用户名: 密码: 验证码:
滴水湖浮游植物群落结构及其与环境因子关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滴水湖是在海滩滩涂上修建的大型湖泊,目前是国内最大的城市景观人工湖,湖水通过大治河引自黄浦江。我们于2007年1月至12月对滴水湖及农场中心河进行12次采样调查,共设置9个采样点,其中滴水湖8个采样点,农场中心河1个采样点。我们对滴水湖及农场中心河水体的理化指标、浮游植物群落结构组成及变化规律作了较细致的调查研究,利用多样性指数分析了浮游植物的多样性,分析浮游植物与环境因子之间的相互关系,并对水体的营养程度进行评价,为今后该水体环境保护工作提供本底资料,也为滩涂湖泊(水库)的研究提供基础资料。本研究得出如下结果:
     1.滴水湖年平均水温为18.25℃,变化幅度在6.1~28.8℃;湖区各点之间透明度差异不大,平均值为50.6cm,而农场中心河略高为56.5cm;pH值为碱性,平均值9.00;盐度平均值为2.81g/1000g,比一般湖泊高,主要受滩涂底泥的影响;湖区溶解氧(平均值9.98mg/L)、COD(平均值12.38 mg/L)、TN(平均值1.12mg/L)、TP(平均值0.10 mg/L)变化不大,根据TN/TP的结果,滴水湖为氮限制型湖泊。
     2.浮游植物共鉴定到55属86种,大部分是淡水藻类,隶属于8个门;优势藻类是绿藻门,23属43种,占总数的50.0%;其次是蓝藻门,9属17种,占总数的30.4%;硅藻门12属14种;占总数的16.3%。优势种:湖区主要有单鞭金藻属Chromulina、衣藻Chlamydomonas、纤维藻Ankistrodesmus、颤藻Oscillatoria、卵形藻Cocconeis;农场中心河主要有金藻门的单鞭金藻Chromulina、绿藻门的衣藻Chlamydomonas sp和尖头藻Raphidiopsis硅藻门的角毛藻Chaetoceros和小环藻Cylotella、隐藻门的隐藻Cryptomonas。在种类的季节变化上,种类与属的变化趋于一致,在2月份最少,5月份鉴定到种类最多;湖区种类最多的绿藻对整体变化趋势影响最大。
     浮游植物群落表现出小型化,数量大的特点。个体数量最大值出现在5月份,最小值出现在7月份。滴水湖生物量的季节变化受单鞭金藻的影响最大。叶绿素a的年平均浓度是29.35mg/m3,其水平及季节分布情况同浮游植物生物量一致。
     3.对滴水湖理化指标和生物指标进行相关分析。结果是:浮游植物的数量生物量与盐度、DO、SD相关性强;盐度与浮游植物数量生物量、单鞭金藻、DO、SD相关性较强;可见盐度是连接浮游植物和理化指标的桥梁。
     4.运用各理化指标、浮游植物指标及修正后的卡尔森营养状态指数等指标对滴水湖营养状态进行评价,结果为理化指标、叶绿素a和优势藻类均为中富营养状态;生物量、总TSI为富营养状态。各指标的评价结果存在差异,表明以单因子评价滴水湖的富营养化程度存在一定的局限性。综合分析认为滴水湖的水质整体处于中度富营养化水平。
Dishui Lake is a large newly-bulit lake on beach, so far it is the largest man-made landscape lake in our country. This research on Dishui Lake and its around waters has 9 sample sites (8 sites in Dishui Lake), sample every month from January to October in 2007. The delicate research of the community structure and distribution of phytoplankton is based on the monitor of physichemical index , analyze the diversity of phytoplankton using diversity index, analyze and discuss the relationship of phytoplankton and physichemical index in the meanwhile using these factors to value water quality. All these work can provide most basic data for the protection of environment and the material for the research on river or reservoir. Here are the results:
     1. The yearly average temperature of Dishui Lake is 18.25 degrees, the variable span is from 6.1 degrees to 28.8 degrees; there is no difference on transprancy between differents sites, the average is 50.6 centimetres, but the around waters, is higher than the lake, It is 56.5 centimetres; the average PH is 9.00, which showed the quality took on alkaline; the average salinity affected by the beach is 2.81g/1000g, higher than the other lakes; there is no big change on averages of OD(9.98mg/L), COD(12.38mg/L), TN(1.12mg/L), TP(0.10mg/L), according to the ratio of TN/TP, Dishui Lake is P-limited lake.
     2. There are 86 species of phytoplankton, which belonged to 55 genera of 8 phyla.Most of them are freshwater species; dominant species ascribing to Chlorophyta accounted for 50 percents and the quantity is 43 species belonging to 23 Genera; secondly the percentage of Cyanophyta is 30.4. Chromulina, Chlamydomonas, Ankistrodesmus, Oscillatoria, Cocconeis are dominant species in Dishui Lake, but the dominant species of its around waters are Chromulina, Chlamydomonas, Raphidiopsis, Chaetoceros, Cylotella and Cryptomomas. The same change occurred between species and generas on the seasonal change, the minority in January and the majority in May; the Chla which accounted for the most propotion can influence the entire change trendency of phytoplankton.
     Phytoplankton community structure takes on a trait of little-shape and large number . The largest number of the spceies appeared in May. The seasonal change of phytoplankton biomass could be influenced mostly by Chromulina in Dishui Lake. The yearly average concentration of Chla is 29.35mg/m3, and its horizontal and seasonal distribution just coincidenced with biomass of phytoplankton.
     3.The correlation analysis on the physichemical index and biological index of Dishui Lake: There is strong correlation between the quantity and salinity、DO、SD. And the strong correlation also lies in the relationship of salinity and quantity of phytoplankton、Chromulina、DO、SD. So we can conclude that sanlinity is the bridge of phytoplankton and physichemical index.
     4.Evaluation about eutrophication of Dishui Lake using physichemical index、phytoplankton index and corrected Carlson Trophic State indexes.All results showed different, some factors included physichemical index, Chromulina and the dominant species showed that the lake was in a status of semi-eutrophication, but using the biomass and TSI showed the result was eutrophication. All this showed that to value the status of eutrophication has some restrictions using signal index. So that the water quality of Dishui Lake lies in the status of semi-eutrophication.
引文
1. 张展羽,马国清.海涂水库及灌区工程国民经济评价水利经济[J].1994,(4 ):43-47.
    2. 杭州市地方志编篆委员会编.杭州市志[M].北京:中华书局出版社,2000.
    3. 刘登国,林卫青.陈行水库氨氮完全混合研究.云南环境科学[J].2003,23:9-11.
    4. 朱江平.胡陈港水库水质咸化原因分析及治理对策.浙江水利科技[J].2002,(4):50-52.
    5. 王高正,朱江平.大塘港水库机械排咸技术.水利水电科技进展[J].1998,18(4):44-46.
    6. 李九发.上海滩涂后备土地资源及其可持续开发途径.长江流域资源与环境[J].2003,12 (1):17-22.
    7. 颜定华,庄旭东,程祖德.滩涂资源开发和定海社会经济可持续发展.浙江水利科技[J].1999,(3) :39-40.
    8. 梁国昭.香港缺水与东江水资源开发.热带地理[J].1997,17(2):131-138.
    9. Maasdam R,Claasen T H L.Trends in water quality and algal growth in shallow Frisian Lakes,the Netherlands.Wat Sci Tech[J].1998,37(3):177-184.
    10. Pieter J,Stuyfzand.The impact of land reclamation on groundwater quality and future drinking water supply in the Netherlands.Wat Sci Tech[J].1995,31(8):47-57.
    11. Kuijpers W M . Ecological restoration of the Rhine/Maas Estuary . Wat Sci Tech[J].1995,31(8):187-195.
    12. Reynolds C S.P Hytoplankton periodicity:the interactions of form,function and environmental variability.Freshwat Biol[J].1984,14:111-142.
    13. 刘建康.高级水生生物学[M].北京:科学出版社,1999.
    14. 胡鸿钧,李尧英,魏印心,朱惠忠,陈嘉佑,施之新编著.中国淡水藻类[M].上海:上海科技出版社,1980.
    15. 章宗涉,黄祥飞.淡水浮游生物研究方法[M].北京:科学出版社,1991.
    16. 沈锡芬,章宗涉,龚循矩,顾曼如,施之新,魏印心.微型生物监测新技术[M].中国建筑工业出版社,1990.
    17. Kirk J T O.Light and photosynthesis in aquatic ecosystem.Cambridge,Britain: Cambridge University Press.1994.47-144.
    18. Falkowski P G.Evolution of the nitrogen cycle and its influence on the biological sequestration of CO sub(2)in the ocean.Nature[J],1 997,387:272-275.
    19. Moiler P,Li X P .Niyogi K K .Non-photochemical quenching:a response to excesslight energy.Plant Physiol[J ].2001,125:1558-1566.
    20. Anderson J A ,Park Y I ,Chow W S.Unilying model for the photoinactiva of photosystemⅡ in vivo under steady-statep hotosynthesis.Photosynth.Res.1998,56:1-13.
    21. Maclntyre H I,Kana T M,Arming T,et al.Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in micmalgae and cyanobacteria.Pbycol[J],2002,38:17-38.
    22. Shefer M,Rinaldi S,Gragnani A,et a l.On the dominance of filamentous cyanobacteria in sh allow,turbid lakes.Ecology[J],1 997,78:72-282.
    23. Figueroa F L,Conde-Alvarez R,G6mez I.Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroal gaeunder different light conditions.Photosynth Res[J].2003,75:259-275.
    24. Lavaud J,Rousseau B,Etienne A-General features of photoprotection by energy dissipation in planktonic diatoms(Bacillariophyceae) Phycol[J],2004,40:130-137.
    25. Ruban A V,Lavaud J,Rousseau B,et al.The super-excess energy dissipation in diatom algae:comparative an alysis with higher plants.Photosynth Res[J],2004,82 :165-175.
    26. 黄玉瑶.内陆水域污染生态学一原理与应用[M].北京:科学出版社,2001.
    27. Buzzi F.Phytoplankton assemblages in two sub-basins of Lake Como.Journal of Limnology[J].2002,61(1):117—128.
    28. 陈菊芳,齐雨藻,徐宁.大亚湾澳头水域浮游植物群落结构及周年数量动态.水生生物学报[J].2006,30(3):311—317.
    29. Ehrlich,P.R,Ehrlich,A.H.,Holdren,J.P.1977.Ecocience:Populatioa,Resources,Environment.San Francisco:W.H.Fresman and Company.
    30. Welch,E.B.1980.Ecological Effects of Waster Water.New York:Cambridge University Press.
    31. Tilman D,Kiesling,R L.Freshwater algal ecology:taxonomic tradeofs in the temperature dependence of nutrient competitive abilities.-In:M.J.Klug&C.A .Reddy,eds,Current Perspective in Microbial Ecology,proceedings of the 3rd International Symposium on Microbial Ecology,1984.
    32. 金相灿,刘鸿亮,屠消瑛.中围湖泊富营养化[M].北京:中国环境科学出版社,1990.
    33. Haertel L.Nutrient limitation of algal standing crops in shallow prairie lakes.Ecology[J],1976,57:664-678
    34. Smith V H.Nutrient dependence of the picoplanktonic cyanobacterium Synechococcus in Florida Bay,a subtropical inner-shelf lagoon.Limnol.Oceanogr[J].1979,(24):1051-1064.
    35. Melack J M.,Kilham T R.Response of phytoplankton to experimental fertilization with ammonium and phosphate in an African soda lake.Oecologia[J],1982,52:321-326.
    36. Vincent W F,Wurtsbaugh W,Vincent C L,et al..Seasonal dynamics of nutrient limitation in a tropical high-altitude lake (Lake Titicaca.Peru-Bolivia):Application of physiological bioassays.Limnol.Oceanogr[J],1984,29:540-552.
    37. Temponeras M,Kristianstaka-Gouni M.Seasonal variation in phytoplankton composition and physical-chemical features of the shallow Lake Doirani , Macedonia ,Greece.Hydrobiologia[J].2000,424:109-122.
    38. Nalewajko C,Murphy T P.Effects of temperature,and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa,Japan:an experimental approach,Limnology [J].2001,2:45-48.
    39. 阎喜武,何志辉.虾池浮游植物初级生产力的研究.水产学报[J],1997,21(3):288-295.
    40. 王骥,沈国华.武汉东湖浮游植物的初级生产力及其主要生态因素的关系.水生生物学报[J].1981,7(3)295-310.
    41. 蔡后建,陈宇炜,蔡启铭等.太湖梅梁湾浮游植物初级生产力及其相关因素的研究.湖泊科学[J].1994,6(4):340-347.
    42. Dokuli M,Chen W,Cai Q.anthropogenic impacts to large lakes.in China:the Tai Hu exemple.Aquatic Ecosystem Health & Management,2000,3:81-94.
    43. 王骥.水体生物生产力.见刘建康主编,东湖生态学研究(一)[M].北京:科学出版社,1990,76-93.
    44. 刘春光,金相灿,邱金泉,孙凌,戴树桂,庄源益.光照与磷的交互作用对两种淡水藻类生长的影响.中国环境科学[J].2005,25(1):32-36.
    45. 段水旺,章申,陈喜保.长江中下游 N、P 含量变化及输送量的估计.环境科学[J].2000,21(1):53-56.
    46. 吴爱平,吴世凯,倪乐意.长江中游浅水湖泊水生植物氮磷含量与水柱营养的关系.水生生物学报[J],2005,29(4):406-412.
    47. 董旭辉,羊相东,王荣.长江中下游地区湖泊硅藻—总磷转换函数.湖泊科学[J].2006,18(1):1-12.
    48. Zhou Q X,Gibson C E,Foy R H.Long-term changes of nitrogen and phosphorus loadings to a larger lake in north west Ireland.Water Research[J].2000,34:922-926.
    49. 张燕,邓西海.滇池沉积物磷负荷.中国环境科学[J].2005(3):329-333.
    50. Sommer U,Gliwicz Z M,Lampert W,et al.The PEG-model of seasonal succession of planktonic events in fresh waters.Arch.Hydrobiol.[J],1986,106(4):433-471.
    51. Vanni M J,Temte J.Seasonal paterns of grazing and nutrientl imitation of phytoplankton in a eutrophic lake.Limnol.Oceanogr[J].1990,35:697-709.
    52. Paterson M J,Findlay D L,Salki A G,et al..The effects of Daphnia on nutrient stoichiometry and flamentous Cyanobacteria:a mesocosm experiment in a eutrophic lake.Freshwat.Biol[J].2002,47:1217-1233.
    53. Holm N P,Ganf G G ,Shapiro J.Feeding and assimilation rates of Daphnia pulex fed Aphanizomenon flos-aquae,Limnol.Oceanogr[J].1983,28(4):677-687.
    54. JamesM R , Forsyth D J . Zooplankton-phytoplankton interactions in a eutrophic lake.J.Plankton Res[J].1990,12(3):455-472.
    55. Hanazato T.Interrelations between Microcystis and cladocera in the highly eutrophic Lake Kasumigaura,Japan.Int Revue ges.Hydrobiol[J].1991,76(1):21-36.
    56. Chen F C ,Xie P.The effects of fresh and decomposed Microcystis aeruginosa on cladocerans from a subtropic Chinese lake.J.Freshwat.Ecol[J].2003,18(1):97-104.
    57. Work K A,Havens K.E .Zooplankton grazing on bacteria and cyanobacteria in a eutropbic lake.J.Plankton Res[J].2003,25(10):1301-1306.
    58. Hrbacek J,Dvorakova,M.,Korinek V,and Prochazkova,L,1961.Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association.Verh.Int.Ver.Limnol,14:192-196.
    59. Philips E J,Badylak S ,Lynch T C .Blooms of the picoplanktonic cyanobacterium Synechococcus in Florida Bay,a subtropical inner-shelf lagoon.Limnol.Oceanogr[J].1999,44:1166 -1175.
    60. Blindow I,Andersson G,Haregy A,et al.Long-term patern of alternative stable states in two shallow eutrophic lakes.Freshw Biol [J].1993,30(1):159- 167.
    61. 胡维平.净化局邵水体的物理生态工程实验与太湖富营养化数值模拟[D],南京:中国科学院南京地理与湖泊所,1999.
    62. 李尚志,唐永琼.利用水生植物对污染水体进行生态修复一深圳大学学报:理工版[J].2005,22 (3) :272 一 76.
    63. Ryding S O,Walter R. 湖泊与水库营养化控制[M].朱萱译.北京:中国环境科学出版社,1992.
    64. 何志辉.中国湖泊和水库营养分类.大连水产学院学报[J],1987,(1) :1-10.
    65. Hrbacek,J,Dvorakova,M.,KorineKV,and Prochazkova,L,1961.Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole planktona sociation . V erh.Int.Ver.Limnol,14:192-195.
    66. 舒金华,黄文钰,高锡芸.发达国家禁用(限用)含磷洗衣粉的措施.湖泊科学[J].1998,10(1):90—96.
    67. 史丹.我国湖泊富营养化问题及防治对策.资源开发与市场.2005,21(1):17-27.
    68. 陈诗越,吴爱琴,于兴修.长江中下游湖泊富营养化过程探析— —以龙感湖为例.临沂师范学院学报[J],2004,26(6):58-61.
    69. 王淑芳.湖泊富营养化防治研究与展望.江苏环境科技[J].2005,18(4):54-56.
    70. 种云霄.利用沉水植物治理水体富营养化.广州环境科学[J].2005,20(3):41-43.
    71. Gulati SD,VandonkE.Lakes in the Netherlands,their origin,eutrophication and restoration:state of the art review.Hydrobologia[J],2002,478:73-106.
    72. Lauridsen T L,Jensen J P,Jeppesen E,et a1.Response of submerged macrophtes in Danish lakes to nutrient loading reductions and biomanipulation.Hydrobiologic[J].2003,506:641-649.
    73. 金相灿.湖泊富营养化控制和管理技术[M].北京:化学工业出版社,2001.
    74. 王淑芳.湖泊富营养化防治研究与展望.江苏环境科技[J].2005,18(4):54-56.
    75. 龚应安,胡秀琳.湖泊富营养化防治的研究现状与展望.北京水利[J].2005,(6):4-5.
    76. 娄云.富营养化浅水湖泊治理方法初探.吉林水利[J].2005,(9):34-37.
    77. 史丹.我国湖泊富营养化问题及防治对策.资源开发与市场[J].2005,21(1):17-27.
    78. Hosokawa Y,Horie T.Flow and particulate nutrentremoval by wetland with emergent macrophyte.Sci Total Envion[J].1992,suppl.1271-1282.
    79. 王雪峰,陈桂珠,许夏玲.白骨壤对石油污染的生理生态响应.生态学报[J].2005,25(5):1095-1100.
    80. 李枚,陈桂珠.含油废水对秋茄幼苗的几个生理生态指标的影响.生态学报[J].2000,20(3):528-532.
    81. Cooper P F,Holbson J A&Susan J.sewage treatment by reed bed system.J Inst Water Environ Manage[J].1989,3:60-74.
    82. 朱彤,许振成.人工湿地污水处理系统应用研究.环境科学研究[J].1991,4(5):17-22.
    83. 王凡路,吴瑞琴,杨兵.凡口铅锌矿湿地系统沉积物中重金属的分布[J].生态环境.2003,12(3):292-295.
    84. 张军,周琪,何蓉.表面流人工湿地中氮磷的去除机理[J].生态环境.2004,13(1)98-101.
    85. 古滨河.美国 Apopka 湖的富营养化及其生态修复.湖泊科学[J].2005,17(1):1-8.
    86. 水和废水监分析方法(第四版)[M].中国环境科学出版社,2002.
    87. 湖泊富营养化调查规范(第二版)[M].中国环境科学出版社,1990.
    88. 水和废水标准检验法(第 15 版)[M].中国建筑工业出版社,1995.
    89. 金相灿,刘树坤,章宗涉.中国湖泊环境(第一册)[M].北京:海洋出版社,1995.
    90. 朱浩然等,中国淡水藻志(第二卷色球藻纲) [M].北京:科学出版社,1991.
    91. Smith V H . Nutrient dependence of primary productivity in lakes.Limnol.Oceanogr[J].1979,(24):1051-1060.
    92. 施之新,王全喜,谢树莲,戴健寿.中国淡水藻志第六卷裸藻门[M].北京:科学出版社,1999.
    93. 王全喜,何群,包文美.东北淡水藻类的研究 II-黑龙江省水网藻科初报.哈尔滨师范大学自然科学学报[J].1990,6 (3):71-81.
    94. 王全喜,吕淑慧,包文美.东北淡水藻类的研究 I-栅藻属 Scenedesmus.哈尔滨师范大学自然科学学报[J],1991,7(生物专辑):99-112.
    95. 魏印心.中国淡水藻志第七卷绿藻门双星藻目中带鼓藻科 鼓藻目鼓藻科第 1 册[M].北京:科学出版社,2003.
    96. 毕列爵,胡征宇,凌元杰,梁良弼,刘国祥.中国淡水藻志第八卷绿球藻目(上)[M].北京:科学出版社,2004.
    97. 卢亚芳,黄永春,黄世玉.厦门杏林湾水库浮游植物密度与生态因子的灰关联分析.台湾海峡[J].2002,21 (2):209-216.
    98. 范成新,王春霞.长江中下游湖泊环境地球化学与富营养[Ml.北京:科学出版社,2007.
    99. 施玮,吴和岩,赵耐青,祁萍萍,朱惠刚.淀山湖水质富营养化和微囊藻毒素污染水平[J].2005,26(5):55-61.
    100. 汪海英,周敏杰.临港新城—滴水湖富营养化现状评价及调控对策.上海水务[J].2006,22(4):24-28.
    101. 吴波,陈德辉,吴琼,王全喜.黄浦江浮游植物群落结构及其对水环境的指示作用.武汉植物学研究[J].2007,25(5):467-472.
    102. 赵爱萍,刘福影,吴波等.上海淀山湖浮游植物.上海师范大学学报(自然科学版)[J].2005,34(4):70-76.
    103. 赵爱萍.镇江金山湖及附近水体浮游生物群落结构及其与环境因子关系的研究(D).上海师范大学,2006.
    104. 吴晓辉,刘家寿.浮桥河水库浮游植物的多样性及其演变.长江流域资源与环境[J],2003,12(3):218-222.
    105. 赵文,董双林,任日达,等.鲢放养和施肥对盐碱池塘围隔生态系统浮游生物群落的影响团.应用生态学报[J].2001,12(2):299-303.
    106. 李宝林,王玉亭.以浮游植物评价达赉湖水质污染及营养水平.水生生物学报[J].1993,17(1):27-34.
    107. 黄祥飞,陈雪梅.武汉东湖浮游动物数量和生物量变动的研究.水生生物学集刊[J].1980,(3):345-358.
    108. 陈立侨,刘影,杨再福.太湖生态系统的演变与可持续发展.华东师范大学学报(自然科学版) [J],2003,(4):99-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700