用户名: 密码: 验证码:
分子标记辅助改良稻米品质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生物技术的发展和应用,农作物育种已从传统育种时代进入分子育种时代,其核心是借助与重要功能基因紧密连锁的分子标记,开展有利基因的剪切和聚合,培育在产量、米质、抗性等多方面突破的超级稻新品种,尤其是对一些多基因控制的、易受环境影响的复杂性状,如稻米品质性状及其多基因的聚合,分子育种有着常规育种无法比拟的优势,分子育种还可在早世代进行准确、稳定的选择。分子育种技术的这种优势被越来越多地应用于农作物品种改良中。
     本研究通过对“日本晴/93-11”的重组自交系群体及其遗传图谱的构建,获得了144个株系包含125个分子标记的遗传图谱,并初步分析了部分分子标记在该遗传图谱中的偏分离状况;基于该遗传图谱的构建,通过对重组自交系群体各株系的稻米品质相关性状的检测,完成了“日本晴/93-11”的重组自交系群体稻米品质相关性状的QTL分析,在水稻5条染色体上共检测到6个与稻米蒸煮食味品质相关QTL,但各QTL的LOD值和贡献率均较小;借助其它作物在淀粉合成代谢中的研究成果,结合生物信息学研究手段,明确了水稻淀粉合成代谢网络模式及其参与的酶或同功酶,获得了参与水稻淀粉合成代谢的29个主要基因及其编码序列;根据Blast的结果,鉴定出18淀粉合成相关基因在93-11和日本晴基因组结构上的差异,并发展了以PCR技术为基础的检测标记;通过回交结合分子标记辅助选择,将日本晴的淀粉合成相关基因导入93-11,经过5次以93-11为轮回亲本的连续回交和分子标记辅助选择,形成了以93-11为背景的淀粉合成相关基因的近等基因系,以及多基因聚合的近等基因系,通过对置换系及近等基因系的稻米品质检测发现,导入日本晴的淀粉合成基因能改善93-11的稻米品质,总体上说,导入日本晴的基因越多的株系,其蒸煮食味品质也越好,如导入5个日本晴基因的株系,其品质要优于导入4个或3个日本晴基因的株系;但也有部分置换系材料的稻米品质指标却劣于93-11,这可能由于籼稻93-11中也存在一些能提高稻米品质的淀粉合成相关基因;而将之用于杂交稻的测配,则获得了如广占63S/R7275等系列优异组合。
     本研究利用业已完成序列测定的93-11和日本晴的基因组信息,结合生物信息学分析手段,并利用分子标记辅助选择和回交转育技术来改良稻米品质,显著提高了轮回亲本的稻米品质和育种改良的周期,选配获得了部分优异组合,为水稻品质改良提供了一条新途径。
With the development and application of biotechnology, crop breeding had been from traditional breeding age into the era of molecular breeding. The core was to carry out the shear favorable genes and aggregation, using the markers which were linked functional genes tightly. Molecular breeding have much advantages, including identification in the early generation accurately and stably, overcoming the vulnerability of the environment as well as the difficult of multi-gene control. And these advantages were applicated in the agriculture area more and more widely.
     In this study, a genetic map contained 144 lines with 125 molecular markers was obtained, which was based on the construction of recombinant inbred lines of "Nipponbare/93-11". A preliminary analysis carried out for segregation distortion of some molecular markers in the genetic map. Based on the construction of the genetic map, QTL analysis related to rice quality traits had been completed, by testing the rice quality of the various strains of recombinant inbred lines. As a result 6 QTLs had been detected distributed on the 5 chromosomes. But the LOD value of each QTL was small.29 major genes as well as their sequence had been acquired by the means of bioinformatics research tools, and the network model of rice starch biosynthesis had been mastered. According to Blast results,18 starch synthesis-related genes had clear differences in genome structure of 93-11 and Nipponbare. And some PCR markers for detection had been developed. Through backcrossing with molecular marker assisted selection(MAS), and starch synthesis-related genes of Nipponbare were transformed into 93-11, after five times with 93-11 as the recurrent parent continuous backcrossing and MAS, and formed a near-isogenic line(NIL) of starch biosynthesis related genes with the background of 93-11, as well as polymerization of multi-gene NIL, through the detection of the substitution lines and NIL of rice quality, it was found that it can improve the rice quality by transferring the Nipponbare starch synthesis genes; Generally speaking, the more of the genes imported into 93-11, the better quality of their cooking and eating. For example,the quality of the lines imported 5 genes from Nipponbare was superior to those lines which were imported 4 or 3 genes in the background of the Nipponbare; But there were also some substitution lines, whose quality was inferior to 93-11. May be there existed a number of genes from 93-11 could also improve the quality. When it is used for measuring distribution of hybrid rice, we can obtain the excellent combination just like guangzhan 63S/R7275 series.
     This study improved the rice quality through the molecular marker assisted backcross technology, significantly improved the rice quality of recurrent parent, obtained some excellent combination, and provides a new way to improve the rice quality.
引文
1.程式华.粮食安全与超级稻育种.中国稻米,2005,4:1-3
    2.胡培松,翟虎渠,万建民.中国水稻生产新特点与稻米品质改良.中国农业科技导报,2002,4(4):33-39
    3.程式华,庄杰云,曹立勇,等.超级杂交稻分子育种研究.中国水稻科学,2004,18:377-338
    4.莫惠栋.我国稻米品质的改良.中国农业科学,1993,26(4):8-14
    5.黄华康,张卫清,林强.籼型杂交稻米质现状及其遗传改良.福建农林大学学报(自然科学版),2002,31:155-159
    6.谷德平,王任初,李源祥,等.江西省水稻推广品种米质现状评价及其改良策略.江西农业学报,2003.15:42-46
    7.杨益善,陈立云,徐耀武.从稻米品质评价标准的变化看我国水稻品质育种的发展.杂交水稻,2004,19(3):5-10
    8.王忠顾,蕴洁,陈刚,等.稻米的品质和影响因素.分子植物育种,2003,1(2):231-241
    9.陈能,罗玉坤,朱智伟,等.优质食用稻米品质的理化指标与食味的相关性研究.中国水稻科学,1997,11(20):70-76
    10.陈能,罗玉坤,朱智伟,等.食用稻米米饭质地及适口性的研究.中国水稻科学,1999,13(3):152-156
    11.熊善柏,赵思明,李建林,等.米饭理化指标与感官品质的相关性研究.华中农业大学学报,2002,21(1):83-87
    12.张小明,王仪春,鲍根良,等.稻米食味评价的进展.种子,2002,(1):52-53
    13.舒庆尧,吴殿星,夏英武,等.稻米淀粉RVA谱特征与食用品质的关系.中国农业科学,1998,31(3):25-29
    14.吴殿星,舒庆尧,夏英武.利用RVA谱快速鉴别不同表观直链淀粉含量早籼稻的淀粉粘滞特性.中国水稻科学,2001,15(1):57-59
    15.吴殿星,舒庆尧,夏英武.RVA分析辅助选择食用优质早籼稻的研究.作物学报,2001,27(2):165-172
    16. Deffenbaugh LB, Walker CE. Comparison of starch pastingproperties in the Brabender Viscoamylograph and the Rapid Visco-Analyzer. Cereal Chemistry,1989,66(6):493-499
    17. Reddy KR, Subramanian R, Zakiuddin SA, et al. Viscoelastic properties of rice-flour pastes and their relationship to amylose content and rice quality. Cereal Chemistry,1994,71(6):548-552
    18.隋炯明,李欣,严松,等.稻米淀粉RVA谱特征与品质性状相关性研究.中国农业科学,2005,38(4):657-663
    19.吴殿星,舒庆尧,夏英武.胚乳外观标记与RVA谱理化指标相结合辅助改良早籼稻食用品质.中国水稻科学,2002,16(1):80-82
    20.吴殿星,段智英,舒庆尧,等.水稻亚(品)种间淀粉粘滞特性杂交转移的初步研究.中国水稻科学,2003,17(4):319-322
    21. HizukuriS. Relaitonship between the distribution of the chain length of amylopectin and the Crystalline structure of starch granules [J]. CarbohydrRes,1985(141):295-299
    22.张名位,彭仲明.色稻碾米品质性状的遗传效应分析[J].作物品种资源,1997,(4):1-4
    23.谭震波,况浩池,阴国大.杂交稻若干品质性状的配合力初步研究[J].杂交水稻,1993,(2):34-36
    24.李欣,印志同.粳型杂种稻米品质性状的表现及遗传控制[J].作物学报,2000,26(4):411-419
    25.陈建国,宋国清,段绍清,等.杂交早稻米质性状的直接和母体遗传效应分析[J].中国水稻科学,1998,12(2):79-84
    26.石春海,何慈信,朱军.稻米碾磨品质性状遗传主效应及其与环境互作的遗传分析[J].遗传学报,1998,25(1):46-53
    27. Mckenzie K S, Nutger J.Genetic analysis of amylase content,alkali spreading score and grain Dimensions in rice [J].Crop Sci,1983,23(2):306-313
    28. Panwar D V S, Paroda R S.Combining ability for grain characters in rice[J].Indian J.Agri Sci,1983,53(9)s763-766
    29. Singh,N B,Singh H G.Hererosis and combining ability for kernel size in rice[J].Indian J. Genet,1985,45(2):181-185
    30. Kato T Diallel analysis of grain size of rice(OyrzasalivaL.).Jpn.J.Breed,1989,39(1):39-45
    31.丙重庆,赵安常.轴稻粒重及粒形性状P1遗传特性的双列分析[J].中国农业科学,1983(5):14-20.
    32. Chang T T,Somrith B.Geneti cstudies on the grain quality of rice.In:Proceedings of the workshop on Chemical aspects of rice quality[J].IRRI,1980,49-58
    33.徐辰武,张爱红.几个釉粳交组合稻米品质性状遗传表达的鉴定[J].中国水稻科学,1998,12(1):51-54
    34.徐辰武,张爱红,朱庆森,等.釉粳杂交稻米品质性状遗传分析[J].作物学报,1996,20(5):530-534.
    35.郭益全,谢顺景.轴稻烹调与食用品质及谷粒性状之遗传[J].中华农业研究,1985,34(30):243-257
    36.石春海,何慈倍,朱军,等.轴稻稻米外观品质性状的遗传主效应和环境互作效应分析[J].中国水稻科学,1999,(3):179-182.
    37.附福鸿,王丰,黄文剑,等.杂交水稻谷粒性状的遗传分析[J].作物学报,1994,20(1):39-45
    38. Kato.T.Heritability for gain size of rice(Oyrzasativa.L.) [J] Breed1990,40(3):313-320
    39. Tomar J B, Nanda J S.Genetic and Association studies of Kenrel shape in rice [J]lndian J.Genet,1985,45(2):278-283
    40.陈建国,朱军.籼粳杂交稻米外观品质性状的遗传及其基因型环境互作效应研究[J].中国农业科学,1998,31(4):1-7
    41. Li Z F,Wan J M,Xia J F,et al. Mapping Quantitative Tarit Loci Underlying Appearance Qualiyt of Rice Grains (Oeyzasaliva L.) [J].Acta Genetica Smica,2003,3013.251-259
    42.李欣,莫惠株,王安民.粳型杂交稻米品质性状的遗传表达[J].中国水稻科学,1999,13(4):197-204
    43.黎杰吸,朱碧岩,李小波.轴稻品种杂交后代至白性状频数分布及遗传分布[J].广东农业科学,2000,(4):8-10
    44. Khush G S.Grain quality of hybrid rice[J].in:Hybrid rice IRRI,Manila,Philippine,1988,201-205
    45.郭银燕,张云康.浙江省早釉稻外观品质品种、地点、品种她点互作效应研究[J].浙江农业大学学报,1998,24(1):20-26
    46.石春海,陈国林,朱军,等.轴稻稻米直链淀粉含量的胚、胚乳、细胞质和母体遗传效应分析[J]作物学报,2000,26间:833-838
    47.申岳正,阂绍楷,熊振民,等.稻米直链淀粉含量的遗传及测定方法的改进[J].中国农业科学,1990,23(1).60-80
    48.舒庆尧,吴殿星,NMAyres等.籼稻和粳稻中蜡质荃因座位上微卫星标记的多态性及其与直链淀粉含量的关系[J].遗传学报,1999,26(4):350-358
    49.何平,李仕贵,李晶绍.影响稻米品质几个性状的基因座位分析[J].科学通报1998,43(16):1747-1750
    50.汤圣样,张云康,余汉勇,等.籼粳交稻米胶稠度的遗传特性分析[J].中国水稻科学,1996,10(4):197-200
    51.张名位,何慈信,彭仲明.籼型黑米糊化温度和胶稠度的遗传效应研究[J].作物学报,2001.6:192-197.
    52.石春海,朱军.籼稻稻米蒸煮品质的种子和母体遗传效应分析[J].中国水稻科学,1994.3:129-134.
    53.徐辰武,莫惠栋.籼稻米糊化温度的质协数量遗传分析[J].作物学报,1996,22(4):385-391
    54.王长发,高如离,唐永红.籼型杂交水稻稻米糊化温度的遗传分析[J].西北农业大学学报,1996,24(1):28-32
    55.李欣,汤述翁,陈宗样,等.粳稻米糊化温度的遗传研究闭.江苏农学院学报,1995.16(1):15-20
    56. Tan Y F.The three important traits for cooking and eating quality of rice grains arec ontrolled By a single locus in an elite rice hybrid[J].Theoretical and Applied Genetics.1999,99(3/4):642-648.
    57.包劲松,何平,李仕贵,等.异地比较定位控制稻米燕煮食味品质的数量性状基因[J].中国农业科学,2000,33(5):6-11.
    58. Gravois K.A,et.al.Inheritance of long grain rice amylograph viscosity characteristics[J] Euphytica.1997,25-29
    59.包劲松,夏英武.稻米淀粉RVA谱的墓因必哪境互作效应分析[J]中国农业科学,2001,34(2):123-127.
    60.张蓉.稻米谱特征值的遗传及其品质和产量的相关性研究.硕士论文,2003.
    61.李欣,张蓉,隋炯明,等.稻米淀粉粘滞性谱特征的表现及其遗传[J].中国水稻科学,2004,05:10-16.
    62. Bao J S,Xia Y W.Genetic control of paste viscosity characteristics in indica rice(Oryza sativa.L) [J].Theor Appl Genet,1999,98:1120-1124.
    63. Hinton J.J.C. and Shaw B. The distribution of nicotinic acid in the rice grain. British Journal of Nutrition 1954,8:65-71
    64.黄发松,孙宗修,胡培松,等.食用稻米品质形成的现状与展望.中国水稻科学,1998,12:172-176
    65. Ball SG., Morell MK. From bacterial glycogen to starch:understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 2003,54:207-233
    66. Zobel HF. Molecules to granules:a comprehensive starch review. Starch,1988,40:371-382
    67. Morrison WR. Starch lipids and how they relate to starch granule structure and functionality. Cereal Chemistry,1995,40:437-446
    68. Godet MC, Tran V, and Delagw MM. Molecular modeling of the specific interactions in amylose complexation by fatty acids. International Journal of Biological Macromolecules 1993,15:11-16
    69. Imberty A., Buleon A., andTran V.. Recent advances in knowledge of starch structure. Starch/Staerke 1991,43:375-384
    70. Lu S, Chen LN, and Li CY Correlations between the fine structure, physicochemical properties, and retrogradation of amylopectins from Taiwan rice varieties. Cereal Chemistry 1997,74:34-39
    71. Takeda Y, Hizukuri S. Structure of rice amylopectins with high and low affinities for iodine. Carbohydr Res.1987,168:79-88
    72. Alan M.Myers,Matthew K. Morell, Martha G.James,Steven G.Ball.Recent Progress toward Understanding Biosynthesis of the Amylopectin Crystal[J].Plant Physiology,April 2000,122:989-997.
    73. Ball S G, vande Wal M H B J, Visser R G F.Progress in understanding biosynthesis of amylase [J].Trends Plant Sci,1998,3:462-467
    74. Myers A M,Moerll M K,James M G;etal. Recent progress toward understanding biosynthesis of the amylopectin cyrstal[J].Plant Physiology,2000,122:989-997
    75. Sanwal G G, Regulation of starch biosythesis in plant leaves activation and inhibition of ADP-glucose[J]. Plant Physiol,1986,43:417-427
    76. Anderson JM, Larsen R, Laudencia D, et al. Molecular characterization of the gene encoding a rice endosperm-specific ADP-glucose pyrophosphorylase subunit and its developmental pattern of transcription. Gene,1991,97:199-205
    77. Sikka VK, Choi SB, Kavakli IH. Subcellar compartmentation and allosteric regulation of the rice endosperm ADP-glucose pyrophosphorylase. Plant Sci,2001,61:461-468
    78. Liang JS, Zhang JH, Cao XZ. Grain sink strength may be related to the poor grain filling of indica-japonica rice (Oryza sativa L) hybrids. Physiol Plantarum,2001,112:470-477
    79. Mu-Forster C, Huang R, Powers JR. et al. Physical association of starch biosynthetic enzymes with starch granules of maize endosperm. Granule-associated forms of starch synthase i and starch branching enzyme ii. Plant Physiol,1996,111:821-829
    80. Commuri PD, Keeling PL. Chain-length specificities of maize starch synthase Ⅰ enzyme:studies of glucan affinity and catalytic properties. Plant J.2001,25:475-486
    81. Craig J, Lloyd JR, Tomlinson K, et al, Mutations in the gene encoding starch synthase Ⅱ profoundly alter amylopectin structure in pea embryos. Plant Cell,1998,10:413-426
    82. Fontaine T,DHuist C,MadOPiein M L,et al.Towards the understanding of the biogenesis of the starch granule:evidence that Chlamydomouas soluble starch synthase Ⅱ controls the synthesis of intermediate size glutans of amylopectin[J]. J.Biol.Chem.1993,268:16223-16230
    83. Gao M.Wanat J,Stinard P S et al.Characterization of dull1, a maize gene coding for a novelstarchsynthase[J].PlantCel,1998,10:399-412
    84. Craig J,Lloyd J R,Tomlinson K,et al. Mutations in the gene encoding starch synthasel Profoundly alter amylopectin structure in pea embyros[J].PlantCell,1998,10:413-426
    85. Edwards A, Fulton D C,Hylton C M, et al.A combined reduction in activity of starch synthesis Ⅱ and Ⅲ of potato has novel effects on the starch of tubers[J].PIantJ,199,17:251-261
    86. Lloyd J R,Landschutze V,Kossmann J.Simultaneous antisense inhibition of two starch Synthase isoforms in potato tuber leads to accumulation of grossly modified amylopectin[J]. Biochem.J,1999,338:515-521
    87. Tanaka K,Ohnishi S,Kishimoto N,et al.Structure,or ganization,and chromosomal location of the gene encoding a form of rice soluble starch synthase[J].PlantPhysiol,1995,108(2):677-683
    88. Comnui P D,Keeling P L,Chain-length specificities of Maize starch synthase I enzyme:Studies of glucan affinity and catalytic propetries[J] PlantJ,2001,25(5):475-486
    89. Nakamura.Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants:rice endosperm as a model tissue[J].PlantCelPhysiol,2002,43:718-725
    90. Jiang H W,Dian W M,LiuF Y. Molecular cloning and expression analysis of three genes encoding starch synthaseI in rice[J].Planta,2004,218:1062-1070
    91. Dian W M, Jiang H W,Wu P,et al.Evolution and expression analysis of starchsynthaseⅡ and Ⅳ in rice[J]. Journal of Experimental Botany,2005,56(412):623-632.
    92. Li Z,MouiIle G,Kosar-Hashemi B,et al.The structure and expression of the wheat starchsynthase II gene.Motifs in the expressed gene define the lineage of the starch synthase Ⅱ gene family[J]. Plant Physiology,2000,123,613-624.
    93. Takashi Ohdan,et al.Expression profiling of genes involved in starch synthesis in sink and source organs of rice[J] Jounral of Expeirmental Botany,2005,56(422):3229-3234
    94. Guan H, Preiss J. Differentiation of the properties of the branching isozymes from maize (Zea mays L). Plant Physiol,1993,102:1269-1273
    95. Morell MK, Blennow A, Kosar-Hashemi B, et al. Differential expression and properties of starch branching enzyme isoforms in developing wheat endosperm. Plant Physiol,1997,113:201-208
    96. Smith,A.M.,Denyer,K,Martin,C.Thesynthesis of the starch granule[J]. Annu.Rev.Plant Physiol. Plant Mol.Bio.l1997,48:67-87.
    97. Mizuno K,Kimura K,Arai Y,et al.Starch branching enzymes from immature rice seeds[J]. J.Biochem,1992,112(5):643-651.
    98. Yamanouchi H,Nakamuar Y.Organ specificity of isoforms of starch branching enzyme (Q,cnzyme) in rice[J].Plant Cell Physiol,1992,33:985-991
    99. Mizuno K,Kawasaki T,Shimada H,et al.Alteration of the structural properties of starch Components by the lack of an isoform. Of starch branching enzyme in rice seeds [J]. J Biol Chem 1993,268:19084-19091
    100. Mizuno K, Kobayashi E.Tachibana M,et al.Characterizaiton of an isoform of rice starch branchin enzyme,RBE4,indeveloping seeds[J].Plant Cell Physiol.2001,42:349-357
    101. Sun C, Sathish P, Ahlandsberg S, et al. Analyses of isoamylase gene activity in wild-type barley indicate its involvement in starch synthesis. Plant Mol Biol,1999,40:431-443
    102. Nakamura Y,Yamanouchi H.Nucleoitde sequence of a cDNA encoding starch-branching enzyme,or Q-enzymel,from rice endosperm[J].Plant Physiol,1992,99:1265-1266
    103. Ball S,Guan H P,James M,et al.From glycogen to amylopectin;a model for the biogenesis of the plant starch granule[J].Cell.I996,86:349-352
    104. Nakamura Y, Kubo A, Shimamune T,et al.Corerlation between activites of starch Debranching enzyme and a-polyglucan structure in endosperms of sugary-1 mutants of rice [J].Plant Jounral,1997,120(1):143-153
    105. Kubo A,Fujita N.Harada K.et al.The starch-debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm[J].Plant Physiology,1999,121:399-409
    106. Nakamura Y,Umemoto T,Takahata Y.et al.Changes in structure of starch and enzyme activities affected by sugary mutations in developing rice endosperm. Possible role of starch debranching enzymes (R-enzymes) in amylopectin biosynthesis[J].PlantPhysiol,1996,97.491-498
    107. Yano M,Isono Y,Satoh H,et al.Gene analysis of sugary and shrunken mutants of rice,Oryza saliva.L[J]. JpnJBreed,1984,34:43-49
    108. Itch K.Ozaki H,Okada K,et al. Introduction of Wx transgene into rice wx mutants leads to both high-and low-amylose rice[J].Plant Cell Physiol,2003,44(5):473180
    109. Hirano H Y, Sano Y.Comparison of Wx gene regulation in the endosperm and pollen in Oryza sativaL[J].Genes Genet Sysb2000,75(5):245-249
    110. Larkin P,Dand Park,W D.Transcript accumulation and utilization of alternate and non-consensus spliec sites in rice granule-bound starch synthase are temperature-sensiitve and controlled by a single-nucleotide polymorphism[J].Plant Mol.Biol.1999,40:719-727
    111. Denyer K.The isolation and characterization of novel low-amylose mutants of Pisum sativum L[J].Plant Cell Enrion,1995.18:1019-1026
    112. Dian W M,Jiang H W,Chen Q S,Liu F Y,Wu P.Cloning and characterization of the granule-bound starch synthaseⅡ gene in rice:gene expression is regulated by the nitrogen level, sugar and circadian rhythm[J]. Plants,2003.218:261-8
    113.方宜钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京科学出版社,2001,57-79
    114. Hospital F,Charcosset A. Marker-assisted introgression of quantitative trait loci[J].Genetics,1997,147:1469-1485
    115. Young N D,S D Tanksley.RFLP analysis of the siz of chromosomal segments retained around the Tm-21ocus oft omato during backcross breeding[J]. Theor Appl Genet,1989,77:353-359
    116. Stam P,Zeven A C.The theoretical proportion of donor genome in near-isogenic lines of self-fertilizers bred by back-crossing[J]. Euphytica,1981,30:227-2381
    117.盂金陵,Lydiate D,Sharpe A等.用RFLP标记分析甘蓝型油菜的遗传多样性[J].遗传学报,1996,23(4):293-3061
    118. Tanksley S D,Young N D,Paterson A H,et al. RFLP mapping in plant breeding:new tools for Old sciences[J].Biotechnoloyg,1989,7:257-2641
    119.陈升.应用分子标记辅助选择培育广谱高抗白叶枯病的杂交水稻恢复系[D].武汉:华中农业大学,1999
    120. Hansen M, Hallden C,Nilsson N O,et al.Marks-assisted selection of restored male-fertile Brassica napus plants using a set of dominant RAPD markers[J].Molecular Breeding,1997(3):449-4561
    121. Liu shi ping,Li xin,Wang chao yang,et al.Imporvement of resistance to rice Blast in Zhenshan97 by molecular marker-aided selection[J].Acts Botanica Sinica,2003,45(11),1346-1350
    122.陈志伟,郑燕,吴为人,等.抗稻瘟病荃因Pi-(t)紧密连锁的SSR标记的筛选与应用[J].分子植物育种,2004,2(3)-321-325
    123. Paterson A H,Landon E S,Hewitt J D,et al.Resolution of quantitative into Mendelian factors by using a complete RFLP linkage map[J]. Nature,1988,335.721-726
    124. Lande R,Thompson R.Eficiency o fmarker-assisted selection in improvement of quantitative traits[J].Geneitcs,1990,124:743-756
    125. Koudande O D,Iraqi F,Thomson P C,et al.Strategies to optimize marker-assisted Introgression of multiple unlinked QTL[J]. Mammaliangenome,2000,11:145-150
    126. Xie C Q,XU S Z.Eficiency of multisage marker-assisted selection in the improvement of Multiple quantitative traits[J].Heredity,1998,80:489-498
    127. Schneider K A, Borthers M E,Kely J D.Marker-assisted selection to improve drought resistance in common bean[J].Corp Sci,1997,37:51-60
    128. Tanksley S D,Nelson J C.Advanced backcross QTL analysis:a method for the simultaneous discoveyr and transfer of valuable QTL from unadapted germplasm into elite breeding lines. [J].Theor Appl Genet,1996,92:191-203
    129.冯建成.分子标记辅助选择技术在水稻育种上的应用.中国农学通报,2006,22:43-47
    130. Tanksley SD, Young N, Paterson AH, et al. RFLP mappingin plant breeding:New tools for old sciences. Biotechnology,1989,7:257-264
    131. Goff SA, Ricke D, Lan TH, et al. A draft sequence of the rice genomes (Oryza sativa L. ssp. japonica). Science,2002,296(5565):92-100
    132. Yu J, Hu SN, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science,2002,296(5565):79-92
    133. Shen YJ, Jiang H, Jin JP, et al. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant physiol,2004,135(3):1198-1205
    134. Feltus FA, Wan J, Schulze SR, et al. An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res,2004,14(9):1812-1819
    135. Wang XS, Zhao XQ, Zhu J, et al. Genome-wide investigation of intron length polymorphisms and their potential as molecular markers in rice (Oryza sativa L.). DNA Res,2005,12(6):417-427
    136. Sano Y. Differential regulation of waxy gene expression in rice endosperm. Theor Appl Genet, 1984,68:467-473
    137. Wang ZY, Wu ZL, Xing YY. et al. Nucleotide sequence of rice Waxy gene. Nucleic Acids Res, 1990,18:589-598
    138.蔡秀玲,刘巧泉,汤述翥,等.用于筛选直链淀粉含量为中等的籼稻品种的分子标记.植物生理与分子生物学学报,2002,28:137-144
    139. Zhou PH, Tan YF, He YQ, et al. Simultaneous improvement for four quality traits of zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection. Theor Appl Genet,2003, 106:326-331
    140. Cho YG, Eun MY, McCouch SR, et al. The semidwarf gene, sd-1, of rice (Oryza sativa L.).Ⅱ.Molecular mapping and marker-assisted selection. Theor Appl genet,1994,89:54-59
    141. Huang N, Angeles ER, Domingo J. Pyramiding of bacterial blight resistance genes in rice, marker-asisted selection using RFLP and PCR. Theor Appl Genet,1997,95:313-320
    142. Abenes M L P, et al. Selection of bacterial leaf blight resistance plants in the FZgeneration via their linkage to molecular markers. Rice Genet Newsletter,1993,10:120-123
    143. Brondani C, Rangel P, Brondani R, et al. QTL mapping and introgression of yield-related traits from Oryza glumaepatulato to cultivated rice (Oryza sativa) using microsatellite markers. Theor Appl Genet,2002,104:1192-1203
    144.邓启云,袁隆平,梁凤山,等.野生稻高产基因及其分子标记辅助育种研究.杂交水稻,2004,19: 6-1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700