induction of apoptosis by curcumin in breast cells[J]. Biochem Pharmacol, 2003,65(3):361-376.
    [49]Singh A K, Sidhu G S, Deepa T, etal. Curcumin inhibits the proliferation and cell cycle progression of hunamumbilical veinendothelial cell[J]. Cancer Lett, 1996,107(1):109-115.
    [50]张丽娟,陆茵.姜黄素抗肿瘤机制研究进展[J].中国中医药信息杂志,2008,15(4):100-101.
    [51]Talalay P. The importance of using scientific principles in the development of medicinal agents from plants[J].Acad M ed.,2001,76:238-247.
    [52]James R, Fuchs, Bulbul P, Deepak B, etal. S tructure □ activ ity re lationship stud ies of curcumin analogues[J]. B ioorganic&Medical Chemistry Letters,2009,19: 2065-2069.
    [53]杜志云,古练权,张煜,等.姜黄素及其衍生物对醛糖还原酶的抑制作用[J].化学研究与应用,2007,19(8):914-918.
    [54]Ishida J, Ohtsu H, Tachibana Y, etal. Antitum or agents. Part 214:synthesis and evaluation of curcum in analogues as cytotoxic agents[J]. B ioorg. M ed. Chem.,2002, 10:3481-3487.
    [55]Lin L, Shi Q, Nyarko A K, etal. Design and synthesis of new curcumin analogues as potential anti-prostate cancer agents[J]. Med Chem.,2006,49:3963-3972.
    [56]Weber W M, Hunsaker L A, Roybal C N, etal. Activa tion of NFkappaB is inhibited by curcumin and related enones[J]. B ioorg. M ed Chem.,2006,14:2450-2461.
    [57]陈莉敏,刘洋.姜黄素金属配合物的合成、表征和抗肿瘤活性研究[J].中国新药杂志,2008,17(19):1676-1678.
    [58]Bernard Valeur. Moleeular Fluoreseenee:PrineiPles and APPlieations[M]. Weinheim (Federal Republie of Germany):Wiley-VCH VerlagGmbH,2001, 351-378.
    [59]O'Haver T C, Development of lumineseenee spectrometry as an analytieal tool[J]. J. Chem.Edue.,1978,55:423-428.
    [60]田茂忠.BODIPY和罗丹明类阳离子荧光探针的研究[D].大连,2007.
    [61]武祥龙.新型单克隆抗体荧光探针和pH值荧光探针的合成及免疫荧光组织化学应用[D].西安,2010.
    [62]张华山等,分子探针与检测试剂[M].北京:科学出版社,2002,163-178.
    [63]朱维平,徐玉芳,钱旭红.具有重要生物学意义的重金属及过渡金属离子荧光分子探针[J].化学进展,2007,19(9):1229-1238.
    [64]Castano F, Lazaro A, Lombrana S. On the fluorescence quenehing of Pyreneby iodine[J].Spectrochim.Acta A:Mole. Spectr,1983,39(1):33-35.
    [65]Mustafa Arlk, Neslihan Celebi, Yavuz Onganer. Fluorescence quenehing of fluorescein with moleeular oxygenin solution[J]. Photoehem.PhotobioLA:Chem, 2005,170(2):105-111.
    [66]Saha S K, Krishnamoorthy G, Dogra S K. Fluorescence quenehing of 2-aminofluorene by cetylpyridinium chloride, iodide ion and acrylamide in non-ion iemicelles:Tweens[J].Photochem. Photobiol.A:Chem,1999,121(3):191-198.
    [67]杜健军._族离子荧光探针的研究与细胞成像的应用[D].大连,2009.
    [68]梁广.结构稳定的单羰基姜黄素类似物的设计[D].南京,2008.
    [69]韩浩.新型荧光素类细胞Ca_2_荧光探针的设计合成及在细胞信号转导中的应用研究[D].西安,2008.
    [70]窦月磊.花酰亚胺类荧光探针的研究[D].大连,2010.
    [71]Gunnlaugsson T, Ali H D P, Glynn M, etal. Fluorescent Photoinduced electron transfer(PET) sensors foranions:From design to potential application[J]. Journal of Fluorescence,2005,15:287-299.
    [72]汪宝和.荧光探针的合成及表征[D].天津,2005.
    [73]Belser P, De Cola L, Hartl F, etal. Photochromie Switehes Ineorporated in Bridging Ligands:A New Tool to Modulate Energy-Transfer Processes [J]. Advaneed Functional Materials,2006,16:195-208.
    [74]Magri D C, Brown G J, McClean G D, etal. Communieating Chemieal Congregation:A Moleeular and Logie Gate with Three Chemieal Inputs as a"Lab-on-a-Moleeule" Prototype[J]. Journal of the American Chemieal Soeiety,2006, 128:4950-4951.
    [75]Sautter A, Kaletas B K, Sehmid DG, etal. Ultrafast Energy-Electron Transfer Caseadeina Multiehromophoric Light-Harvesting Moleeular Square[J]. Journal of the Ameriean Chemieal Soeiety,2005,127:6719-6729.
    [76]de Silva A P, Gunaratne H Q N,Gunnlaugsson T, etal. Signaling recognition events with fluorescent sensors and switehes[J]. Chemieal Reviews,1997,97:1515-1566.
    [77]郭祥峰.亲水性萘酰亚胺阳离子荧光分子探针的设计、合成及性能[D].大连,2004.
    [78]郭柯馨.基于PET机理的Hg2+荧光探针的设计和应用研究[D].大连,2009.
    [79]于法标.用于细胞内具有重要生物学意义的活性小分子物种的高选择性识别的新型荧光探针的合成研究及其在生物体系中的应用[D].济南,2007.
    [80]马京.荧光小分子pH探针的最新研究进展[J].广东化工,2010,37(12):56-57.
    [81]Xu Z, Xiao Y, Qian X, etal. Ratio metricand Selective Fluorescent Sensor for Cull Based on Internal Charge Transfer(ICT)[J]. organie Letters,2005,7:889-892.
    [82]Yuan M, Li Y, Li J, etal. A Colorimetric and Fluorometrie Dusl-Model Assary for Mereury Ion by a Moleeule[J]. organie Letters,2007,9:2313-2316.
    [83]朱建华.荧光分子探针制备、性能研究及其在环境分析化学中的应用[D].长沙,2007.
    [84]崔景强.苯乙烯类双光子荧光探针的合成及应用研究[D].大连,2010.
    [85]Zelphati o, Szoka F C. Mechanism of oligonucleotide release from cationic liposomes. Proceedings of the National Aeademy of Seienees of theUnited States of Ameriea, 1993[C],93:11493-11501.
    [86]Ros-Lis J V, Marcos M D, Martinez-manez R, etal. A Regenerative Chemedosimeter Based on Metal-Indueed Dye Formation for the Highly Selective and Sensitive Optieal Determination of H+ Ions[J]. Angewanute Chemie International Edition,2005,44, 4405-4407.
    [87]宋春霞.基于罗丹明B的阳离子荧光探针的研究[D].大连,2009.
    [88]张晓琳.萘酰亚胺类一氧化氮荧光探针的设计、合成及光谱研究[D].大连,2005.
    [89]扈靖.香豆素类金属离子探针的设计、合成及性能研究[D].天津,2008.
    [90]马国春.新型萘酰亚胺金属离子荧光探针的设计、合成及性能研究[D].大连,2007.
    [91]贺怀贞.新型Ca2+荧光探针的设计、合成及胞内信使作用研究[D].西安,2009.
    [92]Mahara A, Iwase R, Sakamoto T, etal. Bispyrene-conjugated 2'-O-methyloligonucleo-tide as a highly specific RNA-recognition probe[J]. Angew Chem Int Ed Engl,2002,41:3648-3650,3518.
    [93]陆伟红.有机荧光分子的合成、表征及离子识别研究[D].苏州,2008.
    [94]关晓琳.新型温度/pH荧光双重响应性高分子发光材料的合成及发光性能研究[D].兰州,2007.
    [95]严正权,胡蕾,周友运.荧光探针N-9-吖啶-α-氨基乙酸的合成及荧光分光光度法测定环境水样中痕量铜[J].理化检验(化学分册),2009,45:387-389.
    [96]付艳艳,孙志伟,赵怀鑫,等.荧光探针5-羰基咪唑苯并吖啶酮的合成及其LC-APCI-MS法测定胺[J].高等学校化学学报,2009,30:2146-2153.
    [97]尹璐,王敬,黄萍.阳离子铝酞菁红区荧光探针测定硫酸软骨素[J].中国生化药物杂志,2011,04:33-36.
    [98]Minhee L, Niko G G, David S. Development of pH-Responsive Fluorescent False Neurotransmitters[J]. J. Am. Chem. Soc.,2010,132:8828-8830.
    [99]Tang B, Liu X, Xu K, etal. A dual near-infrared pH fluorescent probe and its application in imaging of HepG2 cells[J]. Chem Commun,2007:3726-3728.
    [100]Zhang Z R, Samuel A F. Design, synthesis and evaluation of near-infrared fluorescent pH indicators in a physiologically relevant range[J]. Chem Commun,2005:5887-5889.
    [101]Hyeran L, Mikhail Y B, Kevin G, etal. Near-Infrared Fluorescent pH-Sensitive Probes via Unexpected Barbituric Acid Mediated Synthesis[J]. Org Lett,2009,11:29-32.
    [102]Mark S B, Dougal B D, Michael E C, etal. A pH sensitive fluorescent cyanine dye for biological applications[J], Chem Commun,2000:2323-2324,
    [103]Bo Tang, Fabiao Yu, Ping Li, etal. A Near-Infrared Neutral pH Fluorescent Probe for Monitoring Minor pH Changes:Imaging in Living HepG2 and HL-7702 Cells[J]. J. Am. Chem. Soc.,2009,131:3016-3023.
    [104]Scott A H, Ralph W. Optimized pH-responsive cyanine fluorochromes for detection of acidic environments [J]. Chem Commun,2007:2747-2749.
    [105]Klonis N, Clayton AH, Voss EW Jr, etal. Spectral properties of fluorescein in solvent-water mixtures:applications as a probe of hydrogen bonding environments in biological systems[J]. Photochem. Photobiol,1998,67:500-515.
    [106]Jose J B, Ferreira, Silvia M B, Costa. J. Molecular. Structure,2001,565/566:35-38.
    [107]Pal P, Zeng H, Durocher G,etal. Spectroscopic and Photophysical properties of some new rhodamine derivatives in cationic, anionic and neutral micelles[J]. Photochem. Photobiol, A:chem.1996,98:65-72.
    [108]Pal P, Zeng H, Durocher G, etal. Phototoxicity of some bromine-substituted rhodamine, dyes: synthesis, photophysical properties and application as, photosensitizers[J].Photochem. Photobiol.1996,63:161-172.
    [109]Jaromir P, Karel S. Slow fluorescent indicators of membrane potential:a survey of different approaches to probe response analysis[J]. Photochem. Photobiol. B:Biol., 1996,33(2):101-124.
    [110]Quinn A B, Ruisong X, Matthew E M, etal. Design and Investigation of a Series of Rhodamine-Based Fluorescent Probes for Optical Measurements of pH[J]. Org Lett, 2010,12:3219-3221.
    [111]Zhang W, Tang B, Liu X, etal. A novel approach to correct variations in Raman spectra due to photo-bleachable cellular components [J]. Analyst,2009,134:367-371.
    [112]Louis G, Luv V, Richard G, Tiechao L, Ajay K, Gupta. Novel rhodamine derivatives for photodynamic therapy of cancer and in vitro purgingof the leukemials, US, 5556992,1996-09-17.
    [113]William J W, Jeffrey R C, Peter E R, etal. Derivatized RhodamineDye and its Copolymers., U.S. Patent,5 808 103,2001-09-15.
    [114]Xiao F Y, Xiang Q G, Yi B Z. Development of a novel rhodamine-type fluorescent probe to determine peroxynitite[J]. Talanta,2002,57:883-890.
    [115]Morliere P, Mangel W F, Santus R, etal. Interaction of tetrapyrrolic rings with rhodamine 110 and 123 and with rhodamine 110 derivatives bearing a peptidie side chai[J]. Biochem. Biophys. Res Commun,1987,146(1):107-113.
    [116]Ribou C A, Vigo J, Sslmon M J. Synthesis and characterization of (1'-pyrene butyl)-2-rhodamine ester:a new probe for oxygen measurement in the mitochondriaof living cells[J]. J. Photochem. Photobiol. A: chem.,2002,151:49-55.
    [117]Maciej A, Jonathan G. Synthesis of probes with broad pH range fluorescence[J].Bioorganic Medcinal Chem. Lett.,2003,13:2327-2330.
    [118]Udo M, Andreas O. Rhodamine dyes, U.S. Patent,4647675,1987-03-03.
    [119]Arden J J, Karl H, Hamers S M, etal. Carboxamide-substituted dyes for analytical applications, EP,576059,2005-09-21.
    [120]Sioback R, Nygern J, Kubista M. Absorption and Fluorescence Properties of Fluorescein[J]. Spect. Act. A.,1995,51:17-21.
    [121]Song L, Hennink E J, Young T, Tanke H J., Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy [J]. Biophys. J,1995,68(6):2588-2600.
    [122]Song L, Varma C A G. O, Verhoeven J W, Tanke H. Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy[J]. Biophys. J.,1996, 70(6):2959-2968.
    [123]Banks P R, Paquette D M. Comparison of Three Common Amine Reactive Fluorescent Probes Used for Conjugation to Biomolecules by Capillary Zone Electrophoresis[J]. Bioconjugate Chem.,1995,6(4):447-458.
    [124]Jiao G S, Han J W, Burgess K. Syntheses of Regioisomerically Pure 5-or 6-Halogenated Fluoresceins[J]. J. Org. Chem.,2003,68:8264-8267.
    [125]Jacobsen C N, Rasmussen J, Jakobsen M. Viability staining and flow cytometric detection of Listeria monocytogenes[J]. J. Microbiol. Method.,1997,28:35-39.
    [126]Khanna P L, Ullman E F. Eur. Patent,0050684A1,1982.
    [127]Phillip G M. Grayslake,Ⅲ.5(6)-Methyl substituted fluorescein devivatives,US, 5352803,1994-10-04.
    [128]Phillip G M., Preparation of 5-and 6-(aminomethyl) fluorescein[J]. Bioconjugate Chem,1992,3(5):430-431.
    [129]Wang H, Li J, Liu X, Yang T X, Zhang H S., N-Hydroxysuccinimidyl Fluorescein-O-acetate as a Fluorescent Derivatizing Reagent for Catecholamines in Liquid Chromatography[J]. Analyt. Biochem.,2000,281:15-20.
    [130]Wang H, Li J, Liu X, Zhang H S, N-hydroxysuccinimidyl fluorescein-O-acetate as a highly fluorescent derivatizing reagent for aliphatic amines in liquid chromatography[J]. Anal. Chim. Acta.,2000,423:77-83.
    [131]Julie M, Daniel O F, Donal F, O'Shea A. Conjugatable and pH Responsive Near-Infrared Fluorescent Imaging Probes[J]. Org Lett,2009,11:5386-5389.
    [132]Mukulesh B, Wenwu Q, Nikola B, etal. BODIPY-Based Hydroxyaryl Derivatives as Fluorescent pH Probes[J]. Org Chem,2005,70:4152-4157.
    [133]Junyan H, Aurore L, Rola B, etal. A Ratiometric pH Reporter for Imaging Protein-dye Conjugates In Living Cells[J]. J. Am. Chem. Soc.,2009,131:1642-1643.
    [134]Martinus H V W, Said G, Olivier M, etal. Strong Modulation of Two-Photon Excited Fluorescence of Quadripolar Dyes by (De)Protonation[J]. J. Am. Chem. Soc.,2004, 126:16294-16295.
    [135]Francisco G, Isabel B M, Laura V, etal. Synthetic Macrocyclic Peptidomimetics as Tunable pH Probes for the Fluorescence Imaging of Acidic Organelles in Live Cells[J]. Angew Chem Int Ed,2005,44:6504-6508.
    [136]Hwan M K, Myoung J A, Jin H H, etal. Two-Photon Fluorescent Probes for Acidic Vesicles in Live Cells and Tissue[J]. Angew Chem Int Ed,2008,47:2231-2234.
    [137]Sheng Y, Katherine J, Schafer-Hales, Kevin D B. A New Water-Soluble Near-Neutral Ratiometric Fluorescent pH Indicator[J]. Org Lett,2007,9:5645-5648.
    [138]Murtaza Z, Chang Q, Rao G, Lin H. Lakowicz J R. Long-lifetime metal-ligand pH probe[J]. Anal. Bio chem.,1997,247:216-220.
    [139]de Silva A P, Gunaratne H Q N, Rice T E. Signaling Recognition Events with Fluorescent Sensors and Switches Angew[J]. Chem. Int. Ed. Engl.,1997, 97(5):1515-1566.
    [140]Laura T, Nelia B, Gonzalo C, Guillermo O. Can Luminescent Ru(II) Polypyridyl Dyes Measure pH Directly? [J]. Anal. Chem.,2010,82 (12):5195-5204.
    [1]麦镇江.姜黄素的药理作用研究进展[J].中药材,2004,5(9):76-79.
    [2]许实波.姜黄素的药理作用研究概况[J].中草药,1991,22(8):137-139.
    [3]杜志云,古练权,徐学涛,等.姜黄素及其衍生物对醛糖还原酶的抑制作用[J].化学研究与应用,2007,8(1):22-26.
    [4]Pabon, H. J. J. A synthesis of curcumn and related compounds[J]. Rec. Trav. Chim. Pays-Bas.,1964,83:379-386.
    [5]Xu Qiu, Zhong Liu,Wei-Yan Shao,et al. Synthesis and evaluation of curcumin analogues as potential thioredoxin reductase inhibitors [J]. Bioorganic & Medicinal Chemistry,2008,16:8035-8041.
    [6]Artico. M.; Di Santo, R.; Costi, R.; et al.Geometrically and conformationally restrained cinnamoyl compounds as inhibitors of HIV-1 integrase:Synthesis, biological evaluation, and molecular modeling[J]. J. Med. Chem. Vol.,1998,41(21):3948-3960.
    [7]SS Sardjiman, MS Reksohadiprodjo, L Hakim, et al. 1,5-Diphenyl-l,4-pentadiene-3-o-nes and cyclic analogues as antioxidative agents. Synthesis and structure-activity relationship[J]. European Journal of Medicinal Chemistry,1997,32:625-630.
    [8]Xu Qiu, Zhong Liu,Wei-Yan Shao,et al. Synthesis and evaluation of curcumin analogues as potential thioredoxin reductase inhibitors [J]. Bioorganic & Medicinal Chemistry,2008,16:8035-8041.
    [9]Jonathan R. Dimmock, Praveen Kumara, Adil J. Nazarali, et al. Cytotoxic 2,6-bis (arylidene)cyclohexanones and related compounds [J]. Eur. J. Med. Chem., 2000,35:967-977.
    [10]徐莉英,董金华,陈国良,等.2-(E)-(2-甲氧基苯亚甲基)环戊酮Mannich碱类化合物的合成及其抗癌、抗炎活性[J].中国药物化学杂志,1999,9(4):235-239.
    [11]杜志达,曾昭国.覆盆子酮的合成研究[J].精细化工,2000,17(6):331-333.
    1 Tang B, Yu F B, Li P, Tong L L, Duan X, Xie T, Wang X. J. Am. Chem. Soc.,2009, 131(8):3016-3023
    2 Paradiso A M, Tsien R Y, Machen T E. Nature,1987,325(6103):447-450
    3 Burdette S C, Walkup G K, Spingler B, Tsien R Y, Lippard S J. J. Am. Chem. Soc., 2001,123(32):7831-7841
    4 Burns A, Ow H, Wiesner U. Chem. Soc. Rev.,2006,35(11):1028-1042
    5 Tang B, Liu X, Xu K H, Huang H, Yang G W, An L G. Chem. Commun.,2007,28(36): 3726-3728
    6 XIAO Feng-Juan, CHANG Hong, LIU De-Long. Spect roscopy and Spect ral Analysis, 2007,27(8):1560-1564
    7 Wang BS, Wang L, Wu T, Yang Z G, Peng X J. Chem J Chinese U,2010,31(6): 1148-1151
    8 Bergen A, Granzhan A, Ihmels H. Photochem. Photobiol. Sci.,2008,7(4):405-407
    9 Courbat J, Briand D, Damon-Lacoste J,wollenstein J, de Rooij N F. Sensors and Actuators B,2009,143(1):62-70
    10 Yamabe S, Tsuchida N, Miyajima K. J. Phys Chem. A,2004,108(14):2750-2757
    11 Chen Z G, Zhu L, Song T H, Chen J H, Guo Z M. Spectrochimica Acta Part A,2009, 72(3):518-522
    12 Razdan B K, Sugden J K. Chemistry and Industry,1970,3(23):686-686
    13 Du Z Y, Bao Y D, Liu Z, Mao X P, Ma L, Huang Z S, Gu L Q, Chan A S C. Archiv der Pharmazie,2006,339(3):123-128
    14 HUANG Chi-Bao, REN An-Xiang, HUANG Zhi-Hong, ZHENG Li-Jun, LI Hai-Bo, FENG Cheng-Hao. Chinese J. Anal. Chem.,2010,38 (4):464-468
    15 YANG Yun-Xu, DENG Xiao-Rong, JI Xing-Yue. Chinese J. Anal. Chem.,2008,36 (4): 504-508
    16 YU Hui, LIANG Shu-Cai, ZHONG Hai-Di, FU Ting, YAN Guo-Ping. Chinese J. Anal. Chem.,2011,39 (3):409-413
    17 Zhang W S, Tang B, Liu X, Liu Y Y, Xu K H, Ma J P, Tong L L, Yang G W. Analyst, 2009,134(2):367-371
    18 Liu Z P, Zhang C L, He W J, Qian F, Yang X L, Gao X, Guo Z J. New J. Chem.,2010, 34(4):656-660
    19 HUANG Chi-bao, FAN Jiang-li, PENG Xiao-jun, SUN Shi-guo. Progress in Chenistry, 2007,19(11):1806-1812
    20 Love L J C, Upton L M, Ritter A W. Anal. Chem.,1978,50(14):2059-2064
    [1]Khan KM, Maharvi GM, Khan MTH, et al. Tetraketones:a new class of tyrosinase inhibitors [J]. Bioorg Med Chem,2006,14:344-351.
    [2]Nerya O, Musa R, Khatib S, et al. Chalcones as potent tyrosinase inhibitors:the effect of hydroxyl positions and numbers [J]. Phytochemistry,2004,65:1389-1395.
    [3]Fenoll LG, Rodriguez-Lopez JN, Varon R, et al. Action mechanism of tyrosinase on meta-and para-hydroxylated monophenols [J]. Biol Chem,2000,381(4):313-320.
    [4]McEvily A J, Iyengar R, Otwell W S. Sulfite alternative prevents shrimp melanosis [J].Food Technology,1991,45:80-86.
    [5]张宗炳,冷欣夫.杀虫药剂毒理及应用[M].北京化学工业出版社,1993.
    [6]YI W, CAO R H, CHEN Z Y, et al. Design, Synthesis and biological evaluation of hydroxy- or methoxy-substituted phenylmethylenethiosemicarbazones as tyrosinase inhibitors[J]. Chem Pharm Bull,2009,57(11):1273-1277.
    [7]Courbat J., Briand D., Damon-Lacoste J. et al. Evaluation of pH indicator-based colorimetric films for ammonia detection using optical waveguides [J]. Sensors and Actuators B,2009,143(1):62-70.
    [8]Kutluay S B., Doroghazi J., Roemer M E. et al. Curcumin inhibits herpes simplex virus immediate-early gene expression by a mechanism independent of p300/CBP histone acetyltransferase activity [J]. Virology,2008,373 (20):239.
    [9]Shang Y J, jin X L, shang X L, et al. Antioxidant capacity of curcumin-directed analogues:structure-activity relationship and influence of microenvironment[J]. Food Chemistry,2010,119(4):1435-1442.
    [10]Espin J C, Wichers H J. Effect of captopril on mushroom ty-rosinase activity in vitro[J].Biochim Biophys Acta,2001,1544:289-300.
    [11]Meghana M., Sanjeev G., Ramesh B.. The Effect of Curcumin on Insulin Release in Rat-Isolated Pancreatic Islets[J]. Eur. J. Pharmacol.,2007,577 (123):183-191.
    [1]刘根兰.化学计量学-光谱法研究某些小分子与牛血清白蛋白的相互作用[D].2008.
    [2]PetersT Jr.. Serum albumin:recent progress in the understanding of its structure and Biosynthesis. Clin. Chm..1977,23(1):5-12.
    [3]Charies E.B., Hudson, B. S.. J. Biol.Chem.,1979,254,391.
    [4]杨频.我国生物无机化学的发展.化学通报,1999,12.
    [5]杨曼曼,杨频.荧光法研究血清白蛋白与药物的结合作用.生物化学杂志,1992,8(5):624.
    [6]杨睿,刘绍璞,某些分子光谱分析法测定蛋白质的进展.分析化学,2001,29(2):232-241.
    [7]张晓星,何苗,刘爱林等.荧光法对姜黄素与牛血清白蛋白相互作用的研究[J].光谱实验室,2010,27(2).
    [8]苏少景.光谱法研究药物小分子与牛血清白蛋白的作用机理[D].2007.
    [9]董念.光谱法研究三种黄酮类药物小分子与牛血清白蛋白的相互作用[D].2009.
    [10]Ross P D, Subramanian S. Thermo dynamics of Protein Association Reactions: Forces Contributing To stability [J]. Biochemistry,1981,20 (11):3096-3102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700