用户名: 密码: 验证码:
岷江上游植被群落特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岷江上游位于青藏高原和四川盆地的过渡地带,是我国一个重要的大尺度、复合型生态过渡带,也是一个生态系统脆弱区,其自然环境的复杂性、生态系统的脆弱性、经济发展的边缘性、社会文化的过渡性在我国都有典型的代表性。该区是世界生物多样性的热点地区和我国生物多样性保护的关键地区之一。近几十年来,由于恶劣的自然环境和过度的人类干扰,导致区域植被退化,引起了生物多样性丧失等一系列生态环境问题,对整个岷江流域乃至长江上游的生态安全和区域可持续发展构成严重的威胁。加之该区生态环境的脆弱性,一旦破坏后极易形成逆行演替,极难恢复,尽快开展植被群落特征的基础理论研究具有重要意义。
     本文选取岷江上游干旱河谷和岷江源区为研究对象,通过对该地区植被的大量群落学调查,综合TWINSPAN、DCCA、典型相关分析、主成分分析等多元统计分析方法和层次分析法(AHP),围绕环境梯度的变化与植被数量特征的响应和相互关系,进行了植被分类、群落分布与环境因子的关系、种群生态位、群落多样性、群落复杂性和群落稳定性等植物群落特征的研究,得出以下主要结论:
     (1)DCCA排序分析表明,岷江上游地区,植物群落的分布受土壤养分、水分及地形因子共同的影响,表现为DCCA各排序轴与土壤水分、养分和微地形呈现较高的相关性。地形因子中的海拔、坡形、坡度和坡向,土壤因子中的速效P、全P、土壤含水量、全N、pH值对植物群落分布有着较大的影响。
     (2)将土壤养分、水分因子作为资源梯度轴来研究种群及其种组生态位,较以往研究中以群落为梯度研究生态位更能反映种群对环境资源的利用和适应能力。主要灌木和草本种群的生态位宽度反映了种群对环境的适应能力和分布均匀程度。小花滇紫草、三花莸、白刺花、多花胡枝子、马鞍羊蹄甲、绵枣儿、铁扫帚、翻白委陵菜、黄背草、密生苔草、高山绣线菊、尖叶栒子、峨眉蔷薇、金露梅、窄叶鲜卑花,披针苔草、珠光香青、毛莨、小柴胡、圆穗蓼有较高的生态位宽度,具有较强的生态适应性,形成了该地区的优势种群;而翠蓝绣线菊、檀子栎、对节刺、猪毛菜、紫花野茅、歧茎蒿、虱子草、沙柳、喜阴悬钩子、沙棘、灰苞蒿、珠芽蓼、细弱草莓等种群,生态位宽度较低。生态位宽度较小的物种并非不是群落的优势种,取决于种群的分布范围和分布的均匀程度。
     (3)干旱河谷植物群落随海拔的增加,草本层和灌木层的α多样性和β多样性均表现为“高-低-高”的变化趋势。草本层的α多样性和β多样性高于灌木层,草本层和灌木层均在1400~1600 m和2000~2200 m两个海拔段有较高的α多样性和β多样性,反映了中海拔地区的生物多样性较低,低海拔和较高海拔地区多样性较高;不同群系类型的多样性表现为华帚菊-小黄素馨灌丛、金花小檗-忍冬灌丛、绣线菊灌丛有着较高的α多样性和β多样性,而西南野丁香灌丛、莸灌丛、小马鞍羊蹄甲-白刺花灌丛的群落α多样性和β多样性较低;不同坡向和坡形,α多样性和β多样性均表现为:阴坡>半阴半阳坡>阳坡、凹坡>平坡>凸坡;不同坡位,下坡位>上坡位>中坡位。灌木层和草本层α多样性在不同坡位上的多样性大小均为上坡位>下坡位>中坡位,而β多样性表现为下坡位>上坡位>中坡位。
     岷江源区植物群落在2900-3100 m、3500-3700 m海拔段有较高的a多样性,2700-2900m、3100-3400m、3700-3900m海拔段的多样性较低。不同植被类型的a多样性表现为森林群系>灌丛群系>草甸群系。柳灌丛、窄叶鲜卑花灌丛、绣线菊灌丛、锦鸡儿灌丛的草本层多样性较高,沙棘灌丛和小果小檗灌丛较低。草甸群系中,白茅草甸和苔草草甸多样性较高,蒿草草甸和高山草甸的物种多样性较低。锦鸡儿灌丛灌木层多样性较高,沙棘灌丛的多样性最低。岷江源区植物群落物种组成受海拔梯度的影响强烈,不同海拔梯度的物种组成差异明显,群落β多样性受草本层变化的影响较大。在不同群落类型过渡的2900~3100m和3500~3700m这两个海拔段,物种平均替代速率均较高,群落异质性较高。而在2700~2900m、3200~3300m、3800~3900m海拔段,生境异质性较低,物种平均替代速率也较低。灌木层β多样性沿海拔梯度的变化相对平稳,最高值出现在2900m处,最低值出现在3300 m处。
     β多样性与土壤水分和养分之间呈现显著的二次曲线关系,表明物种替代速率最大的植物群落,其样地的土壤养分和水分含量处于中间水平,并非养分、水分含量越高,物种周转速率就越高。
     (4)岷江上游灌丛地上生物量与海拔、土壤含水量、速效K、有机质、全P、水解N、全N呈显著的正相关关系,与坡度和pH值呈显著的负相关关系,其中海拔、土壤水分和速效K对灌丛地上生物量的影响最为显著。灌丛地上生物量随物种多样性和物种丰富度的增加而增加,与物种多样性、物种丰富度呈极显著的线性正相关关系。
     (5)用物种重要值代替物种多度,应用通讯理论中的霍夫曼编码方法研究群落复杂性及其与环境因子之间的一般关系,并揭示了群落复杂性与多样性、均匀度之间的一般关系。干旱河谷植物群落,在高海拔和低海拔段有较高的复杂性,中海拔段复杂性较低;不同坡位、坡形及坡向,群落总复杂性和结构复杂性,均表现为上坡位>下坡位>中坡位,凹坡>平破>凸坡,阴坡>半阴半阳坡>阳坡。不同群系的复杂性表现为华帚菊-小黄素馨灌丛的总复杂性最高,西南野丁香灌丛、驼绒藜灌丛的总复杂性最低。源区植物群落,在2900-3100m和3500-3700m两个海拔段有较高的总复杂性。不同群系的总复杂性,表现为森林群系>灌丛群系>草甸群系。云杉林的总复杂性最高,蒿草草甸的总复杂性最低。灌丛群系中,锦鸡儿灌丛的总复杂性最高,沙棘灌丛的总复杂性最低。草甸群系中,苔草草甸和白茅草甸群系总复杂性较高,蒿草草甸和高山草甸总复杂性较低。与β多样性随土壤养分变化规律相似,群落复杂性与土壤水分和养分之间也呈现显著的二次曲线关系,但源区和干旱河谷中影响群落总复杂性的土壤因子不尽相同。群落总复杂性并不是随土壤养分和水分含量的增加而呈现简单的线性增加关系。
     总复杂性与多样性及物种丰富度呈现出极显著的正相关关系,均匀度与结构复杂性有极显著的负相关关系。结构复杂性作为群落总复杂性与多样性的区分,在均匀度较高的群落中,群落总复杂性和多样性差别较小,结构复杂性较低。但也存在特殊情况,即当群落中物种数量较少时,即使较低的均匀度也不会使群落的结构复杂性达到最高,结构复杂性也会相对较低。结构复杂性对群落内物种数的变化较为敏感,均匀度和物种数共同影响着群落的复杂性。
     (6)将源于系统决策的层次分析法引入到群落稳定性评价研究,将植被盖度、多样性、复杂性、演替度等反映植被稳定性的数量特征指标结合气候、地形、土壤等外部环境因子,评价了岷江上游典型植物群落的稳定性,弥补了以往群落稳定性研究中只考虑植被数量特征的不足。源区植被群系中,云杉林、柳灌丛、窄叶鲜卑花灌丛、冷杉林、绣线菊灌丛有较高的稳定性值,沙棘和小果小檗灌丛稳定性值较低。草甸群系中,苔草草甸和白茅草草甸具有较高的稳定性值,蒿草草甸和高山草甸稳定性值最低。干旱河谷植被群系中,绣线菊灌丛、瑞香灌丛、小花滇紫草灌丛、小马鞍羊蹄甲-白刺花灌丛、莸灌丛、橿子栎灌丛有较高的稳定性值。
     长期的外界干扰下,岷江上游群落发生逆行演替。干旱河谷灌丛逆行演替模式为:檀子栎、绣线菊灌丛→华帚菊-小黄素馨灌丛、小花滇紫草灌丛→驼绒藜灌丛、莸灌丛、白刺花灌丛;源区逆行演替模式为云杉、冷杉针叶林→鲜卑花、绣线菊灌丛→锦鸡儿、小檗灌丛→白茅草甸、蒿草草甸。
The upper reaches of the Minjiang River, located between the Qinghai-Tibet plateau to the Sichuan Basin, is a fragile as well as an important large-scale and compound ecological transition zone , which is a typical case in terms of its complexity of natural environment, fragility of ecosystem, marginalizatioin of economical development and transitionality of social-culture in China, hence becoming one of the hot spots of world biodiversity conservation and key areas of domestic biodiversity conservation. A long history of anthropogenic influences combined with severe natural environments has resulted in its regional degraded vegetations, bringing out a series of ecological problems such as loss of biodiversity and posing a serious threat to the whole drainage basin of the Minjiang River even the ecological security and regional sustainable development in the upper reaches of Yangtze River. The readiness of regressive succession in ecological environment after being damaged and the slim possibility of restoration caused by fragility of ecological environment, makes an urgent call for a fundamental theoretical research on biodiversity conservation and restoration.
    Selecting the upper reaches region of Minjiang River as subject, revolving around the mutual responds and relationships between the environmental gradient and vegetation characteristics, this paper carries on the research on the vegetation classification, the connection between community distribution and environmental factors, population niche, community diversity, community complexity and community stability by investigating a large number of vegetation communities in this region and combining multivariate statistics such as TWINSPAN, DCCA, canonical correlation analysis, principal component analysis and AHP. The main conclusions this paper comes to are as follows:
    (1) DCCA ordination analysis shows that in the upper reaches region of the Minjiang River, the distribution of plant communities under the mixed influence of soil nutrient and water content demonstrates a high correlation with soil water content, nutrient and micro-topographigraphy, as illustrated in each axis of DCCA. Altitude, slope shape, slope degree, direction as micro topographical factors and available P, total P, soil water content, total N and soil pH as soil factors can produce a significant influence on the distribution of plant community.
    (2) Compared with previous studies in the gradient of community, this research on population niche in the resource gradient of soil nutrient and water content can generate a clearer demonstration of the ability of using and adaptability to environmental resources of populations. The niche breadth of main shrubs and herbs can reflect the adaptability to the environment and evenness of distribution of populations. Onosma farrerii, Caryopteris terniflora, Sorphora vrcifolia, Lespedeza floribunda, Bauhinia faberi, Scilla scilloides, Indigofera bungeana, Potentilla leuconota,Themeda triandra, Carex crebra, Spiraea alpina、 Cotoneaster acuminatus, Rosa omeiensis, Potentilla fruticosa, Sibiraea angustata, Carex lanceolata, Anaphalis margaritacea, Ranunculus japonicus, Bupleurum tenue, Polygonum phaerostachyum have higher niche width and stronger adaptability, hence becoming a dominant populations in this region; while Spiraea henryi, Quercus cocciferoides, Sageretia pycnophylla, Salsola collina, Calamagrostis purpurea, Artemisia igniaria, Tragus berteronianus,Salix cheilophilla, Rubus mesogaeus, Hippophae rhamnoides, Artemisia roxlourghiana, Polygonum viviparum,Fragaria gracilis have lower niche. Not all populations with lower niche are dominant populations. This peculiarity depends on the range and evenness of distribution of the certain population. Populations with higher niche breadth always have higher niche overlap, but not all populations with smaller niche breadth have lower niche overlap.
    (3) Among the plant communities in arid valley, with an increase of altitude, both the a diversity and β diversity of herbs layer and shrubs layer display a "high-low-high" trend. The α diversity and β diversity of herbs layer are higher than those of shrubs layer. Both the herbs layer and shrubs layer have higher a diversity and β diversity at an altitude range of 1400~1600m and 2000~2200m, which is a potent proof that a low biodiversity occurs in regions of a medium altitude, while a high one exists in regions of high and low altitudes.The diversity varies in different formations: Form. Pertya sinensis, Jasminum humile .Form. Berberis wilsonae, Lonicera japonica, Form. Spiraea Spp.have higher a diversity and β diversity. Form. Leptodermis purdomi, Form. Caryopteris spp. and Form. Bauhinia faberi , Sorphora vrcifolia have lower α diversity and β diversity; both a diversity and β diversity in different slope directions and shapes: shaded >slope half-shaded> slope sunny slope, concave slope> straight> convex slope; in different positions: lower slope> upper slope> middle slope . The a diversity of shrubs layer and herbs layer alike in different slope positions: upper slope> lower slope> middle slope, while the β diversity, lower slope> upper slope> middle slope.
    Among the plant communities in origin region of the Minjiang River, with an increase of altitude, diversity of both the herbs layer and shrubs layer display symmetrical changing trends that they are almost the same at altitude ranges of 2700-3300m and 3300-3900m. The altitude ranges of 2900-3100m and 3500-3700m see a higher diversity, while those of 2700-2900m, 3100-3400, 3700-3900m see a lower one. The maximum diversity of shrubs layer and herbs layer occurs at the altitudes of 3000m and 3600m respectively. The diversity in different vegetation types follows the trend: forests formations >shrubs formations >meadow formations. The diversity in herb layer of Form. Salix spp., Form. Sibiraea angustata, Form. Spiraea spp.and Form. Caragana spp.are at high level, while Form. Hippophae rhamnoides and Form. Berberis amurensis are at lower level.In meadow formations, the diversity of Form. Imperata cylindrica and Form. Carex spp.are higher than that of Form. Sub-alpine and Form. Kobresia spp. As for shrub layer , Form. Caragana spp. has the highest diversity, Form. Hippophae rhamnoides has the lowest diversity. Diversity in herb layer is higher than that of shrub layer.
    Under a great influence of altitude gradient, species compositions in plant communities in the origin area of Minjiang River show significant differences and the β diversity is more easily affected by the change of herbs layer. Along the altitude gradient, there are higher species turnover rates at the altitude ranges of 2900-3100m and 3500-3700m, and the community has a higher heterogeneity. While at the altitude ranges of 2700-2900m, 3200-3300m, 3800-3900m,, the community has a lower heterogeneity and species turnover rate. The change of β diversity in shrubs layer is comparatively stable along the altitude gradient, with its climax occurring at an altitude of 2900m and the minimum at 3300m.
    A significant quadratic curve relationship between the β diversity and soil moisture and nutrient shows that the soil nutrient and water content of the plant community with the highest species turnover rate are at a medium level, instead of a high level of nutrient and water content. (4) The very significant positive relationship exist between the aboveground biomass of shrub communities and the altitude, available K, soil moisture, organic matter, total P, hydrolyazble N, total N, available N in the upper reaches of the Minjiang River, while the very significant negative relationship exist between slope gradient and pH value, among which altitude, available K and soil moisture play a leading role in affecting the aboveground shrub biomass. The aboveground biomass of shrub communities increases with the raise of species diversity and species richness and has a very positive linear relationship with species diversity and species richness.
    (5) Huffman coding method of communication theory is used to study the plant complexity and the relationship with environmental factors and reveal that between plant community complexity and diversity , evenness. Both total and structural community complexity vary with degree, shape and aspect of slope, with an order of upper slope>middle slope>lower slope, shaded slope> half-shaded slope>sunny slope, and concave slope>straight slope>convex slope. Form. Pertyasinensis,Jasminumhumile have the highest total complexity, and Form Leptodermispurdomi and Form Ceratoidesarborescens communities have the lowest total complexity, while Form Quercnscocciferoides and Form Onosma farrerii communities have the highest structural complexity.
    The plant formations in origin area have a high total complexity at the altitude ranges of 2900-3100m and 3500-3700m. The total complexity is as the following: Forest plant formations>shrub formations>meadow forations. Form. Picea asperata is ranked as the highest in total complexity, Form. Kobresia spp have a lowest one . In shrub formations, Form. Caragana spp.have the highest total complexity, Form. Hippophae rhamnoides have the lowest one. In meadow formations, the total complexity of Form. Carex spp. and Form. Imperata cylindrica are at high level, Form. Kobresia spp.and Form. Sub-alpine are at lower level. Similar to the correlation of β diversity with soil nutrient, The total community complexity had significant quadratic correlations with soil water content and nutrient. However, the soil factors that influence total community complexity in origin area and arid valley are different, therefore, it does not grow in a simple linear way with the increase of soil nutrient and water content.
    Total community complexity is positively correlated with community diversity, evenness and species richness, while structural complexity is negatively correlated with community evenness. As two components of total community complexity, structural complexity is more sensitive than diversity to the change of species in the community, which is not only related to community evenness, but also to community richness. In the communities with a high evenness, the difference between total complexity and diversity is not quite obvious, and structural complexity is lower. However, the exceptional case exists in which a low evenness cannot push the low structural complexity of the communities with a low species richness to its climax. The relative contribution of structural complexity and diversity to total complexity would be different for different study area or ecosystems.
    (6) The stability of typical plant formations in the upper reaches of Minjiang River is analysed by using AHP methods, combining quantitative character indices reflecting vegetation stability, such as vegetation coverage, diversity, complexity and degree of succession with external environmental factors such as climate, topography and soil character, hence supplementing the insufficiency that previous researches on vegetation stability assessment take the only vegetation character into account. The result indicates: the plant formations of origin region, Form. Picea asperata, Form. Salix spp., Form. Sibiraea angustata, Form. Abies faxoniana, Form. Spiraea spp. Have higher stability, while Hippophae rhamnoides and Form. Berberis amurensis have lower one. Form. Imperata cylindrical and Form. Imperata cylindrica have a higher stability, Form. Kobresia spp.and Form. Sub-alpine have lower one. In the plant formations of the arid valley region, Form. Spiraea spp,Form. Daphne spp., Form. Onosma farrerii, Form. Bauhinia faberi, Sorphora vrcifolia, Form. Caryopteris spp., Form. Quercus cocciferoides have a higher stability.
    Under a constant external disturbance, regressive succession of the vegetation occurs in the upper reaches of the Minjiang River. Regressive succession model of the vegetation in the arid valley is: Form. Quercus cocciferoides, Form. Spiraea Spp.→Form. Pertya sinensis, Jasminum humile, Form. Onosma farrerii→Form. Ceratoides arborescens, Form. Caryopteris spp. Form. Bauhinia faberi , Sorphora vrcifolia; the regressive succession model of the origin region is Form. Abies faxoniana、 Form. Picea asperata→Form. Sibiraea angustata→Form. Caragana spp., Form. Berberis amurensis→Form. Imperata cylindrical, Form. Kobresia spp.
引文
1.安尼瓦尔·买买提,杨元合,郭兆迪,等.新疆草地植被的地上生物量[J].北京大学学报(自然科学版),2006,42(4):104~109.
    2.安树青,王峥峰,朱学雷,等.土壤因子对次生森林群落物种多样性的影响[J].武汉植物学研究,1997,15(2):143~150.
    3.白永飞,陈佐忠.锡林河流域羊草草原植物种群和功能群的长期变异性及其对群落稳定性的影响[J].植物生态学报,2000,24(6):641~647.
    4.白永飞,李凌浩,王其兵,等.锡林河流域草原群落植物多样性和初级生产力沿水热梯度变化的样带研究[J].植物生态学报,2004,24(6):667~673.
    5.白中科、王文英、李晋川,等.黄土区大型露天煤矿剧烈扰动土地生态重建研究[J].应用生态学报.1998,9(6):621~626.
    6.包维楷,陈庆恒,刘照光.岷江上游山地生态系统的退化及其恢复与重建对策[J].长江流域资源与环境,1995,4(3):277~282.
    7.包维楷,陈庆恒,刘照光.退化植物群落结构及其物种组成在人为干扰梯度上的响应[J].云南植物研究,1999,22(3):307~316.
    8.包维楷,王春明.岷江上游山地生态系统的退化机制[J].山地学报,2000,18(1):51~56.
    9.包维楷,刘照光,刘庆.生态恢复重建研究与发展现状及存在的主要问题[J].世界科技研究与发展,2001,23(1):44~48.
    10.蔡晓明.生态系统生态学.北京:科学出版社[M],2000.
    11.蔡运龙.中国西南喀斯特山区的生态重建与农林牧业发展研究现状与趋势[J].资源科学.1999,21(5):37~41.
    12.蔡运龙.中国西南岩溶石山贫困地区的生态重建[J].地球科学进展,1996,11(6):602~606.
    13.曹成有,朱丽辉,蒋德明,等. 固沙植物群落稳定性机制的探讨[J].中国沙漠,2004,24 (4):461~466.
    14.常杰,葛滢.生物多样性的自组织、起源和演化.生态学报[J],2001,21(7):1180~1186.
    15.陈安勇.岷江上游地区水土保持的特别重要性及战略措施[J].农村经济,1998,65~68.
    16.陈存及,陈新芳,刘金福,等.人工—天然杉阔混交林种群生态位及竞争研究[J].林业科学,2004,40(1):78~83.
    17.陈光升,钟章成.重庆缙云山常绿阔叶林群落物种多样性与土壤因子的关系[J].应用与环境生物学报,2004,10(1): 12~17.
    18.陈国阶,涂建军,樊宏,等.岷江上游生态建设的理论与实践[J].重庆:西南师范大学出版社,2006
    19.陈灵芝,陈伟烈主编.中国退化生态系统研究[M].北京:中国科学技术出版社.1995
    20.陈灵芝主编.中国森林多样性及其地理分布[M].北京:科学出版社,1997.
    21.陈睿,洪伟,郭文才,等.中亚热带丝栗栲群落的物种周转速率研究[J].江西农业大学学报,2003,25(5):666~670.
    22.陈廷贵,张金屯,上官铁梁,等.山西关帝山神尾沟植物群落多样性研究[J].西北植物学报,2000,20(4):638~646.
    23.陈文年,吴宁,罗鹏,等.岷江上游林草交错带祁连山圆柏群落的物种多样性及乔木种群的分布格局[J]. 应用与环境生物学报,2003,9(3):221~227.
    24.程冬兵,蔡崇法,孙艳艳.退化生态系统植被恢复理论与技术探讨[J].世界林业研究,2006,19(5):7~14.
    25.崔保山,刘兴土.湿地恢复研究综述[J],地球科学进展.1999,14(4):358~364.
    26.党承林.植物群落的冗余结构—对生态系统稳定性的一种解释[J].生态学报, 1998,18(6):665~672.
    27.党承林.植物群落的冗余结构-对生态系统稳定性的一种解释[J].生态学报,1998,18(6):578~583.
    28.杜丽,戈峰.生物多样性与生态系统功能的关系研究进展[J].中国生态农业学报, 2004,12(2):19~22.
    29.杜晓军,高贤明,马克平.生态系统退化程度诊断:生态恢复的基础与前提[J].植物生态学报, 2003,27(5):700~708.
    30.樊宏,张建平.岷江上游半干旱河谷土地利用/土地覆被研究[J].中国沙漠,2002,22(3):273~278.
    31.樊宏.岷江上游近50a土地覆被的变化趋势[J].山地学报, 2002,20(1):64~69
    32.范玮熠,王孝安,郭华.黄土高原子午岭植物群落演替系列分析[J].生态学报,2006,(03):81~89.
    33.方精云.探索中国山地植物多样性的分布规律[J].生物多样性.2004,12(1):1~4
    34.溥发鼎.岷江上游生态学现状及生物多样性保护[J]. 资源科学,2000,22(5):83~85.
    35.冯伟.接坝农牧交错区沙化地生态恢复过程中土壤因子与植被特征分析[J].干旱地区农业研究,2005,25(7):1649~1656.
    36.高贤明,黄建辉,万师强,等.秦岭太白山弃耕地植物群落演替的生态学研究Ⅱ:演替系列的群落α多样性特征[J].生态学报,1997,17(6):619~625.
    37.关文彬,陈铁,董亚杰,等.东北地区植被多样性的研究Ⅰ:寒温带针叶林区域垂直植被多样性分析[J].应用生态学报,1997,8(5):465~470.
    38.关文彬,曾德慧,姜凤岐.中国东北西部地区沙质荒漠化过程与植被动态关系的生态学研究:植被的分类[J].应用生态学报,2000,11(6):907~911.
    39.关文彬,冶民生,马克明,等.岷江干旱河谷植物群落物种周转速率与环境因子的关系.生态学报[J],2004a,24(6):2367~2373
    40.关文彬,冶民生,马克明,等.岷江干旱河谷植被分类及其主要类型[J].山地学报,2004b,22(6):679~686.
    41.关文彬,吴建安,梁广林,等.岷江源区植被分类及其主要类型.见:陈宜瑜主编.中国生物多样性保护与研究进展[M].北京:气象出版社.2004c
    42.郭晓敏.江西省不同类型退化荒山生态系统植被恢复与重建措施[J].生态学报,2002,22(6):878~884
    43.郭永明,汤宗祥.岷江上游土壤生态环境问题与地学条件的关系.土壤农化通报[J],1996,11(3):73~77.
    44.韩兴国,黄建辉,娄治平.关键种概念在生物多样性保护中的意义与存在的问题[J].植物学通报,1995,(植物生态专辑):169~184.
    45.何兴元,胡志斌,李月辉,等.GIS支持下岷江上游土壤侵蚀动态研究[J].应用生态学报,2005,(12):51~58.
    46.贺金生,陈伟烈.陆地植物群落物种多样性的梯度变化特征[J].生态学报,1997,17(1):91~99.
    47.胡隐月,孟庆繁,王庆贵,等.集合环境梯度对森林生物多样性的影响[J].东北林业大学学报,1996,24(4):74~79.
    48.胡志斌,何兴元,江晓波,等.岷江上游典型时期景观格局变化及驱动力初步分析[J].应用生态学报,2004,15(10):1797~1802.
    49.黄建辉,韩兴国.生物多样性何生态系统稳定性[J].生物多样性,1995,3(1):31~37.
    50.黄晓霞,江源,刘全儒,等.小五台山亚高山草甸生物多样性的空间格局[J]. 地理学报,2003,58(2):186~192.
    51.张惠远,蔡运龙.喀斯特贫困山地的生态重建:区域范型[J].资源科学.2000,22(5):21~26
    52.江小雷,张卫国, 段争虎.资源互补效应对多样性-生产力关系的影响[J].植物生态学报,2005,25(4):5~11.
    53.江小雷, 张卫国, 严林等.植物群落物种多样性对生态系统生产力的影响[J].草业学报,2004,24(6):10~15.
    54.姜凤岐,曹成有,曾德慧,等科尔沁沙地生态系统退化与恢复[M].北京:中国林业出版社.2002
    55.蒋有绪.区域生物多样性保护的基本构想.刘世荣等主编.中国暖温带森林生物多样性研究[M].北京:中国林业出版社,1998, 37~42.
    56.兰思仁.武夷山国家级自然保护区植物物种多样性研究[J]. 林业科学,2003,39(1):36~43.
    57.李爱农,周万村,江晓波.岷江上游近30年土地利用/覆被空间格局变化的图形信息分析.山地学报,2005,23(2):241~247
    58.李毳.山西庞泉沟针叶林群落植物多样性研究[J].水土保持学报,2001,15(5):95~107.
    59.李海涛.新世纪的挑战—生物复杂性研究[J].世界科技研究与发展,2002,22(6):64~67.
    60.李虎杰.岷江上游生态环境建设与经济可持续发展[J].四川环境,2001,4:53~58.
    61.李军玲,张金屯,郭逍宇,等.关帝山亚高山灌丛草甸群落优势种群的生态位研究[J].西北植物学报,2003,23(12):2081~2088.
    62.李新荣,张新时. 鄂尔多斯高原荒漠化草原与草原化荒漠灌木类群生物多样性的研究[J].应用生态学报,1992,10(6):665~669.
    63.李新荣,贾晓红.腾格里沙漠东南缘荒漠植被格局与土壤资源的关系[J].草地学报,2005,13(supp):37~43.
    64.李镇清.分离生态变化中的物种相互作用组分[J].生物数学学报,2001,16(3):320~333.
    65.李镇清.中国东北样带(NECT)植物群落复杂性与多样性研究[J]. 植物学报,2000,42(9):971~978.
    66.刘国华,马克明,傅伯杰,等.岷江干旱河谷主要灌丛类型地上生物量研究[J].生态学报,2003,23(9):1757~1764.
    67.刘国华,张洁瑜,张育新,等.岷江干旱河谷三种主要灌丛地上生物量的分布规律[J].山地学报,2003,21(1):24~32.
    68.刘庆.青藏高原东部(川西)生态脆弱带恢复与重建研究进展[J].资源科学,1999,21(5):81~86
    69.刘庆.亚高山针叶林生态学研究[M].成都:四川大学出版社,2002a.
    70.刘庆,乔永康,吴宁,等.岷江上游山地生态系统退化机理研究的核心—关键种群的作用[J].长江流域资源与环境,2002b,11(3):274~278.
    71.刘庆,吴彦,何海.中国西南亚高山针叶林的生态学问题[J].世界科技研究与发展.2000,23(2):63~69
    72.刘世梁,傅伯杰,陈利顶等.卧龙自然保护区土地利用变化对土壤性质的影响[J], 地理研究,2002,21(6):682~687.
    73.刘世梁,傅伯杰,马克明等.岷江上游高原植被类型与景观特征对土壤性质的影响[J].应用生态学报,2004,15(1):26~30.
    74.刘世梁,马克明,傅伯杰,等.北京东灵山地区地形土壤因子与植物群落关系研究[J].植物生态学报,2003,23(4):496~502.
    75.刘世荣,孙鹏森, 王金锡,等.长江上游森林植被水文功能研究[J].自然资源学报,2001,16(5):451~456.
    76.刘兴良,慕长龙,向成华,等.四川西部干旱河谷自然特征及植被恢复与重建途径[J].四川林业科技,2001 22(2):1017~1013.
    77.刘增文,李雅素.生态系统稳定性研究的历史与现状[J].生态学杂志,1997,16(2):58~61.
    78.刘忠宽,汪诗平,陈佐忠,等.不同放牧强度草原休牧后土壤养分和植物群落变化特征[J].生态学报,2006,26(6):2049~2056.
    79.刘忠宽,智建飞,李英杰.休牧后土壤养分空间异质性和植物群落α多样性[J].河北农业科学,2004,8(4):1~6.
    80.柳江,洪伟,吴承祯,等.退化红壤区植被恢复过程中灌木层主要种群的生态位特征[J].植物资源与环境学报,2002,11(2):11~16.
    81.柳新伟,周厚诚,李萍.生态系统稳定性定义剖析[J].生态学报,2004,24(11):2635~2541.
    82.鲁晓阳.岷江上游生态环境治理对策探讨[J].四川环境,1999,18(1):72~74.
    83.马风云. 生态系统稳定性若干问题研究评述[J]. 中国沙漠, 2002,22(2):401~407.
    84.马姜明,李昆.森林生态系统稳定性研究的现状与趋势[J].世界林业研究,2004,17(1):15~19.
    85.马克明,傅伯杰,郭旭东.农业区城市化对植物多样性的影响:遵化的研究[J].应用生态学报, 2001,12(6):837~840.
    86.马克平,黄建辉,于顺利,等.北京东灵山地区植物群落多样性的研究Ⅱ: 丰富度、均匀度和物种多样性指数[J].生态学报,1995,15(3):268~277.
    87.马克平,刘灿然,刘玉明.生物群落多样性的测定Ⅱ:β多样性[J].生物多样性,1995,3(1):38~43.
    88.马文红, 方精云.中国北方典型草地物种丰富度与生产力的关系[J].生物多样性, 2006, (01):25~32.
    89.孟庆繁,胡隐月,王庆贵,等.黑龙江省东部森林群落β多样性的研究[J].应用生态学报,1999,10(2):140~142.
    90.苗莉云,王孝安,王志高.太白红杉群落物种多样性与环境因子的关系[J].西北植物学报,2004,24(10):1888~1893.
    91.倪健,陈仲新,董鸣,等.中国生物多样性的生态地理区划[J].植物学报,1998,40(4):370~382.
    92.聂世平,王志旭,周勇等.岷江上游的环境地址研究[M].四川省科学技术协会,四川省国土局.岷江上游以水资源为主的国土综合开发研究.1988,120~125.
    93.彭少麟.恢复生态学与热带雨林的恢复[J].世界科技研究与发展,1997,19(3):58~61
    94.彭少麟.恢复生态学与植被重建[J].生态科学.1996,15(2):26~31
    95.彭少麟.热带亚热带退化生态系统的恢复与复合农林业[J].应用生态学报.1998,9(6):587~591
    96.彭少麟.森林群落稳定性与动态测度[J].广西植物, 1987,7(1):67~72.
    97.丘君,陈利顶,高启晨.施工干扰下的生态系统稳定性评价—以西气东输管道工程沿线新疆干旱荒漠区为例[J].干旱区地理,2003,26(3):316~322.
    98.任海,彭少麟,陆宏芳.退化生态系统恢复与恢复生态学[J].生态学报,2004,24(8):1756~1764
    99.尚文艳,吴钢,付晓.陆地植物群落物种多样性维持机制[J].应用生态学报,2005,16(3):573~578.
    100.沈渭寿.雅鲁藏布江中部流域沙地植被的分类和排序[J].中国沙漠,1997:17(3):269~273
    101.沈泽昊,张新时.基于植物分布地形格局的植物功能型划分研究[J].植物学报 2000,42(11):1190~1196
    102.石培礼,李文华,王金锡,等. 四川卧龙亚高山林线生态交错带群落的种多度关系[J].生态学报,2000,20(3):384~389.
    103.史作民,程瑞梅,刘世荣. 宝天曼落叶阔叶林种群生态位特征[J]. 应用生态学报,1999,10(3):265~269.
    104.舒俭民,刘晓春.恢复生态学的理论基础、关键技术与应用前景[J].中国环境科学.1998,18(6):540~543
    105.舒俭民,王家骥,刘晓春.矿山废弃地的生态恢复[J].中国人口资源与环境.1998,8(3):72~75
    106.四川森林编辑委员会[J].四川森林.北京:中国林业出版社.1992.
    107.四川植被协作组.四川植被[M].成都: 四川人民出版社.1980.
    108.四川植物志编辑委员会.四川植物志[M].成都:四川人民出版社; 1981.
    109.孙国钧,张荣,周立.植物功能多样性与功能群研究进展[J].生态学报,2003,23(7):1430~1435.
    110.孙儒泳.动物生态学原理(第三版)[M].北京:北京师范大学出版社,2001:360~378.
    111.覃林,余世孝.森林群落复杂性分析:以广东黑石顶森林为例[J].生物多样性,2004,12(3):354~360.
    112.唐志尧,方精云.植物物种多样性的垂直分布格局[J].生物多样性,2004,12(1):20~28.
    113.唐志尧,柯金虎.秦岭牛背梁植物物种多样性垂直分布格局[J].生物多样性,2004,12(1):108~114.
    114.汪诗平,李永宏.内蒙古典型草原退化机理的研究[J].应用生态学报,1999.10(4):437~441
    115.王伯荪,彭少鳞.植被生态学[M].北京:中国环境科学出版社.1997.
    116.王长庭,龙瑞军,王启基,等.高寒草甸不同草地群落物种多样性与生产力关系研究[J].生态学杂志,2005,24(5):483~487.
    117.王翠红,张金屯.中国部分自然保护区物种多与环境因子的关系[J].西北植物学报,2004,24(8):1468~1471.
    118.王德利,吕新龙,罗卫东.不同放牧密度对草原植被特征的影响分析[J].草业学报,1996,5(3):65~71
    119.王刚,赵松岭,张鹏云,等.关于生态位定义的探讨及生态位重叠计测公式改进的研究[J].生 态学报,1984,4(2):119~127.
    120.王国宏,任继周,张自和.物种多样性与植物系统发育fJl.草业学报,2003,12(1):41~46.
    121.王国宏.再论生物多样性与生态系统的稳定性[J].生物多样性,2002,10(1):126~134.
    122.王金锡.四川西部干旱河谷的生态环境与退耕还林[J].四川林业科技,2001,22(1):27~31.
    123.王莉,南蓬,张晓艳,等.生物复杂性研究动态fJ].生物多样性,2002,10(2):238~242.
    124.王琳,张金屯,上官铁梁,等.历山山地草甸的物种多样性及其与土壤理化性质的关系[J].应用与环境生物学报,2004,10(1):18~22.
    125.王顺忠,陈桂琛,柏玉平,等.青海湖鸟岛地区植物群落物种多样性与土壤环境因子的关系[J].应用生态学报,2005,16(1):186~188.
    126.王正文,王德利.大兴安岭森林草原过渡带白桦及主要草本植物生态位关系的研究[J]. 应用生态学报,2001,12(5):677~681.
    127.魏文超,何友均,邹大林,等.澜沧江上游森林珍稀草本植物生态位研究[J].北京林业大学学报,2004,26(4):7~12.
    128.吴波,朱春全,李迪强,等.长江上游森林生态区生物多样性保护优先区确定—基于生态区保护方法[J].生物多样性,2006, 14(2):87~97.
    129.吴明作,刘玉萃,姜志林.栓皮栎种群生殖生态与稳定性机制研究[J].生态学报,2001,21 (2):225~230.
    130.吴明作,刘玉萃,杨玉珍,等.河南省栓皮栎林主要种群的生态位研究[J].西北植物学报, 1999,19(3):511~518.
    131.吴宁.川西北窄叶鲜卑花灌丛的类型和生物量及其与环境因子的关系[J].植物学报,1998,18(5):83~93.
    132.吴彦,刘庆,何海.亚高山针叶林人工恢复过程中物种多样性变化[J]. 应用生态学报,2004, 15(8):1301~1306.
    133.吴彦,刘庆,乔永康.亚高山针叶林不同恢复阶段群落物种多样性变化及其对土壤理化性质 的影响[J].植物生态学报,2001,25(6):648~655.
    134.吴征镒主编. 中国植被[M].北京:科学出版社,1980.
    135.向悟生,李先琨,苏宗明,等. 元宝山冷杉群落主要树木种群生态位的初步研究[J].武汉植物学研究,2002,20(2):105~112.
    136.肖文发,雷静品.三峡库区森林植被恢复与可持续经营研究[J].长江流域资源与环境,2004,13(2):138~144.
    137.谢晋阳,陈灵芝.暖温带落叶阔叶林的物种多样性特征[J]. 生态学报,1994,14(4):337~334.
    138.辛晓平,徐斌,单保庆,等.恢复演替中草地斑块动态及尺度转换分析[J].生态学报,2000,20(4):587~593.
    139.徐海量.荒漠草地物种多样性的水分特征研究[J].干旱地区农业研究,2006,24(2):105~109.
    140.徐庆,刘世荣,安树青,等. 川西亚高山暗针叶林降水分配过程中氧稳定同位素特征[J].植物生态学报,2006,30(1)83~88.
    141.颜廷芬,丛沛桐,刘兴华,等.环境因子对植物生态位宽度影响程度分析[J].东北林业大学学报,1999,27(1):35~38.
    142.晏兆莉,陈克明.岷江干旱河谷的生态特征与植被恢复研究[J].世界科技研究与发展,2000,22(增刊):36~38
    143.阳承胜,蓝崇钰,束文圣.凡口宽叶香蒲湿地植物群落恢复的研究[J].植物生态学报,2001,26(1):101~108.
    144.阳含熙,潘渝的,伍业钢,等.长白山阔叶红松林马氏链模型[J].生态学报, 1988,8(3):211~219.
    145.杨持,朱志梅,刘颖茹. 沙质草原沙漠化过程不同阶段稳定性与恢复性研究[J].生态学报, 2003,23(12):2545~2549.
    146.杨利民,周广胜,王国宏,等.草地群落物种多样性维持机制的研究Ⅱ:物种现实生态位[J]. 植物生态学报,2001,25(5):634~638.
    147.杨万勤,钟章成,陶建平.缙云山森林土壤速效P的分布特征及其与物种多样性的关系研究[J].生态学杂志,2001,20(4):24~27.
    148.杨小波,张桃林,吴庆书.海南琼北地区不同植被类型物种多样性与土壤肥力的关系[J].生 态学报,2002,22(2):190~196.
    149.杨晓晖,李朝生,于春堂,等.鄂尔多斯高原北缘水分梯度下天然植被分布格局初探[J]. 应用生态学报,2006,17(4):572~576.
    150.杨晓晖,张克斌,侯瑞萍,等.半干旱沙地封育草场的植被变化及其与土壤因子间的关系[J].生态学报,2005,25(12):3212~3219.
    151.冶民生,关文彬,白占雄,等.岷江干旱河谷植物群落生态梯度分析[J].中国水土保持科学,2005,3(2):70~75.
    152.冶民生,关文彬,谭辉,等.岷江干旱河谷灌丛α多样性分析[J].生态学报,2004,24(6):1123~1130
    153.冶民生,关文彬,吴斌,等.岷江干旱河谷植物群落复杂性研究[J].生态学报,2006,26(10):3159~3165
    154.冶民生,关文彬,吴斌,等.岷江干旱河谷主要灌木种群生态位研究[J].北京林业大学学报,2006,28(1):7~13.
    155.叶延琼,陈国阶,樊宏.岷江上游脆弱生态环境刍论[J].长江流域资源和环境,2002a,11(4):383~387.
    156.叶延琼,陈国阶,杨定国.岷江上游生态环境问题及整治对策[J].重庆环境科学,2002b,24(1):2~5.
    157.于顺利,马克平,徐存宝,等.环境梯度下蒙古栎群落的物种多样性特征[J].生态学报,2004,24(12):2932~2939.
    158.余世孝,王永繁.广东黑石顶森林演替过程群落稳定性分析[J].中山大学学报(自然科学版),2003,43(6):23~26.
    159.余作岳,彭少麟主编.热带亚热带退化生态系统植被恢复生态学研究[J].广州:广东科学技术出版社.1996
    160.余作岳.广东热带沿海侵蚀地的植被恢复生态学研究[J].植被生态学研究编辑委员会编辑.植被生态学研究.北京:科学出版社.1994.124~180
    161.岳天祥.生物多样性研究及其问题[J].生态学报,2001,21(3):462~467.
    162.张桂莲,张金屯.关帝山神尾沟优势种生态位分析[J].武汉植物学研究,2002,20(3):203~208.
    163.张继义,赵哈林,张铜会,等.科尔沁沙地植物群落恢复演替系列种群生态位动态特征[J].生态学报,2003,23(12):2741~2746.
    164.张继义,赵哈林.植被(植物群落)稳定性研究评述[J].生态学杂志,2003,22(4):42~48。
    165.张建平,叶延琼,樊宏.岷江上游草地资源及合理利用[J].山地学报,2002,20(3):343~347.
    166.张金屯,柴宝峰,邱扬,等.晋西吕梁山严村流域撂荒地植物群落演替中的物种多样性变化[J].生物多样性,2000a,8(4):378~384
    167.张金屯,陈廷贵.关帝山植物群落物种多样性研究:统一多样性和p多样性[J].山西大学学报(自然科学版),2002,25(2):173~175.
    168.张金屯,邱扬,柴宝峰,等.吕梁山严村低中山区植物群落演替分析[J].植物资源与环境学报,2000b,9(2):34~39.
    169.张金屯. 数量生态学[M].北京: 科学出版社,2004.
    170.张林静,岳明,张远东,等.新疆阜康绿洲荒漠过渡带主要植物种的生态位分析[J].生态学报, 2002,22(6):969~972.
    171.张全国,张大勇.生物多样性与生态系统功能:进展与争论[J].生物多样性,2002,10(1):49~60.
    172.张荣祖主编.横断山区干旱河谷[M].北京:科学出版社.1992.
    173.张文辉,卢涛,周建云等.岷江上游流域种子植物区系研究[J].西北植物学报2003,(06):28~34.
    174.张文辉,卢涛,马克明等.岷江上游干旱河谷植物群落分布的环境与空间因素分析[J].生态学报,2004,24(3):552~559.
    175.张文驹,陈家宽.物种分布区研究进展[J].生物多样性,2003,11(5):364~369.
    176.张一平,张昭辉,何云玲.岷江上游气候立体分布特征[J].山地学报,2004,22(2):179~183
    177.张永泽,王煊.自然湿地生态恢复研究综述[J].生态学报,2001,21(2):309~314.
    178.张远东,赵常明,刘世荣.川西亚高山人工云杉林和自然恢复演替系列的林地水文效应[J].植物生态学报,2004,19(6):761~768.
    179.张云飞,乌云娜,杨持.草原植物群落物种多样性与结构稳定性之间的相关性分析[J].1997,28(3):419~423.
    180.张知彬,王祖望,李典谟.生物复杂性研究-综述与展望[J].生态学报,1998,18(4):433~441.
    181.章家恩,徐琪.恢复生态学研究的一些基本问题探讨[J].应用生态学报,1999,10(1):235~241.
    182.章家恩,徐琪.生态退化研究的基本内容与框架[J].水土保持通报,1997,17(3):46~53
    183.赵哈林,苏永中,周瑞莲,等.我国北方沙区退化植被的恢复机理[J]. 中国沙漠,2006,26(3):323~328
    184.赵护兵,刘国彬,侯喜禄.黄土丘陵区流域主要植被类型养分循环特征[J].2006,15(3):64~69.
    185.赵文智,程国栋.干旱区生态水文过程研究若干问题评述[J].科学通报, 2001,46(22):1851~1857.
    186.中国生物多样性国情研究报告编写组[J].《中国生物多样性国情研究报告》,北京:中国环境科学出版社,1997.
    187.郑元润.大青沟植物群落稳定性研究[J].生态学报,1999,19(4):587~590.
    188.郑元润.森林群落稳定性研究方法初探[J].林业科学,2000,36(5):28~32.
    189.周国逸.关于恢复生态学[J].世界科技研究与发展.1998,20(1):52~54
    190.周集中,马世骏.生态系统稳定性.马世骏主编:现代生态学透视[M].北京:科学出版社,1990.
    191. A R McCrea, I C Trueman, M A Fullen. Relationships between soil characteristics and species richness in two botanically heterogeneous created meadows in the urban English West Midlands[J]. Biological Conservation, 2001, 97: 171~180.
    192. Agustin R, Adrian E. Small-scale spatial soil-plant relationship in semi~arid gypsum environments[J]. Plant and Soil, 2000, 220: 139~150.
    193. Anand M and Orloci L. Complexity in plant communities: the notion and quantification[J]. Journal of Theoretical Biology, 1996, 179: 179~186.
    194. Anand M and Orloci L. On hierarchical partitioning of an ecological complexity function. Ecological Modelling, 2000, 132: 51~62.
    195. Anand M, Desrochers R E. Quantification of Restoration Success Using Complex Systems Concepts and Models[J]. Restoration Ecology, 2000, 12 (1): 117~123.
    196. Anand M, Tucker B C. Defining biocomplexity-an ecological perspective[J]. Comments on Theoretical Biology, 2003, 8: 497~510.
    197. Anderson O R. A Model of Biocomplexity and its Application to the Analysis of Some Terrestrial and Marsh Eukaryotic Microbial Communities with an Emphasison Amoeboid Protists[J]. Journal of Eukuryot. Microbiolog, 2003, 50 (2): 86~91.
    198. Ban F, Hans De K, Frank B. Soil nutrient heterogeneity alters competition between two perennial grass species[J]. Ecology, 2001, 82: 2534~2546.
    199. Barbara L B, Mark R W , Allison A. Pattemsin nutrient availability and plant diversity oftemperate North American wetlands[J]. Ecology, 1999, 7: 2151.
    200. Bart F, Hans D , Frank B. Soil nutrient heterogeneity alters competitions between two perennial grass species[J]. Ecology, 2001, 82: 2534~2546.
    201. Baruch, Z. Ordination and classification of vegetation along an altitudinal gradient in the Venezuelan paramos[J]. Vegetatio, 1984, 55: 115~126.
    202. Begon M. et al.Ecology: Individuals, Populations and Communities.2nd ed[M]. Boston: Blackwell Scientific Publications, 1990: 816~844..
    203. Belsky A J. Population and community processes in a mosaic grassland in the serengeti, Tanzania[J]. Journal of Ecology, 1986, 74: 841~856.
    204. Benning T L, T R Seastedt. Landscape~level interactions between topo~edaphic features and nitrogen limitation in tall~grass prairie[J]. Landscape Ecology, 1995, 10: 337~348.
    205. Bertness M D, G H Leonard. The role of positive interactions in communities: lessons from intertidal habitats[J]. Ecology, 1997, 78: 1976~1989.
    206. Birk E M, Vitousek P M. Nitrogen availability and nitrogen use efficiency in loblolly pine stands[J]. Ecology, 1986, 67: 69~79.
    207. Burke A. Classification and ordination of plant communities of the Naukluft Mountain, Namibia[J]. Journal of Vegetation Science, 2001, 12: 53~60.
    208. Colyn H, Daniel U. Plant-soil relationships on bentonite mine spoils and sagebrush grassland in the Northern High Plains[J]. Journal of Range Management, 1983, 38 (3): 289~293.
    209. Chaitin G J. On the length of programs for computing finite binary sequences[J]. J. Assoc. Comput. Mach, 1996, 13: 547~569.
    210. Chapin F S, B H Walker, R J Hobbs. et al. Biocontrol over the functioning of ecosystems[J]. Science, 1997, 277: 500~504.
    211. Cody M L. Towards a theory of continental species diversity: birds distributions over Mediterrancean habitat gradients. In: Cody , M L and Diamond J M ed. Ecology and evolution of communities[M], Cambridge: Harvard University Press, 1975, 214~257.
    212. Colwell R. Balancing the biocomplexity of the planet's living systems: A twenty-first century task for science[J]. Bioscience, 1998, 48: 786~787.
    213. Covich A. Biocomplexity and the future: The need to unite disciplines[J]. Bioscience, 2000, 50:199~202.
    214. Currie D J, Paquin V. Largescale biogeographical patterns of species richness of trees[J].Nature, 1987, 329: 326~327.
    215. de Grandpre L, Y Bergeron. Diversity and stability of understory communities following disturbance in the southern boreal forest[J]. Journal of Ecology, 1997, 85: 777~786.
    216. Desrochers R, Anand M. Quantifying the components of biocomplexity along ecological perturbation gradients[J]. Biodiversity and Conservation, 2005, 14: 3437~3455.
    217. Diaz S, M Cabido. Vive difference: plant functional diversity matters to ecosystem process[J]. Trends in ecology and evolution, 2001, 16: 646~655.
    218. Dolezal J & Srutek M. Altitudinal changes in composition and structure of mountain-temperate vegetation: a case study from the Western Carpathians[J]. Plant Ecology, 2002, 158:201~221.
    219. Dunkerley DL. Banded vegetation: survival under drought and grazing pressure based on a simple cellular automation model[J]. Arid Environ, 1997, 35 (3): 419~428.
    220. Dybas C L. From biodiversity to biocomplexity: A multidisciplinary step toward understanding our environment[J]. Bioscience, 2001, 51: 426~430.
    221. Elton C S. The ecology of invasions by animals and plants. [M] Chapman and Hall, London, 1958, 143~153.
    222. EmmettA . Biocomplexity: a new science for survival? [J] The Scientist, 2000, 14: 1~3.
    223. Gardner M R, W R Ashby. Connectance of large dynamic (cybernetic) systems: critical values for stability[J]. Nature , 1970, 228: 784.
    224. Gartlan J S, Newbery D M, Thomas K W. et al. The influence of topography and soilphosphorous of the vegetation of Korup Forest Reserve[J]. Cameroun Vegetation, 1986 , 65:131~148.
    225. Gentry A H. Changes in plant community diversity and floristic composition on environmental and geographical gradients[J]. Ann. Missouri Bot. Gard, 1988, 75: 1~34.
    226. Gezhi Weng. Upinder S. Bhalla, Ravi lyengar. Compleity in biological signaling systems[J]. Science, 1999: 92~95.
    227. Gitay H Wilson , W G Lee. Species redundancy: a redundant concept ? [J] Journal of Ecology, 1996, 84: 121~124.
    228. Glaser P H. Raised bogs in eastern North America regional control for species richness and floristic assemblages[J]. Journal of Ecology, 1992, 80: 525~554.
    229. Glenn-Lewin D C. Species diversity in North American temperate forest[J]. Vegetatio, 1977, 33:153~162.
    230. Goldberg D E, Miller T E. Effects of different resource additions on species diversity in an annual plant community[J]. Ecology, 1990, 71: 213-225.
    231.Goldenfeld N , L P Kadanoff. Simple lessons from complexity[J], Science, 1999, 284: 87-89.
    
    232. Golwell R. Balancing the biocomplexity of the planet's living systems: a twenty-first century task for science[J]. BioScience, 1998, 48: 786-787.
    233. Goodman D. The theory of diversity-stability relationships in ecology[J]. Quarterly Review of Biology , 1975, 50: 237-266.
    234.Greenler R M, J M Greenler. Biocomplexity: A definition under development[J]. Bioquest notes, 2002, 11 (2): 1: 4-8.
    235.Grime J P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects[J]. Journal of Ecology, 1998, 86: 902-910.
    236.Grime J P. Biodiversity and ecosystem function: the debate deepens[J]. Science, 1997,277: 1260-1261.
    
    237.Guo, Q. F. and Berry, W. Species richness and biomass: dissection of the hump-shaped relationships[J]. Ecology, 1998, 79:2555-2559.
    238. Hamilton A C , Perrott R A. A study of altitudinal zonation in the montane forest belt of Mt.Elgon, Kenya/Uganda[J]. Vegetatio, 1981, 45: 107-125.
    239.Hardtle W, Oheimb G V , Westphal C. The effects of light and soil conditions on the species richness of the ground vegetation of deciduous forests in northern Germany (Schleswig~Holstein) [J]. Forest Ecology and Management, 2003, 182: 327-338.
    240. Hooper D U, Vitousek P M. The effects of plant composition and diversity on ecosystem processes[J]. Science, 1997, 277: 1302-1305.
    241.Huston M A, Aarssen L W, Austin M P. etal. No consistent effect of plant diversity on productivity[J]. Science, 2000, 289: 1255.
    242.Huston M A. Biological diversity along elevational gradients in the Philippines: an assessment of patterns and hypotheses[J]. Global Ecology and Biogeography, 1994, 10: 15-39.
    243. Huston M A. Hidden treatments in ecological experiments: re~evaluating the ecosystem function of biodiversity[J]. Oecologia, 1997, 110: 449-460.
    244.Inouye R S, Huntly N J, Titman D. et al. Old-field succession on a Minnesota sand plain[J]. Ecology, 1987, 68: 12-26.
    245.Ives A R, K Gross, J L klug. Stability and variability in competitive communities[J]. Science, 1999, 286: 542-545.
    
    246. Jackson R B, M M Galdwell. Geostatistical patterns of soil heterogeneity around individual perennial plants[J]. Journal of Ecology, 1993, 81: 683-692.
    247. Kennedy T, S Naeem, K M Howe. et al. Biodiversity as a barrier to ecological invasion[J]. Nature, 2002, 417: 636-639.
    248.Kolmogorov, A N. Three approaches to the quantitative definition of information[J]. Probl. Peredachi Inform, 1965, 1: 3-11.
    249.Latham R E, Ricklefs R E. Global patterns of tree species richness in moist forests: energy-diversity theory does not account for variation in species richness[J]. Oikos, 1993, 67: 325-333.
    250. Laura Gough, Gaiusr Shaver, Jenny Carroll. et al. Vascular plant species richness in Alaskan arctic tundra: the importance of soil pH[J]. Journal of Ecology, 2000, 88: 54-66.
    251.Loreau M, S Naeem, P Inchausti. et al. Biodiversity and ecosystem functioning : current knowledge and future challenges[J]. Science, 2001, 294: 804-808.
    252.L(o|¨)fgren L.(1977). Complexity of descriptions of systems: a foundational study[J]. Int. J. Gen. Sys. 3,197-214
    253. Loreau M. Biodiversity and ecosystem functioning: recent theoretical advances[J]. Oikos, 2000, 91: 3-11.
    254.MA. K. M., FU. B. J, LIU.S.L, etal. Multiple-scale soil moisture distribution and its implication for ecosystem restoration in an arid river valley, China. Land Degradation&Development[J], 2003, 14: 1~11
    255. MacArthur R H. Fluctuations of animal populations and a measure of community stability[J]. Ecology, 1955, 36: 533~536.
    256. Magurran, A. E. Ecology Diversity and its Measurement[M], New Jersey: Princeton University Press. 1988
    257. Malyshev L, Nimis P L, Bolognini G. Essays on the modeling of spatial floristic diversity in Europe: British Isles, West Germany, and East Europe[J]. Flora, 1994, 189: 79~88.
    258. Maurer B A. Untangling ecological complexity. The macroscopic perspective[M]. Chicago: University of Chicago Press, 1999
    259. May R M. Stability and complexity in model ecosystems. Princeton University Press, Princeton, 1973, 447.
    260. May R M. Will a large complex system be stable? [J] Nature, 1972, 238: 413~414.
    261. May R M.. Stability and complexcity in Model Ecosystems (2nd ed) [M]. Princeton, New Jersey, USA: Princeton University Press, 1974.
    262. McCannK S. The diversity-stability debate[J]. Nature, 2000, 405: 228~233.
    263. McGrady-Steed J, Morin P J. Biodiversity, density compensation, and the dyn-nics of pepulafiom and functional groups[J]. Ecology, 2000, 81 (2): 361~373.
    264. McNaughton S J. Diversity and stability[J]. Nature, 1988, 333: 204~205.
    265. Michener W K, Baerwald T J, Firth P. et al. Defining and unraveling biocomplexity[J]. Bioscience, 2001, 51(12): 1018~1023.
    266. Morrison J A. Wetland vegetation before and after experimental purple loosestrofe removal[J]. Wetlands, 2002, 22(1): 159~169.
    267. Mulder C. P. H, Jumpponen A, Hogberg P. et al. How plant diversity and legumes affectnitrogen dynamics in experimental grassland communities[J]. Oecologia, 2002, 133: 412~421.
    268. Naeem S, Li S. Biodiversity enhances ecosystem reliability[J]. Nature, 1997, 390: 507~509.
    269. Naeem S. Speices redundancy and ecosystem reliability[J]. Conservation Biology, 1998, 12: 39~44.
    270. Noss R F. Indicators for monitoring biodiversity: a hierarchical approach[J]. Conservation Biology, 1990, 4: 355~364.
    271. Palmer M W. The coexistence of species in fractal landscapes[J]. American Naturalist, 1992, 139: 375~397.
    272. Papentin F. On order and complexity. Ⅰ. General considerations[J]. J. Theor Biol, 1980, 87: 421~456.
    273. Parrish J K, L Edelstein-Keshet. Complexity, pattern, and evolutionary trade~offs in animal aggregation[J]. Science, 1999, 284: 99~101.
    274. Patten B, S E Jorgensen. Complex ecology-The spatial distribution of individual trees maintains forest ecosystem function[J]. Oikos, 1995, 74: 357~365.
    275. Pickett S T A, Gadenasso M L. Spatial heterogeneity in ecological system[J]. Science. Landscape ecology, 1995, 269: 331~334.
    276. Pielou E. C. Ecological diversity[M]. New York: John Wiley & Sons, 1975
    277. Pimm S L. The complexity and stability of ecosystems[J]. Nature, 1984, 307: 321~326.
    278. Plotkin J B. Predicting species diversity in tropical forests[J]. Pro Nat Acad Sci U.S.A, 2000, 97: 10850~10854.
    279. R Aerts, H de Caluwe, B Beltman. Is the relation between nutrient supply and biodiversity co~determined by the type of nutrient limitation? [J] Oikos, 2003, 101: 489~498.
    280. Rapoport E H. (translated by Barbara D. 1982 )Areography: Geographical Strategies of Species[M]. Pergamon Press, New York, 1975.
    281. Rey Benayas J M, Schenier S M. Diversity patterns of wet meadows along geographical gradients in Spain[J]. Journal of Vegetation Science, 1993, 4: 103~108.
    282. Richards JH, Galdwell MM. Hydraulic lift: Substantial nocturnal water transport between soil layers by Artemisia tridentataroots[J]. Oecologia, 1987, 73: 486-489.
    283.Rind D. Complexity and climate[J]. Science, 1999, 284: 105-107.
    284. Robertson G P , Vitousek P M. Nitrification potentials in primary and secondary succession[J]. Ecology, 1981, 62: 376-386.
    285.Roem W J , Berendse F. Soil acidity and nutrient supply ratio as possible factors determining changes in plant species diversity in grassland and heathland communities[J]. Biological Conservation, 2000, 92: 151-161.
    286.Rohde K. Latitudinal gradients in species diversity: the search for the primary cause[J]. Oikos, 1992, 65: 514-527.
    287.Rosenthal G. Selecting target species to evaluate the success of wet grassland restoration[J]. Agriculture Ecosystem&Environment , 2003, 98 (3): 227-246.
    288. Rosenzweig M L. Species Diversity in Space and Time[M]. Cambridge University Press, Cambridge. 1995.
    289. S G Baer, J M Blair, S L Collins. Soil resources regulate productivity and diversity in newly established tallgrass prairie [J]. Ecology, 2003, 84 (3) : 724-735.
    290. Schulze E.D, Galdwell M.M, Galdwell J.et al. Downward flux of water through roots (i. e. inverse hydraulic lift in dry Kalahari sands) [J]. Oecologia, 1998, 115: 460-462.
    291.Sennhauser EB. The concept of stability in connection with the gallery forests of the Chaco region [J]. Vegetation, 1991, 94: 1-13.
    292. Shannon C E , W Weaver. The mathematical theory of communication[J]. Urbana: University of Illinois Press, 1949.
    293.Shiyoml M . Spatial pattern changes in aboveground plant biomass in a grazing pasture[J]. Ecol.Res, 1998, 13: 313-322.
    294. Smith E P . Niche breadth, resource availability and inference[J]. Ecology, 1982, 63: 1675-1681.
    295. Sole R V, D Alonso, A Mckane. Self-organized instability in complex ecosystems[J]. Philos. Trans. R. Soc. Lond. B, 2002, 357: 667-681.
    296. Sole R V, S Levin. Preface to "The biosphere as a complex adaptive system." [J] Philos. Trans. R. Soc. Lond. B, 2002, 357: 617-618.
    297. Solomonoff RJ. A formal theory of inductive inference, part1 and 2[J]. Inform Contr, 1964, 7: 224-254.
    298. Steege H, Cornelissen JHC. Distribution and Ecology of vascular epiphytes in lowland rain forest ofGuyana[J]. Biotropica, 1989, 21 (4) : 331-339.
    299.Sylvain D, Daniel C, Clementine G C .Niche separation in community analysis: A new method[J]. Ecology, 2000, 81 (10) : 2914-2927.
    300. Stewart G H, Basher L R, Burrow L E. Beech_hardwood forest composition, landforms, and soil relationships, northWestland, NewZealand[J]. Vegetatio, 1993, 106: 111-125.
    301.Swansond F J, Kratz T K, Caine N. Landform effects on ecosystem patterns and processes[J]. Bioscience, 1988,38:92-98.
    302.Szathmary E, F Jordan. Can genes explain bio~logical complexity? [J] Science, 2001, 292: 1315-1316.
    303. Thomas J Valone , Catherine D Hoffman. Population stability is higher in more diverse annual plant communities[J]. Ecology Letters, 2003, 6: 90-95.
    304.Tilman D&Wedin D . Plant strategies and the dynamics and structure of plant com unities[M]. Princeton: Princeton University Press, 1988.
    305.Tilman D&Haddi A. Drought and biodiversity in grasslands[J]. Oecologia, 1992, 89: 257-264.
    306.Tilman D, C L Lehman , C E Bristow . Plant diversity and ecosystem productivity: theoretical considerations[J]. Proceedings of the national Academy of Science, USA, 1996, 94: 1857-1861.
    307. Tilman D, Downing J A. Biodiversity and stability in grasslands. Nature, 1994, 367: 363-365.
    308.Tilman D, Knops J, Wedin D. et al. The influence of functional diversity and composition on ecosystem process[J]. Science, 1997, 277: 1300-1302.
    309. Tilman D, Lehman C, Bristow C E. Diversity-stability relationships statistical inevitability or ecological consequence[J]. American Naturalist, 1998, 151: 277-282.
    310. Tilman D, Reich P B, Knops J. et al. Diversity and productivity in along~term grassland experiment[J]. Science, 2001, 294: 843~845.
    311. Tilman D, Wedin D, Knops J. Productivity and sustainability influenced by biodiversity in grassland ecosystems[J]. Nature, 1996, 379: 718~720.
    312.Tilman D. Biodiversity: population versus ecosystem stability[J]. Ecology, 1996, 77: 350~363.
    313. Tilman D. Cause consequences and ethics of biodiversity[J]. Nature, 2000, 405: 208~211.
    314. Tilman. D. Does diversity be stability?[J] Nature, 1994, 371: 257~264.
    315. Urich S. Competition and coexsistence[J]. Nature, 1999, 402: 366~367.
    316. Vazquez, G. J. A. and Givnish, T. J. Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlan[J]. Journal of Ecology, 1998, 86:999~1020.
    317. Vinton M A, Burke I C. Interactions between individual plant species and soil nutrient status in sho-grasssteppe[J]. Ecology, 1995, 76: 1116~1133.
    318. Vitousek P M, Matson P A, Cleve K V. Nitrogen availability and nitrification during succession, primary, secondary and old field series[J]. Plant and Soil, 1989, 115: 229~239.
    319. Vogt K A. Production, turnover and nut rient dynamics of above and below ground detritus of word forests[J]. Advances in Ecological Research, 1986, 15: 277~282.
    320. Walker B H. Conserving biological diversity through ecosystem resilience[J]. Conservation Biology, 1995, 9: 747~752.
    321. Wang, G. H., Zhou, G. S., Yang, L. M. et al. Distribution, species diversity and life-form spectra of plant communities along an altitudinal gradient in the northern slopes of Qilianshan Mountains, Gansu, China[J]. Plant Ecology, 2002. 165: 169-181.
    322. Wardle D A, Huston M A, Grime J P. et al. Biodiversity and ecosystem function: an issue inecology[J]. Bulletin of Ecological Society of America, 2000, 81: 235~239.
    323. Wardle D A. Experimental demonstration that plant diversity reduces invisibility-evidence of a biological mechanism or a consequence of sampling effect? [J] Oikos, 2001, 95: 161~170.
    324. Whitfield J, All creatures great and small[J]. Nature, 2001, 413: 342~344.
    325. Whittaker R H, Niering W A. Vegetation of the Santa Catalina Mountains, Arizona: V. Biomass. production, and diversity along the elevation gradient[J]. Ecology, 1975, 56: 771~790.
    326. Whittaker R J, Willis K J, Field R. Scale and species richness: towards a general, hierarchical theory of species diversity[J]. Journal of Biogeography, 2001, 28: 453~470.
    327. Willis K J, Whittaker R J. Species diversity—scale matters[J]. Science, 2002, 295: 1245~1248.
    328. Wilson S M, Pyatt D G, Malcolm D C. et al. Ecological site classification: soil nutrient regime in British woodlands[J]. Scott Forestry, 1998, 52: 86~92.
    329. Wondzell S M, Cunningham G L, Bachelet D. Relationships between landforms, geomorphic processes, and plant communities on a watershed in the northern Chihuahuan Desert[J]. Landsape Ecology, 1996,11:351~362.
    330. Zak D R, Pregitzer K S. Nitrate assimilation by herbaceous ground flora in late successional forests[J]. Journal of Ecology 1988, 76: 537~546.
    331. Zheng D, Hunt E R, Running S W. Comparison of available soil water capacity estimated from topography and soil series information[J]. Landscape Ecology, 1996, 11: 3~14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700