用户名: 密码: 验证码:
长江口及邻近海域低氧现象的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究在实验室建立了海洋中浮游植物光合色素的高效液相色谱测定方法。并以此为基础,测定了长江下游徐六泾、长江口和毗邻东海北部海区悬浮颗粒物以及现场有机物降解培养实验中的颗粒物色素浓度,同时还测定了长江口E4柱状沉积物中的色素含量;分析了1999至2003年共计5个航次的长江口、东海颗粒有机碳样品并进行了相关的动力学探讨。在此基础上,以2005至2007年共计5次长江口现场观测为依托,同时充分考虑颗粒有机碳、营养盐等其他生物地化参数,结合历史资料和文献报道,针对长江口和毗邻海区夏季出现的底层水低氧现象,对其历史趋势、严重程度、发生机制进行了探讨和分析。
     对长江口和毗邻东海的生物地球化学背景研究显示,长江口、陆架区域和黑潮为主的外海POC平均含量分别为26.5,7.7和3.3μM。断面分布上,底层较高的TSM值(117mg/L)有时甚至达到表层的13倍之高。在E4站位,连续站观测说明POC含量分布呈现周期变化:正弦函数拟合显示,长江口POC日变化周期约为13h,和长江口半日潮周期相吻合;结合文献资料估算E4站位POC在真光层的停留时间在10天左右,且向外海呈现增加的趋势。在从长江口到冲绳海槽的整个东海陆架上,我们观测到底层存在一个高悬浮颗粒物浓度的雾状层。配合文献中的流场数据,估算出通过该雾状层向冲绳海槽输运的POC通量为0.22×10~(12)g/yr,占长江输入东海POC通量的约2%。
     2004年8月至2007年2月在长江下游徐六泾的月际观测表明,长江口徐六泾色素以叶绿素a(Chla)含量最高(平均值0.9μg/L),2006年Chla含量比2005年增加了0.2μg/L,其余色素含量平均值从0.02μg/L到0.32μg/L不等。其中岩藻黄素(Fuco)是次于Chla的最高浓度色素(平均值0.3μg/L),再次是多甲藻素(Perid,平均值0.1μg/L)。Chla含量季节变化不明显,Fuco和Perid等其他色素则存在一定季节变化,但差异小于100%。
     2006年6月至10月长江口和毗邻海区悬浮颗粒物中Chla,Fuco,Perid和叶绿素b(Chlb)等色素含量(平均值)分别为1.3μg/L,900ng/L,290ng/L和64ng/L。6~8月Chla平均值差异很小。但具体每次调查期间的特征色素含量却有差别。6月Perid含量较高,在8月和10月则主要以Fuco为主。空间分布显示,Chla主要分布在长江口东经123°的区域,向西或向东含量均下降;Perid/Fuco比值则在东经122.5°左右较大,随着进入外海比值下降。垂向上,色素主要分布在表层和次表层,40m以下浓度很低。2005年8月调查区域更靠近长江口,类似的,主要以Chla(1.3μg/L)、Fuco(1.3μg/L)和Perid(0.2μg/L)等色素为主。2007年2月调查区域涵盖整个东海南部陆架,与夏季相比,该季节色素含量较低。Chla、Fuco、Perid和Chlb平均值分别降为0.6μg/L,240ng/L,40ng/L和76ng/L。2006年在调查海域南部观测到DV Chla,暗示南部海域原绿球藻的存在。
     根据现场溶氧(DO)数据并结合文献资料,发现长江口外低氧发生在夏季。发生低氧的区域主要在东经122°~123.5°,北纬30°~33°之间。从可查的1959年8月以来,底层溶氧平均值从1959年的5.9mg/L降低到2006年8月的2.7mg/L,同时低氧面积从1959年8月的~1800km~2增加到2006年8月的15400km~2,同时伴随大量DO<3mg/L的溶氧低值区。2006年8月氧亏损量达到1.7×10~6t,比文献中报道的1999年8月情况更为恶化。低氧面积、氧亏损量增加的同时,与历史情况相比长江口低氧区呈现北移的趋势,中心区域从北纬31°北移至2006年的北纬32.5°。
     在调查中发现,较高的溶氧一般在较低的POC/Chla值下出现,随着POC/Chla值的增大,DO值逐渐降低。说明当有机物降解较彻底时,水体中溶解氧含量较低,有机物尚比较新鲜则溶解氧含量较高。
     对溶氧与其他参数的进一步分析显示,AOU同时与有机物降解明显相关:底层样品的AOU与POC/PO4和POC/NO3呈负相关,说明有机物降解、营养盐再生与低氧伴随在一起。同时低氧与层化度Δρ/ΔZ有较好的相关性。综合温度、层化度和有机物降解等参数的多元回归分析也显示,AOU与层化度、有机物降解两者间存在较强的相关性,与温度的关系不大。说明长江口底层水的低氧是水体层化和有机物降解综合作用的结果,可以用式摘-1定量表达:
     AOU=2.5+0.0015×T~2+0.2570×Δρ-0.3730×ln(POC/NO_3)摘-1
     2006年10月在现场进行的有机物降解实验中,色素在培养前后含量发生了明显的下降。实验条件分别控制为低氧(DO%<50%)和富氧(DO%>95%)两类。低氧条件下Chla和Fuco含量分别从0.8μg/L、1.0μg/L下降为0.3μg/L、0.5μg/L;富氧条件下Chla和Fuco含量分别从1μg/L、1.4μg/L下降为0.3μg/L、0.3μg/L。POC在实验前后含量也存在下降,含量分别从20.7μM(低氧)、28.6μM(富氧)下降为18.0μM(低氧)、16.3μM(富氧)。由于体系本身较高的营养盐含量,因此培养实验前后营养盐变化与有机物降解的耦合关系不明显,但低氧条件下氨氮实验前后存在明显增大,同时FCM技术检测显示细菌在实验过程中含量从910×10~3个/mL增加为最后的1300×10~3个/mL。聚球藻等FCM可检测的浮游植物在培养过程中含量下降明显,分别从低氧和富氧的270×10~2个/mL,200×10~2个/mL下降为最后的20×10~2个/mL、40×10~2个/mL。整个培养降解过程均伴随着体系的pH值下降。指数函数拟合显示,在本实验人工控制的条件下(特定的营养盐背景、较低的加富色素量及约20μM的POC浓度背景等),Chla的降解常数k(d~(-1))在低氧和富氧下分别为0.22和0.18,Fuco分别为0.21和0.18(0.67<r~2<0.96)。Chla在富氧下半衰期比低氧短,说明低氧更有利于Chla的保存;Fuco则两种条件下降解速度差异不大。根据有机碳降解的估算显示,长江口夏季有机碳降解造成对溶氧的需求速率为1.7~1.9mmol m~(-3)d~(-1)。
     进一步对长江口沉积物的色素分析显示,长江口和毗邻海区的表层沉积物中Chla平均含量65mg/g OC,最大值为170mg/g OC。然后是Fuco含量较高,平均值38mg/g OC;再其次是Perid,平均值17mg/g OC。Fuco和Perid与Chla的分布比较相似,在长江口门附近区域含量较低,在该低值区域南北含量较高。但Fuco的含量是Perid的约2倍。Chlb最大值出现在调查区域的东北角H1-6站位,含量为44mg/g OC,Chlb在沉积物中含量平均值14mg/g OC。沉积物中Perid/Fuco(0.46)和Fuco/Chla(0.56)等比值与水体中Perid/Fuco(0.56)和Fuco/Chla(0.56)比值相近,而Allo/Chla(0.23)则与水体中(0.01)差异较大,可能与色素不同的稳定性有关。在高沉积速率的长江口区域,表层沉积物中色素与水体中高Chla和低氧分布趋势相似,说明高生产力、低氧环境有利于色素在沉积物中的埋藏与保存。E4柱中的色素在表层出现最大值,并在40cm左右以上随着深度的增加而迅速降低,Chla含量变化范围0.4~147mg/g OC,另外Fuco、Zea、Allo等平均值分别为6.3、11和7.3mg/g OC。在沉积物中Chla分布与1998年洪水等历史事件的响应说明沉积物中色素作为生物标志物的有效性,同时色素与沉积物中的生物硅分布趋势、历史上现场水体Chla含量、长江径流量等变化趋势相吻合。色素随深度变浅含量迅速上升,与长江流域近几十年来营养盐通量增加、长江口赤潮增加相对应。Chla与δ15N的显著相关性(r~2=0.86,p=0.001)说明人文因素排放的化肥与长江口高Chla含量有密切关系。模式分析显示,Chla在长江口沉积物中含量呈明显的指数式下降(r~2=0.94),降解常数k=1.39yr~(-1)。扣去该指数降解因素后,Chla在1980年后仍呈增大趋势,说明长江口水环境在上世纪80年代改革开放以来比之前更有利于色素的埋藏。
We established the HPLC method of phytoplankton pigments analysis in our lab and measured the samples from Xuliujing, the Changjiang estuary, East China Sea (ECS) and a sediment core. The distribution and dynamics of POC in the Changjiang estuary and ECS were discussed based on the data from 1999 to 2003, in order to shed light on the background of the study area. Further, based on the field observation data and a culture experiment, hypoxia in the Changjiang estuary and its adjacent area were studied.
    Averaged POC value in the Changjiang estuary, continental shelf and outer area where Kuroshio prevailed are 26.5, 7.7 and 3.3μM, respectively. Elevated TSM (117mg/L) were observed at the bottom, probably due to resuspension. At E4 station, continuous survey for 24h suggested that POC value varied periodically, following the pattern of a sinusoidal curve. Observed curve fit well with the assumed theoretical sinusoidal curve, with periodic of 13h, consistent with the tide. Residence time of POC at E4 station is on the order of weeks, increasing eastwards. POC flux through the nepheloid layer to the Okinawa Trough was estimated to be 0.22 × 10~(12)g/yr. ~2% of the Changjiang POC flux.
    As indicated by the survey at Xuliujing, chlorophyll a concentration in 2006 increased 0.2μg/L than that in 2005, averaged 0.9μg/L Other pigments ranged from 0.02μg/L to 0.32μg/L, with fucoxanthin 0.3μg/L, peridinin 0.1μg/L. Seasonal variation of chlorophyll a is not clear, while as for the other pigments, difference among seasons is within 100%.
    Chlorophyll a, fucoxanthin, peridinin and chlorophyll b averaged 1.3μg/L, 900ng/L, 290ng/L and 64ng/L from June to October, 2006. In respect of the diagnostic pigment, peridinin was higher in June and elevated fucoxanthin was found in August and October. Elevated chlorophyll a is found at 123°E, decreased both eastwards and westwards. Perid/Fuco ratio elevated at 122.5 °E, decreased with distance from the Changjiang estuary. Pigment mainly distributed at surface and subsurface layer, and depleted beneath 40m. In the cruise of August, 2005, which covered an area closer to the Changjiang, chlorophyll a, fucoxanthin and peridinin mean value were 1.3μg/L, 1.3μg/L and 0.2μg/L, respectively. As to the Feberary, 2007, which covered the whole ECS shelf, pigment values were generally lower than that in summer time, with mean value of chlorophyll a, fucoxanthin, peridinin and chlorophyll b being 0.6μg/L, 240ng/L, 40ng/L and 76ng/L DV chlorophyll a was observed at the southeast part, indicating the existence of Prochlorococcus.
    Based on the field observation data, hypoxia occurred in summer time, between 122~123.5°E and 30~33°N. Average bottom DO value decreased from 5.9mg/L (1959) to 2.7mg/L (2006), with area increased from ~1800km~2 (1959) to 15400km~2 (2006). In August, 2006, vast area of DO less than 3 mg/L also was observed. The condition in 2006 was worse than that as reported in 1999. A comparison with former study reveals that the hypoxia area is moving northwards.
    Elevated DO value was accompanied with lower POC/chlorophyll a ratio. DO decreased with increasing POC/chlorophyll a value, indicating that low DO occurred when the organic matter contained less fresh content.
    Analysis with other parameters reveals that AOU is correlated with
    organic matter decay: the AOU is reversely correlated with POC/NO3.
    Meanwhile, hypoxia showed good relationship with Δρ/ΔZ. Multiple analysis
    suggested that AOU is closely correlated with stratification and organic matter decay. No clearly relationship was found between AOU and temperature in summer. Thus hypoxia in the Changjiang estuary is mainly the result of stratification and organic matter decay. The AOU could then be quantitatively expressed as follows:
    AOU=2.5+0.0015 × T~2+0.2570 × Δρ-0.3730 × In(POC/NO_3)
    An organic matter decay experiment was carried out on board in October, 2006, with condition controlled as low DO (DO%<50%) and high DO (DO%>95%). Pigments decreased apparently before and after the experiment. In the low DO condition, chlorophyll a and fucoxanthin decreased from 0.8μg/L and 1.0μg/L to 0.3μg/L and 0.5μg/L In the high DO condition, chlorophyll a and fucoxanthin decreased from 1 μg/L and 1.μg/L to 0.3μg/L and 0.3μg/L. POC value also decreased from 20.7μM(low DO), 28.6μM(high DO) to 18.0μM(low DO), 16.3μM(high DO), respectively. No clearly coupling between nutrients and POC were found probably due to the high nutrients background concentration. However, ammonia did increase through the experiment, probably due to the activity of bacteria, since bacteria increased from 910×10~3/mL to 1300×10~3/mL FCM-detectable phytoplankton decreased clearly through out the experiment, from 270×10~2/mL(low DO), 200×10~2/mL(high DO) to finally 20×10~2/mL(low DO), 40×10~2/ml_(high DO). Under such a specific experiment condition (i.e. high nutrient, POC value ~20μM, low pigments initial concentration), Chlorophyll a and fucoxanthin showed clearly exponentional decay, with decay constant k (d~(-1)) of 0.22(low DO), 0.18(high DO) and 0.21 (low DO), 0.18(high DO), respectively. Chlorophyll a concentration half life is longer under low DO condition, indicating that pigments decay slower under low DO condition. Estimate based on the POC decay suggest that the oxygen demand rate is 1.7-1.9mmol m~(-3) d~(-1) in the Changjiang estuary in summer.
    Further analysis of sediment pigments reveals that chlorophyll a concentration of the surface sediment averaged 65mg/g OC in the Changjiang estuary and adjacent area, followed by fucoxanthin (38mg/g OC) and peridinin (17mg/g OC). Content of chlorophyll a, fucoxanthin and peridinin is depleted close to the Changjiang river mouth, surrounded by elevated area north and south. With regards to chlorophyll b, mean value is 14mg/g OC, with maximum 44mg/g OC. Pigment ratio of peridinin/fucoxanthin (0.46) and fucoxanthin/chlorophyll a (0.56) in the surface sediment is close to that (0.56 and 0.56, respectively) in the water column. Alloxanthin/chlorophyll a ratio in the sediment (0.23) differed much from that in the water column (0.01), probably due to the different stabilities. Distribution of chlorophyll a in the sediment is similar to the chlorophyll a and hypoxia in the water column, suggesting that elevated primary production and low DO concentration is propitious to pigments conservation. In respect to the E4 core, pigment showed elevated value at the surface and decreased dramatically with depth. Chlorophyll a ranged from 0.4~147mg/g OC. Averaged value of fucoxanthin, zeaxanthin, alloxanthin were 6.3, 11 and 7.3 mg/g OC, respectively. Chlorophyll a distribution in sediment core showed good agreement with that of Bio-silicate, in situ chlorophyll a content and the Changjiang water discharge. Dramatical increase of pigments at the upper part of the core, coincide with the history of eutrophication of the Changjiang and increasing blooms in the area. Modeling analysis suggests that chlorophyll a decayed in the core following an exponential pattern (r~2=0.94), with decay constant k=1.39yr~(-1). Considering the exponential decay process, chlorophyll a still showed increase trend after 1980s, indicating the water column was more suitable for pigments conservation after 1980s.
引文
Abdel-Moati, M.A.R., 1999. Iodine speciation in the Nile River estuary. Marine Chemistry, 65(3-4): 211-225.
    Abele-Oeschger, D., 1991. Potential of some carotenoids in two recent sediments of Kiel Bight as biogenic indicators of phytodetritus. Marine Ecology Progress Series, 70: 83-92.
    Ahumada, R., Rudolph, G.A., Martinez, M.M., 1983. Circulation and fertility of waters in Concepcion Bay. Estuarine, Coastal and Shelf Science, 16: 95-105.
    Alldredge, A.L., Silver, M.W., 1988. Characteristics, dynamics and significance of marine snow. Progress in Oceanography, 20: 41-82.
    Alongi, D.M., Pfitzner, J., Trott, L.A, Tirendi, F., Dixon, P., Klumpp, D.W., 2005. Rapid sediment accumulation and microbial mineralization in forests of the mangrove Kandelia candel in the Jiulongjiang Estuary, China. Estuarine Coastal and Shelf Science, 63: 605-618.
    Anderson, L.A., Sarmiento, J.L., 1994. Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochemical Cycles, 8: 65-80.
    Anderson, T.H., Taylor, G.T., 2001. Nutrient Pulses, Plankton Blooms, and Seasonal Hypoxia in Western Long Island Sound. Estuaries, 24(2): 228-243.
    Arnon, D.I., 1949. Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiology, 24:1-15.
    Aucour, A.M., Tao, F.X., Moreira-Turcq, P., Seyler, P., Sheppard, S., Benedetti, M.F., 2003. The Amazon River: behaviour of metals (Fe, Al, Mn) and dissolved organic matter in the initial mixing at the Rio Negro/Solimoes confluence. Chemical Geology, 197(1-4): 271-285.
    Bao, X., Watanabe, M., Wang, Q.X., Hayashi, S., Liu, J.Y., 2006. Nitrogen budgets of agricultural fields of the Changjiang River basin from 1980 to 1990. Science of the Total Environment, 363: 136-148.
    Beardsley, R.C., Limeburner, R., Yu, H., Cannon, G.A, 1985. Discharge of the Changjiang (Yangtze River) into the East China Sea. Continental Shelf Research, 4: 57-76.
    Benitez-Nelson, C.R., Madden, L.P.O.N., Styles, R.M., Thunell, R.C., Astor, Y., 2007. Inorganic and organic sinking particulate phosphorus fluxes across the oxic/anoxic water column of Cariaco Basin, Venezuela. Marine Chemistry, 105: 90-100.
    Benner, R., 2004. What happens to terrestrial organic matter in the ocean? Marine Chemistry, 92: 307-310.
    Bennett, A., Bianchi, T.S., Means, J.C., 2000. The Effects of PAH Contamination and Grazing on the Abundance and Composition of Microphytobenthos in Salt Marsh Sediments (Pass Fourchon, LA, U.S.A.): II: The Use of Plant Pigments as Biomarkers. Estuarine, Coastal and Shelf Science, 50: 425-439.
    Berner, R.A. (Editor), 1980. Early diagenesis: A theoretical approach. Princeton University Press, Princeton.
    Bianchi, T.S., Argyrou, M.E., 1997. Temporal and spatial dynamics of particulate organic carbon in the Lake Pontchartrain estuary, southeast Louisiana, USA. Estuarine Coastal and Shelf Science, 45(5): 557-569.
    Bianchi, T.S., Engelhaupt, E., McKee, B.A., Miles, S., Elmgren, R., Hajdu, S., Savage, C, Baskaran, M., 2002a. Do sediments from coastal sites accurately reflect time trends in water column phytoplankton? A test from Himmerfja'rden Bay (Baltic Sea proper). Limnology and Oceanography, 47(5): 1537-1544.
    Bianchi, T.S., Findlay, S., 1990. Plant pigments as tracers of emergent and submergent macrophytes from the Hudson River. Canadian journal of fisheries and aquatic sciences, 47: 492-494.
    Bianchi, T.S., Findlay, S., 1991. Decomposition of Hudson estuary macrophytes: photosynthetic pigment transformations and decay constants. Estuaries, 14(1): 65-73.
    Bianchi, T.S., Findlay, S., Dawson, R., 1993. Organic matter sources in the water column and sediments of the Hudson River estuary: the use of plant pigments as tracers. Estuarine, Coastal and Shelf Science, 36(4): 359-376.
    Bianchi, T.S., Findlay, S., Fontvieille, D., 1991. Experimental degradation of plant materials in Hudson River sediments. I. Heterotropic transformation of plant pigments. Biogeochemistry, 12:171-187.
    Bianchi, T.S., Galler, J.J., Allison, M.A., 2007. Hydrodynamic sorting and transport of terrestrially derived organic carbon in sediments of the Mississippi and Atchafalaya Rivers. Estuarine, Coastal and Shelf Science, 73(1-2): 211-222.
    Bianchi, T.S., Johansson, B., Elmgren, R., 2000a. Breakdown of phytoplankton pigments in Baltic sediments: effects of anoxia and loss of deposit-feeding macrofauna. Journal of Experimental Marine Biology and Ecology, 251: 161-183.
    Bianchi, T.S., Rolff, C, Wildbom, B., Elmgren, R., 2002b. Phytoplankton pigments in Baltic Sea seston and sediments: Seasonal variability, fluxes, and transformations. Estuarine Coastal and Shelf Science, 55: 369-383.
    Bianchi, T.S., Westman, P.S., Rolff, C, Engelhaupt, E., Andren, T., Elmgren, R., 2000b. Cyanobacterial blooms in the baltic sea: natural or human-induced? Limnology and Oceanography, 45: 716-726.
    Bierbaum, R., Baker, D.J., 1999. Some light on the hypoxia debate. Environmental Science & Poicy, 2: 425-426.
    Billett, D.S.M., Lampitt, R.S., Rice, A.L., Mantoura, R.F.C., 1983. Seasonal sedimentation of hytoplankton to the deep-sea benthos. Nature, 302: 520-522.
    Biscaye, P.E., Eittreim, S.L., 1977. Suspended particulate loads and transports in the nepheloid layer of the abyssal Atlantic Ocean. Marine Geology, 23: 155-172.
    Brante, A., Hughes, R.N., 2001. Effect of hypoxia on the prey-handling behaviour of Carcinus maenas feeding on Mytilus edulis. Marine Ecology Progress Series, 209: 301 305.
    Bricaud, A., Babin, M., Morel, A., Claustre, H., 1995. Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization. Journal of Geophysical Research, 100(C7): 13321-13332.
    Buck, K.R., Chavez, F.P., Campbell, L, 1996. Basin-wide distributions of living carbon components and the inverted tropic pyramid of the central gyre of the North Atlantic Ocean, summer 1993. Aquatic Microbial Ecology, 10:283-298.
    Buffan-Dubau, E., Carman, K.R., 2000. Extraction of benthic microalgal pigments for HPLC analyses. Marine Ecology Progress Series, 204: 293-297.
    Bunt, J.S., 1975. Primary productivity of marine ecosystems. Primary productivity of the Biosphere: 169-183.
    Cadee, G.C., 1984. Particulate and dissolved organic carbon and chlorophyll A in the Zaire river, estuary and plume. Netherlands Journal of Sea Research, 17(2-4): 426-440.
    Calvert, S.E., Peterson, T.F., 1991. Organic carbon accumulation and preservation in marine sediments: How important is anoxia? In: J.K. Whelan and J.W. Farrington (Editors), Organic Matter: productivity, accumulation and preservation in recent and ancient sediments. Column University Press, New York, pp. 231-263.
    Canuel, E.A., Martens, C.S., 1996. Reactivity of recently deposited organic matter: degradation of lipid compounds near the sediment-water interface. Geochimica et Cosmochimica Acta, 60(10): 1793-1806.
    Carious-Le Gall, V., Blanchard, G.F., 1995. Monthly HPLC measurements of pigment concentration from an intertidal muddy sediment of Marennes-Ol□eron Bay, France. Marine Ecology Progress Series, 121: 171-179.
    Cauwet, G., Mackenzie, F. T., 1993. Caron inputs and distribution in estuaries of turbid rivers: the Yangtze and Yellow River (China). Marine Chemistry, 43: 235-246.
    Cauwet, G., Miller, A., Brasse, S., Fengler, G., Mantoura, R.F.C., Spitzy, A., 1997. Dissolved and particulate organic carbon in the western Mediterranean Sea. Deep Sea Research Part II, 44(3-4): 769-779.
    Chang, J., Shiah, F.K., Gong, G.C., Chiang, K.P., 2003. Cross-shelf variation in carbon-to-chlorophyll a ratios in the East China Sea, summer 1998. Deep-Sea Research II, 50: 1237-1247.
    Chen, C.-C, Gong, G.-C, Shiah, F.-K., 2007. Hypoxia in the East China Sea: One of the largest coastal low-oxygen areas in the world. Marine Environmental Research, In Press, Corrected Proof.
    Chen, C.C., Shiah, F.K., Gong, G.C., Chiang, K.P., 2003a. Planktonic community respiration in the East China Sea.importance of microbial consumption of organic carbon. Deep-Sea Research Part II, 50: 1311-1325.
    Chen, C.S., Zhu, J.R., Beardsley, R.C., Franks, P.J.S., 2003b. Physical-biological sources for dense algal blooms near the Changjiang River. Geophysical Research Letters, 30(10): 1515.
    Chen, C.T.A., Wang, S.L., 1999. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf. Journal of Geophysical Research, 104(C9): 20675-20686.
    Chen, N., Bianchi, T.S., McKee, B.A., 2005. Early diagenesis of chloropigment biomarkers in the lower Mississippi River and Louisiana shelf: implications for carbon cycling in a river-dominated margin. Marine Chemistry, 93(2-4): 159-177.
    Chen, N.H., Bianchi, T.S., McKee, B.A., Bland, J.M., 2001. Historical trends of hypoxia on the Louisiana shelf: application of pigments as biomarkers. Organic Geochemistry, 32: 543-561.
    Chen, S.L., 2004. Hydrological and sediment features and fluxes in Nanhui nearshore waters, Hanghzou Bay. Marine Sciences, 28(3): 18-22. (In Chinese).
    Chen, Y.L., Lu, H.B., Shinan, F.K., Gong, G.C., Liu, K.K., Kanda, J., 1999. New production and F-ratio on the continental shelf of the East China Sea: comparisons between nitrate inputs from the subsurface Kuroshio current and the Changjiang River. Estuarine, Coastal and Shelf Science, 48: 59-75.
    Chen, Y.L.L., Chen, H.Y., Gong, G.C., Lin, Y.H., Jan, S., Takahashi, M., 2004. Phytoplankton production during a summer coastal upwelling in the East China Sea. Continental Shelf Research, 24:1321-1338.
    Cho, B.C., Azam, F., 1990. Biogeochemical significance of bacterial biomass in the ocean's euphotic zone. Marine Ecology Progress Series, 63: 253-259.
    Cifuentes, L.A, Coffin, R.B., Solorzano, L., Cardenas, W., Espinoza, J., Twilley, R.R., 1996. Isotopic and Elemental Variations of Carbon and Nitrogen in a Mangrove Estuary Estuarine Coastal and Shelf Science, 43(6): 781-800.
    Clarke, George L., Ewing, Gifford C, Lorenzen, Carl J., 1970. Spectra of backscattered light from the sea obtained from aircraft as a measure of chlorophyll concentration. Science, 167(3921): 1119-1121.
    
    Cole, J.J., Honjo, S., Erez, E., 1987. Benthic decomposition of organic matter at a deep-water site in the Panama Basin. Nature, 327: 703-704.
    Copin-Montegut, C, Copin-Montegut, G., 1983. Stoichiometry of carbon, nitrogen, and phosphorus in marine particulate matter. Deep Sea Research, 30(1): 31-46.
    
    D'Asaro, E., McNeil, C, 2007. Air-sea gas exchange at extreme wind speeds measured by autonomous oceanographic floats. Journal of Marine Systems, 66(1-4): 92-109.
    da Cunha, L.C., Serve, L, Gadel, F., Blazi, J.L., 2001. Lignin-derived phenolic compounds in the particulate organic matter of a French Mediterranean river: seasonal and spatial variations. Organic Geochemistry, 32(2): 305-320.
    Dai, M.H., Guo, X.H., Zhai, W.D., Yuan, L.Y., Wang, B.W., Wang, L.F., Cai, P.H., Tang, T.T., Cai, W.J., 2006. Oxygen depletion in the upper reach of the Pearl River estuary during a winter drought. Marine Chemistry, 102: 159-169.
    Dauwe, B., Middelburg, J.J., 1998. Amino acids and hexosamines as indicators of organic matter degradation state in North Sea sediments. Limnology and Oceanography, 43(5): 782-798.
    De Sousa, S.N., Singbal, S.Y.S., 1986. Chemical oceanography of the Arabian Sea: part VT-Relationship between nutrients & dissolved oxygen in the Central Basin. Journal of Marine Science, 15(3): 153-161.
    de Souza Lima, H., Williams, P.J.I., 1978. Oxygen consumption by the planktonic population of an estuary-Southampton Water. Estuarine and Coastal Marine Science, 6(5): 515-521.
    Diaz, R.J., 2001. Overview of hypoxia around the world. Journal of Environmental Quality, 30(2): 275-281.
    Diaz, R.J., Rosenberg, R., 1995. Marine benthic hypoxia: a review of its cological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology: Annual Review, 33: 245-303.
    Ding, H.B., Sun, M.Y., 2005. Effects of intracellular structural associations on degradation of algal chloropigments in natural oxic and anoxic seawaters. Geochimica et Cosmochimica Acta, 69(17): 4237-4252.
    Druon, J.-N., Schrimpf, W., Dobricic, S., Stips, A., 2004. Comparative assessment of large-scale marine eutrophication: North Sea area and Adriatic Sea as case studies. Marine Ecology Progress Series, 272: 1-23.
    Duan, S.W., Bianchi, T.S., 2006. Seasonal changes in the abundance and composition of plant pigments in particulate organic carbon in the lower Mississippi and Pearl Rivers (USA). Estuaries and Coasts, 29(3): 427-442.
    Dugdale, R.C., Wilkerson, F.P., Hogue, V.E., Marchi, A., 2007. The role of ammonium and nitrate in spring bloom development in San Francisco Bay. Estuarine, Coastal and Shelf Science, 73(1-2): 17-29.
    Eby, L.A., Crowder, L.B., 2002. Hypoxia-based habitat compression in the Neuse River Estuary: context-dependent shifts in behavioral avoidance thresholds. Canadian journal of fisheries and aquatic sciences, 59: 952 965.
    Eckardt, C.B., Carter, J.F., Maxwell, J.R., 1991. Combined liquid chromatography/mass spectrometry of tetrapyrroles of sedimentary significance. Energy & Fuels, 4: 741-747.
    Ehrhardt, M., Koeve, W., 1999. Determination of particulate organic carbon and nitrogen. In: K. Grasshoff, K. Kremling and M. Ehrhardt (Editors), Methods of Seawater Analysis. Wiley-VCH, Weinheim;New York; Chiester; Brisbane; Singapore; Toronto, pp. 437-444.
    Erba, E., 1994. Nannofossiles and superplumes: The early Aptian "nannoconid crisis". Paleoceanography, 9: 483-501.
    Everitt, D.A, Wright, S.W., Volkman, J.K., Thomas, D.P., Lindstrom, E.J., 1990. Phytoplankton community compositions in the western equatorial Paricif determined from chlorophyll and carotenoid pigment distributions. Deep Sea Research, 37: 975-998.
    Fietz, S., Sturm, M., Nicklisch, A., 2005. Flux of lipophilic photosynthetic pigments to the surface sediments of Lake Baikal. Global and Planetary Change, 46: 29-44.
    Figley, W., Pyle, B., Halgren, B., 1979. Oxygen depletion and associated benthic mortalities in New York Bight, 1976. In: C.J.S. R. L. Swanson (Editor), Socioeconomic Impacts. Natl. Oceanic and Atmos. Admin. Silver Spring, Md., pp. 315-322.
    Flemer, D.A., Robert, B.B., 1971. Particulate carbon: nitrogen relation in northern Chesapeake Bay. Journal of Fishery Research, Board Canada, 28:911-918.
    Furuya, K., Hayashi, M., Yabushita, Y., Ishikawa, A., 2003. Phytoplankton dynamics in the East China Sea in spring and summer as revealed by HPLC-derived pigment signatures. Deep-Sea Research Part II, 50: 367-387.
    Garcia, H.E., Locarnini, R.A., Boyer, T.P., Antonov, J.I., 2006. World Ocean Atlas 2005, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation. In: S. Levitus (Editor), NOAA Atlas NESDIS 63. U.S. Government Printing Office, Washington, D.C., pp. 342.
    Garrison, D.L., 1981. Montery Bay phytoplankton. II. Resting spores cycles in coastal marine diatom populations. Journal of Plankton Research, 3: 137-156.
    
    Giani, M., Savelli, F., Boldrin, A., 2003. Temporal variability of particulate organic carbon, nitrogen and phosphorus in the Northern Adriatic Sea. Hydrobiologia, 494: 319-325.
    Gibb, S.W., Cummings, D.G., Irigoien, X., Barlow, R.G., Mantoura, R.F.C., 2001. Phytoplankton pigment chemotaxonomy of the northeastern Atlantic. Deep Sea Research II, 48: 795-823.
    Gieskes, W.W.C., Kraay, G., 1983. Unknow chlorophyll a derivatives in the North Sea and the Atlantic Ocean revealed by HPLC analysis. Limnology and Oceanography, 28: 757-766.
    Gilbert, D., Sundby, B., Gobeil, C, Mucci, A., Tremblay, G.H., 2005. A seventy-two-year record of diminishing deep-water oxygen in the St. Lawrence estuary: The northwest Atlantic connection. Limnology and Oceanography, 50(5): 1654-1666.
    Glenn, S., Arnone, R., Bergmann, T., Bissett, W.P., Crowley, M., Cullen, J., Gryzmski, J., Haidvogel, D., Kohut, J., Moline, M., Oliver, M., Orrico, C, Sherrell, R., Song, T., Weidemann, A., Chant, R., Schofield, O., 2004. Biogeochemical impact of summertime coastal upweling on the New Jersey Shelf. Journal of Geopysical Research, 109: C12S02.
    Gong, G.C., Chen, Y.L.L., Liu, K.K., 1996. Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: implications in nutrient dynamics. Continental Shelf Research, 16(12): 1561-1590.
    Gong, G.C., Wen, Y.H., Wang, B.W., Liu, G.J., 2003. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep-Sea Research. Part 11,50:1219-1236.
    Gray, J.S., Wu, R.S.-S., Or, Y.Y., 2002. Effects of hypoxia and organic enrichment on the coastal marine environment. Marine Ecology Progress Series, 238: 249-279.
    Gregg, W., W., Conkright, M.E., 2001. Global seasonal climatologies of ocean chlorophyll: Blending in situ and satellite data for the CZCS Era. Journal of Geophysical Research, 106(C2): 2499-2516.
    Gross, M.G. (Editor), 1987. Oceanography: A view of the earth. Prentice Hall, Englewood Cliffs, New Jersey, 406 pp.
    Guerrero, R., Montesinos, E., Pedros-Alio, C, Esteve, I., Mas, J., van Gemerden, H., Hoffman, P.A.G., Bakker, J.F., 1985. Phototrophic sulfur bacteria in two Spanish lakes: vertical distribution and limiting factors. Limnology and Oceanography, 30(5): 919-931.
    Hallegraeff, G.F., 1981. Seasonal study of phytoplankton pigments and species at a coastal station off Sydney: importance of diatoms and nanoplankton. Marine Biology, 61:107-118.
    Hama, T., Shin, K.H., Handa, N., 1997. Spatial variability in the primary productivity in the East China Sea and its adjacent waters. Journal of Oceanography, 53(1): 41-51.
    Hansen, J.L.S., Josefson, A.B., 2001. Pools of chlorophyll and live planktonic diatoms in aphotic marine sediments. Marine Biology, 139: 289-299.
    Hansen, J.L.S., Josefson, A.B., 2003. Accumulation of algal pigments and live planktonic diatoms in aphotic sediments during the spring bloom in the transition zone of the North and Baltic Seas. Marine Ecology Progress Series, 248: 41-54.
    Harvey, H.R., Macko, S.A., 1997. Kinetics of phytoplankton decay during simulated sedimentation changes in lipids under oxic and anoxic conditions. Organic Geochemistry, 27(3): 129-140.
    Harvey, H.R., Turtle, J.H., Bell, J.T., 1995. Kinetics of phytoplankton decay during simulated sedimentation: changes in biochemical composition and microbial activities under oxic and anoxic conditions. Geochimica et Cosmochimica Acta, 59: 3367-3377.
    Harwood, R.R., Edwards, C.A., Lal, R., Madden, P., Miller, R.H., House, G., 1990. A history of sustainable agriculture. In: R.L. C. A. Edwards, P. Madden (Editor), Sustainable agriculture systems. Soil and Water Conservation Society, Ankeny, IA, pp. 3-19.
    Havskum, H., Schluter, L., Scharek, R., Berdalet, E., Jacquet, S., 2004. Routine quantification of phytoplankton groups-microscopy or pigment analyses? Marine Ecology Progress Series, 273: 31-42.
    Hearn, C.J., Robson, B.J., 2001. Inter-annual variability of bottom hypoxia in shallow Mediterranean estuaries. Estuarine Coastal and Shelf Science, 52(5): 643-657.
    Hedges, J.I., Keil, R.G., Benner, R., 1997. What happens to terrestrial organic matter in the ocean? Organic Geochemistry, 27(5/6): 195-212.
    Hedges, J.I., Man, D.C., 1979. The characterization of plant tissues by their lignin oxidation products. Geochimica et Cosmochimica Acta, 43: 1803-1807.
    Helly, J.J., Levin, L.A., 2004. Global distribution of naturally occurring marine hypoxia on continental margins. Deep Sea Research I, 51:1159-1168.
    Hendry, G.A.F., Houghton, J.D., Brown, S.B.B., 1987. The degradation of chlorophyll-a biological enigma. New Phytologist, 107: 255-302.
    Henrichs, S.M., Reeburgh, W.S., 1987. Anaerobic mineralization of marine sediment organic matter: rates and role of anaerobic processes in the oceanic carbon economy. Journal of Geomicrobiology, 5:191-237.
    Holm-Hansen, O., Lorenzen, C.J., Holmes, R.W., Strickland, J.D.H., 1965. Fluorometric determination of chlorophyll. Journal du Conseil, 301: 3-15.
    Hoshika, A., Tanimoto, T., Mishima, Y., Iseki, K., Okamura, K., 2003. Variation of turbidity and particle transport in the bottom layer of the East China Sea. Deep-Sea Research. Part II, 50: 443-455.
    Hovis, W.A., Clark, D.K., Anderson, F., Austin, R.W., Wilson, W.H., Baker, E.T., Ball, D., Gordon, H.R., Mueller, J.L, El-Sayed, S.Z., Sturm, B., Wrigley, R.C., Yentsch, C.S., 1980. Nimbus-7 coastal zone colour scanner: system description and initial imagery. Science, 210: 60-63.
    Howarth, R.W., Billen, G., Swaney, D., Townsend, A., Jaworski, N., Lajtha, K., A., D.J., Elmgren, R., Caraco, N., Jordan, T., Berendse, F., Freney, J., Kudeyarov, V., Murdoch, P., Zhu, Z.L., 1996. Regional nitrogen budgets and reverine N & P fluxes for the drainage to the North Atlantic Ocean: Natural and human influences. Biogeochemistry, 35: 75-139.
    Howell, P., Simpson, D., 1994. Abundance of marine resources in relation to dissolved oxygen in Long Island Sound. Estuaries, 17: 394-402.
    Hung, J.J., Chen, C.H., Gong, G.C., Sheu, D.D., Shiah, F.K., 2003. Distributions, stoichiometric patterns and cross-shelf exports of dissolved organic matter in the East China Sea. Deep Sea Research Part II, 50:1127-1145.
    Hung, J.J., Lin, P.L., Liu, K.K., 2000. Dissolved and particulate organic carbon in the southern East China Sea. Continental Shelf Research, 20: 545-569.
    Hurley, J.P., Armstrong, D.E., 1990. Fluxes and transformations of aquatic pigments in lake Mendota, Wisconsin. Limnology and Oceanography, 35(2): 384-398.
    Iseki, K., Okamura, K., Kiyomoto, Y., 2003. Seasonality and composition of downward particulate fluxes at the continental shelf and Okinawa Trough in the East China Sea. Deep-Sea Research. Part II, 50: 457-473.
    Jahnke, R.A, Jahnke, D.B., 2000. Rates of C, N, P and Si recycling and denitrification at the US Mid-Atlantic continental slope depocenter. Deep Sea Research I, 47:1405-1428.
    Jeffrey, S.W., 1963. Purification and properties of chlorophyll c from Sargassum flavicans. Biochemical Journal, 86: 313-318.
    Jeffrey, S.W., 1972. Preparation and some properties of crystalline chlorophylls c1 and c2 from marine algae. Biochimica et Biophysica Acta, 279: 15-33.
    Jeffrey, S.W., 1974. Profiles of photosynthetic pigments in the ocean using thin-layer chromatography. Marine Biology, 26:101-110.
    Jeffrey, S.W., Hallegraeff, G.F., 1990. Phytoplankton ecology of Australian waters. In: M.N. Clayton and R.J. King (Editors), Biology of Marine Plants. Longman Cheshire, Melbourne, pp. 310-348.
    Jeffrey, S.W., Humphrey, G.F., 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phtoplankton. Biochemie und Physiologie der Pflanzen, 167: 191-194.
    Jeffrey, S.W., Mantoura, R.F.C., Wright, S.W. (Editors), 1997. Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publishing, Paris, 638 pp.
    Josefson, A.B., Rasmussen, B., 2000. Nutrient retention by benthic macrofaunal biomass of Danish estuaries: importance of nutrient load and residence time. Estuarine, Coastal and Shelf Science, 50: 205-216.
    Justic, D., Rabalais, N.N., Turner, R.E., 1995. Stoichiometric Nutrient Balance and Origin of Coastal Eutrophication. Marine Pollution Bulletin, 30(1): 41-46.
    Kasai, A., Yamada, T., Takeda, H., 2007. Flow structure and hypoxia in Hiuchi-nada, Seto Inland Sea, Japan. Estuarine, Coastal and Shelf Science, 71(1-2): 210-217.
    Katz, M.E., Wright, J.D., Miller, K.G., Cramer, B.S., Fennel, K., Falkowski, P.G., 2005. Biological overprint of the geological carbon cycle. Marine Geology, 217: 323-338.
    Lee, S.H., Fuhrman, J.A., 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Applied and Environmental Microbiology, 53: 1298-1303.
    Lewitus, A.J., White, D.L., Tymowski, R.G., Geesey, M.E., Hymel, S.N., Noble, P.A., 2005. Adapting the CHEMTAX Method for Assessing Phytoplankton Taxonomic Composition in Southeastern U.S. Estuaries. Estuaries, 28(1): 160-172.
    Li, D.J., Dag, D., 2004. Ocean Pollution from Land-based Sources: East China Sea, China. Ambio, 33(1-2): 107-113.
    Li, D.J., Zhang, J., Huang, D.J., Wu, Y., Liang, J., 2002. Oxygen depletion off the Changjiang (Yangtze River) Estuary. Science in China, Series D—Earth Sciences, 45(12): 1137-1146.
    Li, Y.H., 1994. Material exchange between the East China Sea and the Kuroshio Current. Terrestrial, Atmospheric and Oceanic Sciences, 4: 625-631.
    Lie, H.-J., Cho, C.-H., Lee, J.-H., Lee, S., 2003. Structure and eastward extension of the Changjiang River plume in the East China Sea. Journal of Geophysical Research, 108(C3): 3077.
    
    Lim, H.-S., Diaz, R.J., Hong, J.-S., Schaffner, L.C., 2006. Hypoxia and benthic community recovery in Korean coastal waters. Marine Pollution Bulletin, 52(11): 1517-1526.
    Limeburner, R., Beardsley, R.C., Zhao, J., 1983. Water masses and circulation in the East China Sea, Proceedings of International Symposium on Sedimentation on the Continental Shelf, with Special Reference to the East China Sea. China Ocean Press, Hang Zhou, pp. 285-294.
    Lin, K., Chen, Z., Guo, B., Tang, Y., 1999. Seasonal transport and exchange between the Kuroshio water and shelf water. In: D.X. Hu and S. Tsunogai (Editors), Margin flux in the East China Sea. China Ocean Press, Beijing, pp. 21-32.
    Lin, X.J., Huang, B.Q., Hong, H.S., Wang, D.Z., Xiao, T., 2002. Vertical characteristics and diel variation of chlorophyll a in the typical areas of East China Sea and southern Yellow Sea. Marine Sciences, 26(11): 57-63. (In Chinese).
    Liu, W.C., Wang, R., Li, C.L., 1998. C/N ratios of particulate organic matter in the East China Sea. Oceanologia et Limnologia Sinica, 29(5): 467-470. (In Chinese).
    Lorenzen, C. J., 1966. A method for the continuous measurement of in vivo chlorophyll concentrations. Deep Sea Research, 13: 223-227.
    Louda, J.W., Li, J., Liu, L, Winfree, M.N., Baker, E.W., 1998. Chlorophyll-a degradation during cellular senescence and death. Organic Geochemistry, 29(5-7): 1233-1251.
    Lovelock, J.E., 1979. Gaia, New look at life on Earth. Oxford University Press, 157 pp.
    Mackey, M.D., Higgins, H.W., Mackey, D.J., Wright, S.W., 1997. CHEMTAX user's manual: a program for estimating class abundances from chemical markers—application to HPLC measurements of phytoplankton pigments, CSIRO Marine Laboratories, Australia.
    
    Mackey, M.D., Mackey, D.J., Higgins, H.W., Wright, S.W., 1996. CHEMTAX—a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Marine Ecology Progress Series, 144: 265-283.
    Mackinney, G., 1941. Absorption of light by chlorophyll solutions. Journal of Biological Chemistry, 140: 315-322.
    Mallin, M.A, Johnson, V.L., Ensign, S.H., MacPherson, T.A., 2006. Factors contributing to hypoxia in rivers, lakes and streams. Limnology and Oceanography, 51(1, part2): 690-701.
    Mallin, M.A., Posey, M.H., Mclver, M.R., Parsons, D.C., Ensign, S.H., Alphin, T.D., 2002. Impacts and recovery from multiple hurricanes in a Piedmont-Coastal Plain river system. BioScience, 52: 999-1010.
    
    Mantoura, R.F.C., Llewellyn, C.A., 1983. The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography. Analytica Chimica Acta, 152: 297-314.
    
    Marasovic, I., Pucher-Petkovic, T., Alegria, V., 1988. Relation between phytoplankton productivity and Sardina pilchardus in the middle Adriatic. In: M.S. J. F. Caddy (Editor), Report of the fifth technical consultation of the general fisheries council for the Mediterranean on stock assessment. Food and Agriculture Organization, FAO Fisheries Report 394, Rome, pp. 121-126.
    McClelland, J.M., Valiela, I., Michener, R.H., 1997. Nitrogen stable isotope signatures in estuarine food web: a record of increasing urbanization in coastal watersheds. Limnology and Oceanography, 42(5): 930-937.
    Meyers-Schulte, K., Hedges, J.I., 1986. Molecular evidence for a terrestrial component of organic matter dissolved in ocean water. Nature, 321: 61-63.
    Milliman, J.D., Hsueh, Y., Hu, D.X., Pashinski, D.J., Shen, H.T., Yang, Z.S., Hacker, P., 1984. Tidal phase control of sediment discharge from the Yangtze River. Estuarine, Coastal and Shelf Science, 19:119-128.
    Milliman, J.D., Li, F., Zhao, Y.Y., Zheng, T.M., Limeburner, R., 1986. Suspended matter regime in the Yellow Sea. Progress in Oceanography, 17: 215-227.
    Milliman, J.D., Shen, H.T., Yang, Z.S., Meade, R.H., 1985. Transport and deposition of river sediments in the Changjiang Estuary and adjacent continental shelf. Continental Shelf Research, 4: 37-45.
    Murray, J.W., Barber, R.T., Roman, M.R., Bacon, M.P., Feely, R.A., 1994. Physical and biological controls on carbon cycling in the equatorial Pacific. Science, 266: 58-65.
    Murrell, M.C., Hollibaugh, J.T., 2000. Distribution and composition of dissolved and particulate organic carbon in Northern San Francisco Bay during low flow conditions. Estuarine, Coastal and Shelf Science, 51: 75-90.
    Naqvi, S.W.A., Jayakumar, D.A., Narvekar, P.V., Naik, H., Sarma, V.V.S.S., DSouza, W., Joseph, S., George, M.D., 2000. Increased marine production of N_2O due to intensifying anoxia on the Indian continental shelf. Nature, 408: 346-349.
    Neira, C, Sellanes, J., Levin, L.A., Amtz, W.E., 2001. Meiofaunal distributions on the Peru margin: Relationship to oxygen and organic matter availability,. Deep-Sea Research. Part I, 48(11): 2453-2472.
    Newman, J.W., Parker, P.L., Behrens, E.W., 1973. Organic carbon isotope ratios in Quaternary cores from the Gulf of Mexico. Geochimica et Cosmochimica Acta, 37: 225-238.
    Nixon, S.W., 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia, 41:199-219.
    Nyffeler, F., Godet, C.H., 1986. The structural parameters of the benthic nepheloid layer in the northeast Atlantic. Deep Sea Research Part A: Oceanographic Research Papers, 33:195-207.
    
    
    Officer, C.B., Biggs, R.B., Taft, J.L., Cronin, L.E., Tyler, M.A., Boynton, W.R., 1984. Chesapeake Bay anoxia: origin, development and significance. Science, 223: 22-27.
    Oguri, K., Matsumoto, E., Yamada, M., Saito, Y., Iseki, K., 2003. Sediment accumulation rates and budgets of depositing particles of the East China Sea. Deep Sea Research Part II, 50: 513-528.
    Paerl, H.W., 1997. Coastal eutrophication and harmful algal blooms: Importance of atmospheric deposition and groundwater as 'new' nitrogen and other nutrient sources. Limnology and Oceanography, 42: 1154-1165.
    Pan, L.A., Zhang, L.H., Zhang, J., Gasol, J.M., Chao, M., 2005. On-board flow cytometric observation of picoplankton community structure in the East China Sea during the fall of different years. FEMS Microbiology Ecology, 52: 243-253.
    Parsons, T.R., Maita, Y., Lalli, CM. (Editors), 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, 173 pp.
    Peng, M.C., Hu, D.X., 1999. Preliminary study on suspended material flux in the East China Sea. In: D.X. Hu and S. Tsunogai (Editors), Margin flux in the East China Sea. China Ocean Press, Beijing, pp. 49-55.
    Pereira-Filho, J., Schettini, C.A.F., Rorig, L, Siegle, E., 2001. Intratidal variation and net transport of dissolved inorganic nutrients, POC and chlorophyll a in the Camboriu river estuary, Brazil. Estuarine Coastal and Shelf Science, 53: 249-257.
    Peterson, B.J., Holmes, R.M., McClelland, J.W., Vorosmarty, C.J., Lammers, R.B., Shiklomanov, A.I., Shiklomanov, I.A., Rahmstorf, S., 2002. Increasing river discharge to the Arctic Ocean. Science, 298: 2171-2173.
    Pihl, L, Baden, S.P., Diaz, R.J., 1991. Effects of periodic hypoxia on distribution of demersal fish and crustaceans. Marine Biology, 108: 349-360.
    Pokryfki, L, Randall, R.E., 1987. Nearshore hypoxia in the bottom water of the northwestern gulf of Mexico from 1981 to 1984. Marine Environmental Research, 22(1): 75-90.
    Porra, R.J., Pfundel, E.E., Engel, N., 1997. Metabolism and function of photosynthetic pigments. In: S.W. Jeffrey, R.F.C. Mantoura and S.W. Wright (Editors), Phytoplankton pigments in Oceanography: Guidelines to modem methods. UNESCO Publishing, Paris.
    Prahl, F.G., Ertel, J.R., Goni, M.A., Sparrow, M.A., Eversmeyer, B., 1994. An assessment of terrestrial organic carbon contributions to Washington coastal sediments. Geochimica et Cosmochimica Acta, 58: 3035-3048.
    Prahl, F.G., Small, L.F., Eversmeyer, B., 1997. Biogeochemical characterization of suspended particulate matter in the Columbia River estuary. Marine Ecology-Progress Series, 160: 173-184.
    Pytkowicz, R.M., 1971. On the apparent oxygen utilization ad the preformed phosphate in oceans. Limnology and Oceanography, 16(1): 39-42.
    
    Rabalais, N.N., Atilla, N., Normandeau, C, Turner, R.E., 2004. Ecosystem history of Mississippi River-influenced continental shelf revealed through preserved phytoplankton pigments. Marine Pollution Bulletin, 49: 537-547.
    Rabalais, N.N., Turner, R.E., Scavia, D., 2002. Beyond science into policy: Gulf of Mexico hypoxia and the Mississippi river. BioScience, 52: 129-142.
    Rabalais, N.N., Turner, R.E., Wiseman, W.J., 2001. Hypoxia in the Gulf of Mexico. Journal of Environmental Quality, 30: 320-329.
    Rabalais, N.N., Turner, R.E., Wiseman, W.J., Dortch, Q., 1998. Consequences of the 1993 Mississippi River flood in the gulf of Mexico. Regulated Rivers: Research and Management, 14: 161-177.
    Ransom, B., Shea, K.F., Burkett, P.J., Bennett, R.H., Baerwald, R., 1998. Comparison of pelagic and nepheloid layer marine snow: Implications for carbon cycling. Marine Geology, 150: 39-50.
    Redfield, A.C., 1942. The processes determining the concentration of oxygen, phosphate and other organic derivatives within the depths of the Atlantic Ocean. Papers in Physical Oceanography and Meteorology, 9(2): 1-22.
    Redfield, A.C., 1948. The exchange of oxygen across the sea surface. Journal of Marine Research, 7: 347-361.
    Redfield, A.C., Ketchum, B.H., Richards, F.A., 1963. The influence of organisms on the composition of seawater. In: M.N. Hill (Editor), The Sea. John Wiley, New York, pp. 26-77.
    Renaud, M., 1986. Hypoxia in Louisiana coastal waters during 1983: Implications for fisheries. Fishery Bulletin, 84:19-26.
    Repeta, D.J., 1993. A high resolution historical record of Holocene anoxygenic primary production in the Black Sea. Geochimica et Cosmochimica Acta, 57: 4337-4342.
    Repeta, D.J., Simpson, D.J., 1991. The distribution and cycling of chlorophyll, bacteriochlorophyll and carotenoids in the Black Sea. Deep-Sea Research, 38: S969-S984.
    Reuss, N., Conley, D.J., 2005. Effects of sediment storage conditions on pigment analyses. Limnology and Oceanography: Methods, 3: 477-487.
    Reuss, N., Conley, D.J., Bianchi, T.S., 2005. Preservation conditions and the use of sediment pigments as a tool for recent ecological reconstruction in four Northern European estuaries. Marine Chemistry, 95(3-4): 283-302.
    Rice, A.L., Thurston, M.H., Bett, B.J., 1994. The IOSDL DEEPSEAS programme: Introduction and photographic evidence for the presence and absence of a seasonal input of phytodetritus at contrasting abyssal sites in the northeastern Atlantic. Deep-Sea Research. Part I, 41: 1305-1320.
    Richards, F.A., Thompson, T.G., 1952. The estimation and characterization of plankton populations by pigment analysis. II. A spectrophotometric method for the estimation of plankton pigments. Journal of Marine Research, 11: 156-172.
    
    Rosenberg, R., Elmgren, R., Fleischer, S., Jonsson, P., Person, G., Dahlin, H., 1990. Marine eutrophication case studies in Sweden. Ambio, 19: 102-108.
    
    Sackett, W.M., Thompson, R.R., 1963. Isotopic organic carbon composition of recent continental derived clastic sediments of eastern gulf coast, Gulf of Mexico. Bulletin of the American Association of Petroleum Geologists, 47:525-531.
    
    Saliot, A., Derieux, S., Sadouni, N., Bouloubassi, I., Fillaux, J., Dagaut, J., Momzikoff, A., Gondry, G., Guillou, C, Breas, O., Cauwet, G., Deliat, G., 2002a. Winter and spring characterization of particulate and dissolved organic matter in the Danube-Black Sea Mixing Zone. Estuarine, Coastal and Shelf Science, 54: 355-367.
    
    Saliot, A., Parrish, C.C., Sadouni, N., Bouloubassi, I., Fillaux, J., Cauwet, G., 2002b. Transport and fate of Danube Delta terrestrial organic matter in the Northwest Black Sea mixing zone. Marine Chemistry, 79(3-4): 243-259.
    
    Schaefer, C.T., Lewin, J., 1984. Persistent blooms of surf diatoms along the Pacific coast, USA. Marine Biology, 83: 205-217.
    
    Scheer, H. (Editor), 1991. Chlorophylls. CRC Press, Boca Raton, U.S.A., 1257 PP-
    Schluter, L, Lauridsen, T.L., Krogh, G., Jorgensen, T., 2006. Identification and quantification of phytoplankton groups in lakes using new pigment ratios - a comparison between pigment analysis by HPLC and microscopy. Freshwater Biology, 51:1474-1485.
    Schubel, J.R., 1968. Turbidity maximum of the Northern Chesapeake Bay. Science, 161:1013-1015.
    Schubert, C.J., Niggemann, J., Klockgether, G., Ferdelman, T.G., 2005. Chlorin Index: A new parameter for organic matter freshness in sediments. Geochemistry Geophysics Geosystems, 6: Q03005.
    
    Shankle, A.M., Goericke, R., Franks, P.J.S., Levin, L.A, 2002. Chlorin distribution and degradation in sediments within and below the Arabian Sea oxygen minimum zone. Deep-Sea Research. Part I, 49: 953-969.
    Sharp, J.H., Church, T.M., 1981. Biochemical modeling in coastal waters of the Middle Atlatic States. Limnology and Oceanography, 26(5): 843-854.
    Shen, Z.L., Liu, Q., Zhang, S.M., Miao, H., Zhang, P., 2001. The dominant controlling factors of high content inorganic nitrogen in the Changjiang River and its mouth. Oceanologia Limnologia Sinica, 32(5): 465-473.
    Sherma, J., Lippstone, G.S., 1964. Chromatography of chloroplast pigments on preformed thin layers. Journal of Chromatography A, 41: 220-227.
    Shi, Z., 2004. Behaviour of fine suspended sediment at the North passage of the Changjiang Estuary, China. Journal of Hydrology, 293:180-190.
    Shiah, F.K., Gong, G.C., Chen, C.C., 2003. Seasonal and spatial variation of bacterial production in the continental shelf of the East China Sea: possible controlling mechanisms and potential roles in carbon cycling. Deep-Sea Research Part II, 50:1295-1309.
    Simon, D., Helliwell, S., 1998. Extraction and quantification of chlorophyll a from freshwater green algea. Water Research, 32(7): 2220-2223.
    Smayda, T., Mitchell-Innes, B., 1974. Dark survival of autotrophic, planktonic marine diatoms. Marine Biology, 25:195-202.
    Smayda, T.J., 1990. Novel and nusance phytoplankton blooms in the sea: evidence for global epidemic. In: E. Graneli, B. Sundstrom, R. Edler and D.M. Anderson (Editors), Toxic Marine Phytoplankton. Elsevier, New York, pp. 29-40.
    Stahl, H., Tengberg, A., Brunnegard, J., Hall, P.O.J., 2004. Recycling and burial oforganic carbon in sediments of the Porcupine Abyssal Plain, NE Atlantic. Deep Sea Research I, 51: 777-791.
    Steenbergen, C.L.M., Korthals, H.J., 1982. Distribution of photosynthetic microorganisms in the anaerobic and microaerophilic strata of Lake Vechten (The Netherlands). Pigment analysis and role in primary production. Limnology and Oceanography, 27(5): 883-895.
    Stefansson, U., 1968. Dissolved nutrients, oxygen and water masses in the Northern Irminger Sea. Deep Sea Research and Oceanographic Abstracts, 15(5): 541-566.
    Stefansson, U., Richards, F.A., 1964. Distributions of dissolved oxygen, density, and nutrients off the Washington and Oregon coasts. Deep Sea Research and Oceanographic Abstracts, 11(3): 353.
    Stephens, M.P., Kadko, D.C., Smith, C.R., Latasa, M., 1997. Chlorophyll-a and pheopigments as tracers of labile organic carbon at the central equatorial Pacific seafloor. Geochimica et Cosmochimica Acta, 61(21): 4605-4619.
    Stigebrandt, A., 1991. Computations of oxygen fluxes through the sea surface and net production of organic matter with application to the Baltic and adjacent seas. Limnology and Oceanography, 36: 444-454.
    Ston, J., Kosakowska, A., 2000. Qualitative and quantitative analysis of Baltic phytoplankton pigments. Oceanologia, 42(4): 449-471.
    Sun, M.Y., Aller, R.C., Lee, C, 1994. Spatial and temporal distributions of sedimentary chloropigments as indicators of benthic processes in Long Island Sound. Journal of Marine Research, 52:149-176.
    Sun, M.Y., Dai, J.H., 2005. Relative influences of bioturbation and physical mixing on degradation of bloom-derived particulate organic matter: Clue from microcosm experiments. Marine Chemistry, 96: 201-218.
    Sun, M.Y., Lee, C, Aller, R.C., 1993. Anoxic and oxic degradation of 14C-labeled chloropigments and a 14C-labeled diatom in Long Island Sound sediments. Limnology and Oceanography, 38:1438-1451.
    Sun, M.Y., Wakeham, S.G., 1998. A study of oxic/anoxic effects on egradation of sterols at the simulated sediment-water interface of coastal sediments. Organic Geochemistry, 28(12): 773-784.
    Sun, M.Y., Wakeham, S.G., Aller, R.C., Lee, C, 1998. Impact of seasonal hypoxia on diagenesis of phytol and its derivatives in Long Island Sound. Marine Chemistry, 62: 157-173.
    Takahashi, S., Yanagi, T., Hoshika, A., Tanimoto, T., 1999. Seasonal variation of suspended matter transport in the East China Sea. In: D.X. Hu and S. Tsunogai (Editors), Margin Flux in the East China Sea. China Ocean Press, Beijing, pp. 68-76.
    Takahashi, T., Broecker, W.S., Langer, S., 1985. Redfield ratio based on chemical data from isopycnal surfaces. Journal of Geophysical Research, 90: 6907-6924.
    Thibodeau, B., de Vernal, A., Mucci, A., 2006. Recent eutrophication and consequent hypoxia in the bottom waters of the Lower St. Lawrence Estuary: Micropaleontological and geochemical evidence. Marine Geology, 231(1-4): 37-50.
    Thurow, F., 1999. On herring biomass in the Baltic Sea during the 20th century. ICES CM 1999/P:04.
    Tian, R.C., Hu, F.X., Martin, J.M., 1993. Summer Nutrient Fronts in the Changjiang (Yantze River) Estuary. Estuarine, Coastal and Shelf Science, 37(1): 27-41.
    Tsunogai, S., Iseki, K., Kusakabe, M., Saito, Y., 2003. Biogeochemical cycles in the East China Sea: MASFLEX program. Deep Sea Research II, 50: 321-326.
    Tsunogai, S., Shuichi, W., Yunya, N., Tsuneo, O., Tetsuro, S., 1997. A preliminary study of carbon system in the East China Sea. Journal of Oceanography, 53(1): 9-17.
    Tsunogai, S., Watanabe, S., Sato, T., 1999. Is there a "continental shelf pump" for the absorption of atmospheric CO2? Tellus, 51B(3): 701-712.
    Turner, R.E., Rabalais, N.N., Swenson, E.M., Kasprzak, M., Romaire, T., 2005. Summer hypoxia in the northern Gulf of Mexico and its prediction from 1978 to 1995. Marine Environmental Research, 59: 65-77.
    Uncles, R.J., Elliot, R.C.A., Weston, S.A., 1985. Observed fluxes of water, salt and suspended sediments in a muddy, macrotidal Estuary. Estuarine, Coastal and Shelf Science, 20:147-167.
    Valle-Levinson, A., Wilson, R.E., Swanson, R.L., 1995. Physical mechanisms leading to hypoxia and anoxia in western long island sound. Environment International, 21(5): 657-666.
    van Dolah, R.F., Anderson, G.S., 1991. Effects of hurricane Hugo on salinity and dissolved oxygen conditions in the Charleston Harbor estuary. Journal of Coastal Research, 8(SI): 83-94.
    Verity, P.G., Alber, M., B., B.S., 2006. Development of hypoxia in well-mixed subtropical estuaries in the southeastern USA. Estuaries and Coasts, 29(4): 665-673.
    Villanueva, J., Hastings, D.W., 2000. A century-scale record of the preservation of chlorophyll and its transformation products in anoxic sediments. Geochimica et Cosmochimica Acta, 64(13): 2281-2294.
    von Rad, U., Schulz, H., Party, S.S., 1995. Sampling the oxygen minimum zone off Pakistan: glacial-interglacial variations of anoxia and productivity (preliminary results, SONNE 90 cruise). Marine Geology, 125: 7-19.
    Walsh, J.J., 1991. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature, 350: 53-55.
    Wang, B.D., 2006. Cultural eutrophication in the Changjiang (Yangtze River) plume: History and perspective. Estuarine Coastal and Shelf Science, 69:471-477.
    Waterbury, J.B., Watson, S.W., Guillard, R.R.L., Brand, L.E., 1979. Widespread occurrence of a unicellular marine planktonic cyanobacterium. Nature, 277: 293-294.
    Watts, C. D., Maxwell, J.R., Kjosen, H., 1977. The potential of carotenoids as environmental indicators. In: R. Campos and J. Goni (Editors), Advances in Organic Geochemistry, pp. 391-413.
    Wei, H., He, Y., Li, Q., Liu, Z., Wang, H., 2007. Summer hypoxia adjacent to the Changjiang Estuary. Journal of Marine Systems, In Press, Corrected Proof.
    Wellershaus, S., 1981. Turbidity maximum and mud shoaling in the Weser Estuary. Hydrobiologica, 92: 161-198.
    Welschmeyer, N.A., Lorenzen, C.J., 1985. Chlorophyll budgets: zooplankton grazing and phytoplankton growth in a temperate fjord and the central Pacific Ocean. Limnology and Oceanography, 30: 1-21.
    Westernhagen, H.V., Hickel, W., Bauerfeind, E., Nierman, U., Kroncke, I., 1986. Sources and effects of oxygen deficiencies in the southern North Sea. Ophelia, 26: 457-473.
    Wilson, W.S., Ball, A.S., Hinton, R.H. (Editors), 1999. Managing risks of nitrates to humans and the environment. Spec. Publication. Royal Society of Chemistry, Cambridge, 237 pp.
    Wong, G.T.F., Chao, S.Y., Li, Y.H., Shiah, F.K., 2000. The Kuroshio edge exchange processes (KEEP) study - an introduction to hypotheses and highlights. Continental Shelf Research, 20: 335-347.
    Wright, S.W., Jeffrey, S.W., Mantoura, R.F.C., Llewellyn, C.A., Bjornland, T., Repeta, D., Welschmeyer, N., 1991. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Marine Ecology Progress Series, 77:183-196.
    Wright, S.W., Shearer, J.D., 1984. Rapid extraction and high-performance liquid chromatography of chlorophylls and carotenoids from marine phytoplankton Journal of Chromatography, 294: 281-295.
    Wu, Y., Zhang, J., Li, D.J., Wei, H., Lu, R.X., 2003. Isotope variability of particulate organic matter at the PN section in the East China Sea. Biogeochemistry, 65: 31-49.
    Wu, Y., Zhang, J., Zhou, Q., 1999. Persistent organochlorine residues in sediments from Chinese river/estuary systems. Environment Pollution, 105: 143-150.
    Wysocki, L.A., Bianchi, T.S., Powell, R.T., Reuss, N., 2006. Spatial variability in the coupling of organic carbon, nutrients, and phytoplankton pigments in surface waters and sediments of the Mississippi River plume. Estuarine Coastal and Shelf Science, 69: 47-63.
    Yan, W.J., Zhang, S., 2003. How do nitrogen inputs to the Changjiang basin impact the Changjiang River nitrate: A temporal analysis for 1968-1997. Global Biogeochemical Cycles, 17(4): 1091.
    Yang, S.L., 1999. Tidal wetland sedimentation in the Yangtze Delta. Journal of Coastal Research, 50: 339-351.
    Yang, S.L., Li, M., Dai, S.B., Liu, Z., Zhang, J., Ding, P.X., 2006. Drastic decrease in sediment supply from the Yangtze River and its challenge to coastal wetland management. Geophysical Research Letters, 33: L06408.
    
    Yang, Y.L., Kusakabe, M., Southon, J.R., 2003.~(10)Be profiles in the East China Sea and the Okinawa Trough. Deep-Sea Research Part II, 50: 339-351.
    
    Yentsch, C. M., Horan, P.K., Muirhead, K., Dortch, Q., Haugen, E.M., Legendre, L., Murphy, L.S., Perry, M.J., Phinney, D., Pomponi, S.A., Spinrad, R.W., Wood, A.M., Yentsch, C.S., Zahurenec, B.J., 1983. Flow cytometry and sorting: a powerful technique with potential applications in aquatic sciences. Limnology and Oceanography, 28:1275-1280.
    
    Yentsch, C.S., Menzel, D.W., 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep Sea Research and Oceanographic Abstracts, 10(3): 221-231.
    
    Yin, K.D., Lin, Z.F., Ke, Z.Y., 2004. Temporal and spatial distribution of dissolved oxygen in the Pearl River Estuary and adjacent coastal waters. Continental Shelf Research, 24: 1935-1948.
    
    Zapata, M., Ayala, A.M., Franco, J.M., Garrido, J.L., 1987. Separation of chlorophylls and their degradation products in marine phytoplankton by reversed-phase high-performance liquid chromatography. Chromatographia, 23: 26-30.
    
    Zapata, M., Rodriguez, F., Garrido, J.L., 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C_8 column and phridine containing mobile phases. Marine Ecology Progress Series, 195: 29-45.
    
    Zhang, J., 1996. Nutrient elements in large Chinese estuaries. Continental Shelf Research, 16(8): 1023-1045.
    
    Zhang, J., 1999. Heavy metal compositions of suspended sediments in the Changjiang (Yangtze River) estuary: significance of riverine transport to the ocean. Continental Shelf Research, 19(12): 1521-1543.
    
    Zhang, J., 2000. Evidence of trace metal limited photosynthesis in eutrophic estuarine and coastal waters. Limnology and Oceanography, 45(8): 1871-1878.
    
    Zhang, J., Cooper, L.W., Wu, Y., Hong, G.H., Liu, S.M., Chung, C.S., Kim, S.H., Kim, Y.I., 2002. Elemental and isotopic composition of carbon and nitrogen of organic matter in plant and soils in the river bank and suspended particulate matter of the Changjiang (Yangtze River) In: G.H. Hong, J. Zhang and C.S. Chung (Editors), Impact of interface exchange on the biogeochemical process of the Yellow and East China seas. Bum Shin Press, Seoul, pp. 189-232.
    
    Zhang, J., Liu, C.L., 2002. Riverine Composition and Estuarine Geochemistry of Particulate Metals in China—Weathering Features, Anthropogenic Impact and Chemical Fluxes. Estuarine, Coastal and Shelf Science, 54: 1051-1070.
    
    Zhang, J., Zhang, Z.F., Liu, S.M., Wu, Y., Xiong, H., Chen, H.T., 1999. Human impacts on the large world rivers: Would the Changjiang (Yangtze River) be an illustration? Global Biogeochemical Cycles, 13(4): 1099-1105.
    Zhang, Y., Zhu, L., Zeng, X., Lin, Y., 2004. The biogeochemical cycling of phosphorus in the upper ocean of the East China Sea. Estuarine, Coastal and Shelf Science, 60: 369-379.
    Zhu, J.R., Liu, X.C., Shen, H.T., Xiao, C.Y., 2003. Observation and analysis on hydrology in the Changjiang Estuary in March of 1996. Journal of East China Normal University (Natural Science), 4: 87-93. (In Chinese).
    Zhu, J.R., Xiao, C.Y., Shen, H.T., 1998. Numerical model simulation of expansion of Changjiang diluted water in summer. Acta Oceanologica Sinica, 20(5): 13-22. (In Chinese).
    Zhu, Z.Y., Wu, Y., Zhang, J., Wei, H., 2005. Spatial and temporal variation of particulate organic carbon in the PN section of East China Sea. Acta Oceanologica Sinica, 24(5): 89-99.
    Zhu, Z.Y., Zhang, J., Wu, Y., Lin, J., 2006. Bulk particulate organic carbon in the East China Sea: Tidal influence and bottom transport. Progress in Oceanography, 69(1): 37-60.
    Zscheile, F.P., 1941. Plastid pigments with special reference to their physical and photo-chemical properties and to analytical methods. Botanical Review, 7: 587-648.
    长江水利委员会,2000.泥沙公报.http://www.cjh.com.cn/.(访问时间:20070601)
    陈吉余,陈祥禄,杨启伦,1988.上海海岸带和海涂资源综合调查报告.114-116.
    陈纪新,黄邦钦,刘嫒,曹振锐,洪华生,2006.应用特征光合色素研究东海和南海北部浮游植物的群落结构.地球科学进展,21(7):738-746.
    陈纪新,叶翔,陈小鹏,黄邦钦,2005.有机试剂提取浮游植物光合色素的研究.厦门大学学报(自然科学版),44(1).
    崔毅,杨琴芳,宋云利,1994.夏季渤海无机磷酸盐和溶解氧分布及其相互关系.海洋环境科学,13(4):31-35.
    戴志军,韩震,恽才兴,2005.长江口南槽沉积物特征和运移趋势.海洋湖沼通报,2:72-78.
    段凌云,王张华,李茂田,潘建明,陈中原,Yishiki,S.,Yutaka,K.,2005.长江口沉积物210Pb分布及沉积环境解释.沉积学报,23(3):514-522.
    傅瑞标,沈焕庭,2002.长江河口淡水端溶解态无机氮磷的通量.海洋学报,24(4):34-43.
    高抒,程鹏,汪亚平,曹奇源,1999.长江口外海域1998年夏季悬沙浓度特征.海洋通报,18(6):44-50.
    顾宏堪,1980.黄海溶解氧垂直分布中的最大值.海洋学报,2:70-79.
    郭锦宝(Editor),1997.化学海洋学.厦门大学出版社,厦门,398pp.
    郭玉洁,杨则禹,1992.长江口区浮游植物的数量变动及生态分析.海洋科学集刊,33:167-189.
    郭志刚,杨作升,雷坤,曲艳慧,范德江,1999.东海陆架北部泥质区沉积动力过程的季节性变化.青岛海洋大学学报,29(3):507-513.
    国家海洋局,1959.中国海洋调查报告.
    韩舞鹰(Editor),1998.南海海洋化学,科学出版社.科学出版社,北京,289 pp.
    胡敦欣,韩舞鹰(Editors),2001.长江、珠江口及邻近海域陆海相互作用.海洋出版社,北京.
    焦念志,王荣,李超伦,1998.东海春季初级生产力与新生产力的研究.海洋与湖沼,29(2):135-140.
    焦念志,杨燕辉,2002.中国海原绿球藻研究.科学通报,47(7):485-491.
    李道季,张经,黄大吉,吴莹,梁俊,2002.长江口外氧的亏损.中国科学D,32(8):686-694.
    林洪瑛,韩舞鹰,1987.大亚湾核电站热排水对底层海水贫氧现象影响的预测.环境科学:7~12.
    林晶,吴莹,张经,杨世伦,朱卓毅,2007.长江有机碳通量的季节变化及三峡工程对其影响.中国环境科学,27(2):246-249.
    刘丽萍,黄大吉,章本照,2002.渤黄东海混合层化演变规律的研究进展.海洋科学进展,20(3):84-89.
    刘新成,沈焕庭,黄清辉,2002.长江入河口区生源要素的浓度变化及通量估算.海洋与湖沼,33(5):332-340.
    刘子琳,宁修仁,蔡昱明,2001.杭州湾—舟山渔场秋季浮游植物现存量和初级生产力.海洋学报,23(2):93-98.
    鲁北伟,王荣,1996.春季东海表层叶绿素a含量分布特征.海洋与湖沼,27(5):487-491.
    马根之,2000.黄海溶解氧时空分布规律研究,中国海洋大学,青岛,硕士学位论文54 pp.
    孟春霞,邓春梅,姚鹏,张欣泉,米铁柱,陈洪涛,于志刚,2005.小清河口及邻近海域的溶解氧.海洋环境科学,24(3):25-28.
    宁修仁,刘子琳,史君贤,1995.渤、黄、东海初级生产力和潜在渔业生产量的评估.海洋学报,17(3):72-84.
    宁修仁,史君贤,蔡昱明,刘诚刚,2004.长江口和杭州湾海域生物生产力锋面及其生态学效应.海洋学报,26(6):96-106.
    彭云辉,陈玲娣,1994.珠江河口水域溶解氧与硝酸盐、Chla即硝酸盐与磷酸盐的关系.海洋学报,16(1):136-141.
    彭云辉,陈玲娣,陈浩如,1994.珠江口水域溶解氧与营养盐的关系.热带海洋,13(1):96-100.
    沈焕庭,茅志昌,朱建荣(Editors),2003.长江河口盐水入侵.中国海洋出版社,北京,175 pp.
    沈志良,1991.三峡工程对长江口及邻近海域营养盐分布变化影响的研究.海洋与湖沼,22(6):540-546.
    沈志良,1993.长江口海区理化环境对初级生产力的影响.海洋湖沼通报,1:42-51.
    沈志良,刘群,张淑美,苗辉,张平,2001.长江和长江口高含量无机氮的主要控制因素.海洋与湖沼,32(5):465-473.
    石晓勇,陆茸,张传松,王修林,2006.长江口邻近海域溶解氧分布特征及主要影响因素.中国海洋大学学报,36(2):287-290.
    石晓勇,王修林,陆茸,孙霞,2005.东海赤潮高发区春季溶解氧和pH分布特征及影响因素探讨.海洋与湖沼,36(5):404-412.
    唐启生,苏纪兰(Editors),2000.中国海洋生态系统动力学研究:Ⅰ 关键科学问题与研究发展战略.科学出版社,北京.
    涂大正(Editor),1992.植物生理学.东北师范大学出版社,长春,49 pp.
    屠建波,王保栋,2004.长江口营养元素生物地球化学研究.海洋环境科学,23(4):10-13.
    王保栋,陈爱萍,刘峰,2002.1998年夏季长江特大洪水入海的化学水文学特征.海洋科学进展,3.
    王继龙,2004.辽河口水质调查及低氧区形成机理研究,北京化工大学,北京,硕士学位论文69 pp.
    王金辉,2002a.长江口3个不同生态系的浮游植物群落.青岛海洋大学学报,32(3):422-428.
    王金辉,2002b.长江口临近水域的赤潮生物.海洋环境科学,21(2):37-41.
    韦蔓新,童万平,何本茂,赖廷和,2000.北海湾无机磷和溶解氧的空间分布及其相互关系研究.海洋通报,19(4):29-35.
    吴莹,张经,张再峰,任景玲,草建平,2002.长江悬浮颗粒物中稳定碳、氮同位素的季节分布.海洋与湖沼,33(5):546-552.
    徐韧,洪君超,王桂兰,沈竑,1994.长江口及其邻近海域的赤潮现象.海洋通报,13(5):25-29.
    许淑梅,2005.长江口外缺氧区及其临近海域氧化还原敏感性元素的分布规律及环境指示意义,中国海洋大学,青岛,博士学位论文152 pp.
    杨东方,王凡,高振会,陈永利,谢利,2006.长江口理化因子影响初级生产力的探索.海洋科学进展,24(1):97-107.
    杨庆霄,董娅婕,蒋岳文,栾锡亭,马长敏,鞠红岩,2001.黄海和东海海域溶解氧的分布特征.海洋环境科学,20(3):9-13.
    杨作升,郭志刚,王兆祥,徐景平,高文兵,1991.黄、东海毗邻海域悬浮体与水团的对应关系及影响因素.青岛海洋大学学报,21(3):55-69.
    姚鹏,于志刚,米铁柱,2003.海洋浮游藻类的化学分类法.海洋环境科学,22(1):75-80.
    叶曦雯,刘素美,赵颖翡,张经,2004.东、黄海沉积物中生物硅的分布及其环境意义.中国环境科学,24(3):265-269.
    叶属峰,黄秀清,2003.东海赤潮及其监视监测.海洋环境科学,22(2):10-14.
    叶属峰,纪焕红,曹恋,黄秀清,2004.长江口海域赤潮成因及其防治对策.海洋科学,28(5):26-32.
    袁建平,张义明,史贤明,龚贤弟,陈峰,1997.高效液相色谱法测定藻类中的类胡萝卜素和叶绿素.色谱,15(2):133-135.
    张敬,2007.长江口环境中210Pb与226Ra的测定,华东师范大学,上海,硕士学位论文.
    张莹莹,2007.长江口营养盐的解析与吸附,华东师范大学,上海,博士学位论文.
    张莹莹,张经,吴莹,朱卓毅,2007.长江口溶解氧的分布特征及影响因素探讨.环境科学:(已接受).
    赵保仁,任广法,曹德明,杨玉玲,2001.长江口上升流海区的生态环境特征.海洋与湖沼,32(3):327-333.
    郑国侠,宋金明,戴纪翠,2006.海洋碳迁移转化与主要化学驱动因子的相互关系.应用生态学报,17(4):740-746.
    中国海湾志编纂委员会,1997.中国海湾志.
    周名江,颜天,邹景忠,2003.长江口临近海域赤潮发生区基本特征初探.应用生态学报,14(7):1031-1038.
    周名江,朱明远,张经,2001.中国赤潮的发生趋势和研究进展.生命科学,13(2):54-59.
    朱建荣,2004.长江口外海区叶绿素a浓度分布及其动力成因分析.中国科学D 地球科学,34(8):757-762.
    朱建荣,王金辉,沈焕庭,吴辉,2005.2003年6月中下旬长江口外海区冲淡水和赤潮的观测及分析.科学通报,50(1):59-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700