用户名: 密码: 验证码:
基于内部耗能减振的海洋平台振动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋平台是海上石油天然气资源开发的基础设施。平台的有效振动控制已成为延长平台使用寿命、提高平台可靠性、改善平台工作人员的舒适感的重要措施。因此,如何减轻平台在各种载荷作用下的振动日趋重要。本文对ETMD(METMD)减振系统在海洋平台中的减振效果进行研究。
     第一,利用海洋平台上的设备和装置作为质量体构造ETMD减振系统。为分析ETMD减振系统的振动控制效果,将海洋平台和ETMD减振系统简化为二自由度系统进行研究。同时,引入振动控制效果评价指数作为减振效果评价指标,研究各个参数对振动控制效果的影响。结果表明,影响ETMD系统振动控制效果的参数有系统的阻尼比、固有频率比和质量比,各参数的取值不同,振动控制效果也不同。
     第二,为得到ETMD减振系统的最优参数,根据二自由度动力学方程,编写了MATLAB程序。得到最优振动控制效果下ETMD系统的参数及最优参数区间。
     第三,为提高ETMD减振系统的减振效果,在结构上设置多个不同的固有频率ETMD减振系统(METMD减振系统),形成一个频率范围。提高了复杂载荷作用下平台的减振效果。首先把平台简化为单自由度系统(SDOF系统),利用多个ETMD减振系统(METMD减振系统)进行振动控制,理论分析了S-METMD系统的频带宽度、阻尼比和ETMD数量三大因素对海洋平台振动控制效果的影响,并得到了最优参数。接着,把海洋平台简化为多自由度系统(MDOF系统),研究METMD减振系统对平台的振动控制效果。对M-METMD系统进行了理论分析,得到了简化研究方法,为复杂系统的研究奠定了基础。
     最后,为验证ETMD减振系统对海洋平台的振动控制效果,利用时程分析法研究了平台在海浪和地震载荷作用下的振动响应。根据波浪阻力线性化理论推导出波浪载荷公式,利用Matlab编制程序,生成不同有效波高波浪随机载荷时程曲线来研究组合抗振海洋平台在恶劣海浪下的响应;选取El-centro、Taft和宁河三类典型地震波,根据8度罕遇地震的标准调整了加速度幅值,研究组合抗振海洋平台在三维地震载荷作用下的动态响应和振动情况。仿真结果表明,ETMD(METMD)减振系统能够有效的控制海洋平台的振动。
     总之,理论分析和仿真研究表明,ETMD(METMD)减振系统对海洋平台的振动具有显著的控制效果。根据满足固有频率相似条件的方法,设计的海洋平台模型能够满足相似条件,为下一步的研究奠定了基础。在后续研究中,将制造模拟平台,对ETMD减振系统在海洋平台控制中的应用做进一步的研究。
The offshore platforms are the bases of offshore oil and gas exploitation. Vibration control techniques for offshore platforms are important methods to extend the service life, enhance reliability of the platforms and improve the comfortable feeling of the workers. Some researches on the effect of the extended tuned mass damper (ETMD) system and multiple extended tuned mass dampers (METMD) for vibration control of offshore platforms were done in this dissertation.
     Firstly, the ETMD system is constructed by using the equipments of offshore platform as the mass body. The offshore platform, on which one mass body is chosen as an ETMD system, is simplified as a double-degree-of-freedom system in the research. In order to analyze the influence of all parameters to the vibration control effects, the appraisal index of vibration control effect is introduced to study the vibration control effect of the ETMD system. The influence of all parameters to the vibration control effect of ETMD system is studied. The results show that the parameters, which influence the vibration control effect, are the ratios of damping, natural frequency and mass. The values of the parameters of the ETMD system determine the vibration control effect. Different values have different influence on the vibration control effect.
     Secondly, the optimal parameters and optimal parameter regions are given by making use of the software of MATLAB. The ETMD system has the best vibration control effect when the parameters take the optimal parameters and has better vibration control effect when the parameters take values in the optimal parameter regions.
     Thirdly, several ETMD systems, which have the different frequencies, are set on the platform in order to increase the vibration control effect. Firstly, the platform is simplified as a single-degree-of-freedom system to do research. Several ETMD systems are assigned on the platform in order to enlarge the frequency band of the controlled loads. Then, the platform, on which several mass body are chosen as ETMD systems, is simplified as a multiple-degree-of-freedom system to analyze the effect of frequency bandwidth, damp ratio and ETMD's number to the platform's vibration control and find out their optimal parameters. The vibration control effect on the offshore platform of the ETMD (METMD) system is simulated by using the software of ANSYS, which is subjected to random loads of wave and earthquake. It shows that the ETMD (METMD) system can reduce the vibration of the offshore platform effectively.
     Lastly, the response of the platform with the ETMD's vibration control under the ocean wave and earthquake loads is researched using the time-history method in the dissertation. The formula of the ocean wave load is derived based on the resistance force linearizing theory. And the loads of different significant wave height are gotten using the MATLAB program. In order to analyze the dynamic response and the vibration of the platform under the random seismic loads, El-centro, Taft and Ninghe seismic waves are chosen and their maximum acceleration have been adjusted according to 8 level fortification under rarely occurred earthquake. The ETMD system has the better vibration control effect under the two random loads mentioned above.
     In conclusion, the theoretical analysis and the simulation show that the ETMD system has marked effect for vibration control of offshore platforms. The similar model of the offshore platform, which is based on the new method for satisfying the similar condition of the natural frequency ratio, establishes the foundation of the next study. A model platform will be made to study the application of the offshore platform vibration control to the ETMD system in the follow-up research.
引文
[1] Li H J, Hu S J, Takayama T. The Optimal Design of TMD for Offshore Structures[J]. China Ocean Engineering, 1999, 13 (2): 133-144.
    
    [2] Li H J, Hu S J, Chang Z. Multiple-step Predictive Control for Offshore Structures[J]. China Oean Engineering, 2001, 13 (3), 231-247.
    
    [3] Yoshid A K, Suzuki H, Nam D. Ative Control of Couped Dynamic Response of TLP hull and Tendon[A]. Proceedings of 4th International Offshore and Polar Engineering Conference[C]. ISOE. Oaka, 1994: 98-104.
    
    [4] Housner G W, Bergman L A, Caughey T K. Structural Control: Past, Present, and Future[J]. Journal of Engineering Mechanics, 1997, 18 (5): 67-69.
    [5] Glauser G J, Ahmad I G, Horta L G. Intergrated Passive/Active Vibration Absorber for Multistory Buildings[J]. J Struct Engrg, 1994, 123 (5): 43-48.
    [6] Vandiver J K, Mitome S. Effect of Liquid Storage Tanks on The Dynamic Response of Offshore Platform[J]. Applied Ocean Research, 1979, 1 (1): 67-74.
    [7] Kareem A, Sun W. Stochastic. Response of Strcture with Fluid-containing Appendages[J]. Journal of Sound and Vibration, 1987, 119(3): 389-408.
    [8] Lee S C, Reddy D V. Frequency Tuning of Offshore Platforms by Liquid Sloshing[J]. Applied Ocean Research, 1982, 4 (4): 226-231.
    
    [9] Bisht R S, Jain A K. Wind and Wave Induced Behavior of Offshore Cuyed Tower Platform[J]. Ocean Engineering, 1998, 25 (7): 501-519.
    
    [10] Kareem A, Gurley K. Damping in Structures: Its Evaluation and Treatment of Uncertainty [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 59 (1): 131-157.
    
    [11] Lee H H. Stochastic Analysis for Offshore Platform With Added Mechanical Dampers. Ocean Engineering[J]. 1997, 24 (9): 817-834.
    
    [12] Lee H H. Seismic and Vibration Mitigation for the Offshore Template Platform System[J]. Structural Engineering and Mechanics, 1998, 6(3): 347-362.
    [13] Xu Y L, He Q, Ko J M. Dynamie Response of Damper-connected Adjacent Building Under Earthquake Excitation[J]. Engineering Structures, 1999, 21 (2): 135-148.
    
    [14] Zhang R H, Soong T T. Seismic Design of Viscoelastic Dampers for Structural Applications[J]. J of Structural Engineering, 1992, 118 (5): 1375-1392.
    
    [15] Shukla A K, Datta T K. Optimal Use of Viscoelastic Dampers in Building Frames for Seismic Response[J].J of Structural Engineering, 1999, 125 (4): 401-409.
    
    [16] Milman M H, Chu C C. Optimization Methods for Passive Damper Placement and Tuning[J].J of Guidance Control and Dynamics, 1994, 17 (4): 848-856.
    
    [17] Aldemir U, Bakioglu M, Akhiev S S. Optimal Control of Linear Buildings Under Seismic Excitations[J]. Earthquake Engng. Struct.Dyn., 2001, 30: 835-851.
    
    [18] Vincenzo, Gand, Roger G. Adaptive Control of Flowlnduced Oscillation Inducing Vortex Effects[J]. International Journal of Nonlinear Mechnanics, 1999,34: 853-868.
    
    [19] Ahmad S K, Ahmad S. Active Control of Non-linearly Coupled TLP Response Under Wind and Wave Environments[J]. Computers and Structures, 1999, 72 (2): 735-747.
    
    [20] Terro M J, Mahmoud M S Abdel-Rohman M. Multi-loop Feedback Control of Offshore Steel Jacket Platforms[J]. Computers and Structures, 1999, 70(1): 185-202.
    
    [21] Yoshida K, Suzuki H, Nam D. Active Control of Coupled Dynamic Response of TLP Hull and Tendon Proceeding[C] the 4th International Offshore and Polar Engineering Conference. ISOPE, 1994, 98-104.
    
    [22] Suhardjo J, Kareem A. Strutual Control of Offshore Platforms[C]. Proceedings of 7th ISOPE, 1997, 416-424.
    
    [23] Ahmad S K, Ahmad S. Active Control of Nonlinearly Coupled TLP Response under Wind and Wave Environments[J]. Computers&Structures, 1999, 70( 7): 735-747.
    
    [24] Yang J N, Lin S, Kim J H, Agrawal A K. Optimal Design of Passive Energy Dissipation Systems Based on H2 and H_(∞) Performances[J]. Earthquake Engng. Struct. Dyn., 2002, 31: 921-936.
    
    [25] Abdel, Rohman M. Structural Control of Steel Jacket Platform[J].Structural Engineering and Mechnics,1996,4(2):125-138.
    [26]Kawano,Kenji,lshizawa,Hidefumi.Active Control on Dynamic Response of Offshore Structures Proceedings of the 3rd ISOPE[C].1993,594-598.
    [27]Lu Jianhui,Ma hailong,Li Dezhong,Li Yusheng.Viscoelastic Damper and Its Position Optimization for Vibration Control of an Offshore Platform[J].Process in Safety Science and Technology Party,2002,3:468-473.
    [28]欧进萍,邹向阳等.设置粘弹性耗能器的JZ20-2MUQ平台结构冰振控制[J].海洋工程,2000,18(3):9-14.
    [29]欧进萍,龙旭,肖仪清,吴斌.导管架式海洋平台结构阻尼隔振体系及其减振效果分析[J].地震工程与工程振动,2002,22(3):115-122.
    [30]王燕,郁有升.导管架式海洋平台阻尼隔振及减振技术研究[J].力学与实践,2004,26(5):29-33.
    [31]马海龙,陆建辉,李宇生.平台振动控制中粘弹性阻尼器及其位置优化[J].振动、测试与诊断,2003,23(3):180-182.
    [32]陆建辉,彭临悔,李华军.固定式近海石油平台振动控制研究[J].中国造船,2000.41(3):63-6813.
    [33]Li Huajun.Optimal Design of TMS Under Long-term Nonstationary Wave Loading[J].China Ocean Engineering,2000,14(1):25-32.
    [34]孙树民.独桩平台波浪反应的调谐质量阻尼器控制研究[J].噪声与振动控制,2001.(4):14-1716.
    [35]孙树民.考虑流体-桩-土相互作用的独桩平台波浪响应的TMD控制研究[J].中国造船,2002,43(1):52-5717.
    [36]Dong S,Li H,Takayama T.Suppression of Wave-excited Vibration for Offshore Platform by Use of Tuned Liquid Dampers[J].China Ocean Engineering,2001,15(2):165-176.
    [37]Wang Shuqing,Li Huajun,Zou Huazhi.Suppression of Wave-induced Vibration of Offshore Platform Using Tuned Liquid Damper[C].Processing Safety Science and Tchnology Part,2002,3:462-467.
    [38]李宏男,马百存.固定式海洋平台利用TLD的减震研究[J].海洋工程,1996, 14(3):91-96.
    [39]韦林.近海平台的振动最优控制[A].全国一般力学与现代数学方法学术会议论文集[C].北京:科学出版社,1992,280-284.
    [40]李华军,嵇春艳,吴永宁.随机波浪载荷作用下海洋平台的前馈-反馈振动控制研究[J].青岛海洋大学学报,2001,31(6):917-924.
    [41]Li H J,Wu Y N.The Optimal Design of TMD for Offshore Structures[J].China Ocean Engineering,1999,13(2):133-144.
    [42]Li Huajun,Ji Chunyan,Liu Zhen.Optimal Desingn Active Mass Dmampers for Offshore Structures[C].Processsing Safety Science and Technology Part,2002,3:383-387.
    [43]苏荣华,梁冰,宋维源.结构-TMD系统抗震的优化参数研究[J].振动与冲击,2001,20(4):8-11.
    [44]周亚军,赵德有,马骏.基于人工神经网络的海洋平台振动主动控制[J].船舶力学,2003,7(5):65-69.
    [45]Li Huajun,Sau Lon,JAMESHU.Tomtsuka.Optimal Active Control of Wave Induced Vibration for Offshore Platform[J].China Ocean Engineering,2001,15(1):1-14.
    [46]张纪刚,吴斌,欧进萍.渤海某平台磁流变智能阻尼隔振控制[J].沈阳建筑大学学报,2006,22(1):68-72.
    [47]管友海,黄维平.MR阻尼器在海洋平台半主动振动控制中的应用[J].中国海洋平台,2002,17(3):25-28.
    [48]孙树民.梁启智.隔震独桩平台地震反应的半主动磁流变阻尼器控制研究[J].振动与冲击,2001,20(3):61-6439.
    [49]Lu Jianhui.Study on Semi_Active Vibration Control for an Offshore Oil Platform[C].Process in Safety Science and Technology Part,2002,3:474-479.
    [50]Hui Ma,GongYou Tang.Feedforward and feedback optimal control for offshore structures subjected to irregular wave forces[J].Ocean Engineering,2006,33(8):1105-1117.
    [51]Ayman B.Mahfouz.Predicting the capability-polar-plots for dynamic positioning systems for offshore platforms using artificial neural networks[J]. Ocean Engineering,2007, 34(8): 1151 -1163.
    
    [52]. Luo M, Zhu W.Q. Nonlinear stochastic optimal control of offshore platforms under wave loading[J]. Journal of Sound and Vibration,2006, 296(5):734-745.
    
    [53] Patil K.C, Jangid R.S. Passive control of offshore jacket platforms[J]. Ocean Engineering, 2005, 32(16): 1933-1949
    
    [54] Response mitigation on the offshore floating platform system with tuned liquid column damper[J] Ocean Engineering, 2006,33 (9).: 1118-1142.
    
    [55] Rohmam A.Opimal Control of Tall Buildings by Appendages[J]. Struct. Engrg, ASCE.110, 1984, 1 (5): 937-947.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700