用户名: 密码: 验证码:
吲哚在NiW/γ-Al_2O_3催化剂上加氢脱氮的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界范围内原油的日渐枯竭和现代社会对清洁燃料油的需求量不断增加,开发和利用新的替代能源逐渐成为人们研究的热点。页岩油作为一种重要的石油补充能源,由于其杂原子含量和组成不同于原油,因此其加工提质也不同于原油的加工,本论文主要围绕含氮化合物吲哚(IND)的加氢脱氮及其与喹啉(Q)、萘的相互影响展开了详细的研究。
     本论文在固定床微反应器中研究了吲哚及其中间产物在NiW/γ-Al203催化剂上的加氢脱氮反应和影响因素。结果表明:提高反应温度、压力、氢油比、以及降低液时空速均可以提高吲哚加氢脱氮的转化率。过高的H2S分压对吲哚的转化率并无明显促进作用,却使脱氮率略有降低。H2S能够促进1,2-二氢吲哚的C(sp3)-N断裂,但抑制了邻乙基苯胺(OEA)的C(sp2)-N断裂。吲哚分子中的氮杂环和芳香环与烯烃是在同一活性位进行加氢反应的。
     同时研究了吲哚、喹啉加氢脱氮过程中的相互影响。发现吲哚的添加几乎对喹啉的转化率没有任何影响,但脱氮率略有下降。吲哚抑制了喹啉→5,6,7,8-四氢喹啉(THQ5)和1,2,3,4-四氢喹啉(THQ1)→临丙基苯胺(OPA)反应的进行,并且吲哚分子的吸附性能强于喹啉分子中芳香环而弱于氮杂环的吸附性能。喹啉的添加明显降低了吲哚的转化率和脱氮率,喹啉对吲哚加氢反应和C-N键断裂反应均产生明显的抑制作用。这种抑制作用主要源于Q、THQ1、THQ5对IND及其中间产物的竞争吸附。OEA加氢脱氮反应主要是通过OEA→ECH路径进行的,即使少量的喹啉也会对OEA加氢脱氮反应产生较为严重的抑制作用。
     本文还研究了吲哚、喹啉加氢脱氮反应和萘加氢饱和反应的相互影响。发现IND、1,2-二氢吲哚(HIN)、Q、THQ5的加入严重抑制了萘加氢反应的进行。喹啉主要依靠氮杂环的大派键吸附在催化剂的活性中心上,而吲哚吸附主要靠氮原子上的孤对电子。Q和THQ5在加氢活性位上的吸附常数相差不多,且均大于HIN和IND的吸附常数。虽然没有检测到八氢吲哚(OHIN),但可推测出吲哚的HDN确有反应路径HIN→OHIN。萘的加入由于竞争吸附导致HIN→IND的脱氢反应速率降低,严重的抑制了OEA→邻乙基环己基胺(OECHA)的加氢反应,并且OEA在加氢活性位上的吸附常数与萘的吸附常数相差不多。
The more and more requirement of clean fuel oil by the developing of modern society, interest in the development of new substitute energy has been spurred because of the drying up of petroleum feedstock in the range of world day by day. Oil shale has been identified as an alternative source for production of crude oil substitutes. The upgrading process of shale oil is difficult from that of crude oil for the higher content of hetero-atoms. We studied the hydrodenitrogenation (HDN) of indole and mutual influence with quinoline and naphthalene.
     The HDN of indole and its intermediates were studied over NiW/y-Al2O3 catalyst in a continuous fixed-bed reactor. The results show that:The HDN of indole increased drastically with the increase of reaction temperature, reaction pressure and hydrogen/oil ratio. Excessively partial pressure of H2S doesn't promote much more for conversion of the HDN of indole, but inhibits the hydrodenitrification conversion. H2S can promote C(sp3)-N bond cleavage in 1,2-dihydroindole, inhibit slightly the hydrogenation reaction and C(sp2)-N bond cleavage in o-ethylaniline due to their competitive adsorption. Hydrogenation of aromatic heterocyclic rings, benzenic rings and olefin group takes place at the same active site.
     The mutual influence of HDN of indole and quinoline was also studied in the simultaneous hydroprocessing of feedstock. The results show that:the presence of indole has almost no effect for the quinoline conversion, but leads to denitrogenation conversion dropped. Indole inhibits the hydrogenation of in the Q to THQ5 and the pathway of THQ1 hydrogenolysis to OPA. Indole adsorption constant is bigger than that of benzenic rings, smaller than that of aromatic heterocyclic rings. Adding quinoline into indole decrease seriously the indole conversion and denitrogenationconversion, indicating that quinoline inhibits the hydrogenation reaction pathway and C-N bond cleavage. This can be atributed to the stronger adsorption of quinoline and its intermediates such as 1,2,3,4-tetrahydro-quinoline and 5,6,7,8-tetrahydro-quinoline than indole. Even of the presence of small amount of quinline lead to a drastic inhibiting effect in the HDN of OEA, Which is via OEA-ECH the pathway mainly.
     The mutual influence of HDN of indole or quinoline and hydrogenation of naphthalene were also studied in the simultaneous hydroprocessing of feedstock. The results show that:the present of IND, HIN, Q, and THQ5 leads to a drastic inhibiting effect for the hydrogenation of naphthalene. Adsorption of quinoline is via greatπbonds in aromatic heterocyclic rings, but that of indole is via the lone pair electrons of the nitrogen atom. Adsorption constants of quinoline and THQ5 have no obvious difference, which are both bigger than that of HIN and IND. HIN-OHIN pathway can be indicated to present in the HDN of indole from the data, although OHIN is not detected. The present of naphthalene leads to inhibit HIN-IND and OEA-OECHA pathway reactions. Also, OEA adsorption constant is similar as naphthalene on hydrogenation sites.
引文
[1]侯祥麟.中国页岩油工业[M].北京:石油工业出版社,1984.
    [2]张素萍,颜涌捷,任铮伟等.生物质快速裂解液体产物的分析[J].华东理工大学学报,2001,27(6):666-668.
    [3]路庆花.生物质快速热解焦油的分析[D].大连:大连理工大学化工学院,2002:16.
    [4]Buchanan M V. Mass spectral characterization of nitrogen-containing compounds with ammonia chemical ionization. Analytical Chemistry,1982,54(3):570-574.
    [5]张秋民,栾业志,关珺等.抚顺页岩油组成的分析[C],第五届全国化学工程与生物化工年会,2008,10,28.
    [6]刘大鹏,李永丹.加氢脱氮催化剂研究的新进展[J].化学进展,2006,18(4):417-428.
    [7]侯祥麟.中国炼油技术[M].北京:中国石油出版社,2001.
    [8]肇永辉.我国油页岩的主要性质及利用[J].沈阳化工,2000,29(1):78-80.
    [9]朴香兰,慎林.解度参数法筛选油品脱氮萃取剂的研究[J].清华大学学报,2000,40(2):43-45.
    [10]于道永,徐海,阙国和.石油非加氢脱氮技术进展[J].化工进展,2001,20(10):32-35.
    [11]宋兴良,高连存,蒋政.柴油非加氢脱氮技术研究进展[J].精细是有化工进展,2002,3(8):29-33.
    [12]战风涛,吕志凤,李林等.催化裂化柴油非加氢精制方法的研究进展[J].石油大学学报(自然科学版),2000,24(3):116-120.
    [13]张科良,何力.催化裂化柴油复合溶剂萃取精制工艺研究[J].西安石油学院学报,2000,15(1):30-33.
    [14]齐江,张瑾,戴猷元.石油产品溶剂脱氮研究进展[J].现代化工,1999,19(11):9-11.
    [15]高连存,宋兴良,崔兆杰.大孔酸性阳离子交换树脂脱除柴油中碱性含氮化合物方法的研究[J].山东大学学报(理学版),2003,38(3):99-103.
    [16]庄淑梅,郭立艳,梁景程等.石油产品非加氢脱氮技术进展[J].炼油与化工,2006,17(2):13-16.
    [17]马骏,隋新等.微波处理吸附剂脱除碱性氮化物的研究[J].石油化工高等学校学报,2004,17(2):9-12.
    [18]陈月珠.络合-吸附法脱除催化裂化柴油中碱性氮的工艺研究[J].石油炼制,2003,34(3):16-19.
    [19]Sun M, Nicosia D, Prins R. The effects of fluorine,phosphate and chelating agents on hydrotreating catalysts and catalysis[J]. Catalysis Today,2003,86(1-4):173-189.
    [20]Fitz C W J, Rase H F. Effects of phosphorus on nickel-molybdenum hydrodesulfurization/ hydrodenitrogenation catalysts of varying metals content[J]. Industrial and Engineering Chemistry Research,1983,22(1):40-44.
    [21]Liu C, Yu Y, Zhao H. Hydrodenitrogenation of quinoline over Ni-Mo/Al2O3 catalyst modified with fluorine and phosphorus[J]. Fuel Processing Technology,2005,86(4):449-460.
    [22]Borque M, Lopez-Agudo A, Olguin E, et al. Catalytic activities of Co(Ni)Mo/TiO-γ-Al2O3 catalysts in gas oil and thiophene HDS and pyridine HDN:effect of the TiO2-Al2O3 composition[J]. Applied Catalysis A,1999,180(1-2):53-61.
    [23]李伟,戴文新,关乃佳等.以大孔容TiO2和大孔容A1203为混合载体的加氢脱氮催化剂的研究[J].燃料化学学报,2000,28(4):352-355.
    [24]Rayo P, Ancheyta J, Ramirez J, et al. Hydrotreating of diluted Maya crude with NiMo/Al2O3-TiO2 catalysts:effect of diluent composition[J]. Journal of Catalysis,2004,98(1-2):171-179.
    [25]Minderhoud J K, Van Veen J A R. First-stage hydrocracking:Process and catalytic aspects[J]. Fuel Processing Technology,1993,35(1-2):87-110.
    [26]Harvey T G, MathesonT W. Hydroprocessing catalysis by supported ruthenium sulphide[J]. Journal of Catalysis,1986,101(2):253-261.
    [27]Kougionas V, Cattenot M, Zotin J L, et al. Enhancement of the catalytic properties of NiMo and CoMo alumina-supported sulfide catalysts by addition of ruthenium sulfide dispersed in Y zeolites[J]. Applied Catalysis A,1995,124(1):153-164.
    [28]Eijsbouts S, De Beer V H J, Prins R. Hydrodenitrogenation of quinoline over carbon-supported transition metal sulfides[J]. Journal of Catalysis,1991,127(2):619-630.
    [29]Ledoux MJ, Djellouli B. Hydrodenitrogenation activity and selectivity of well-dispersed transition metal sulfides of the second row on activated carbon[J]. Journal of Catalysis,1989,115(1):580-590.
    [30]Vit Z, Zdrazil M. Simultaneous hydrodenitrogenation of pyridine and hydrodesulfurization of thiophene over carbon-supported platinum metal sulfides[J]. Journal of Catalysis.1989,119(1):1-7.
    [31]Vit Z, Cinibulk J, Gulkova D. Promotion of MO/Al2O3 sulfide catalyst by noble metals in simultaneous hydrodesulfurization of thiophene and hydrodenitrogenation of pyridine:a comparative study[J]. Applied Catalysis A,2004,272(1-2):99-107.
    [32]Hirschon A S, Wilson R, Laine R M. Ruthenium promoted hydrodenitrogenation catalysts[J]. Applied Catalysis,1987,34(1-2):311-316.
    [33]Hirschon A S, Wilson R B, Laine R M. Ruthenium promoted hydrodenitrogenation catalysts [J]. Applied Catalysis,1987,34:311-316.
    [34]Schlatter J C, Oyama S T, Metcalfe J E, et al. Catalytic behavior of selected transition-metal carbides, nitrides, and borides in the hydrodenitrogenation of quinoline[J]. Industrial and Engineering Chemistry Research,1988,27(9):1648-1651.
    [35]Choi J G, Brenner J R, Colling C W, et al. Synthesis and characterization of molybdenum nitride hydrodenitrogenation catalysts[J]. Catalysis Today,1992,15(2):201-222.
    [36]Lee K S, Abc H, Reimer J A, et al. Hydrodenitrogenation of quinoline over high-surface-area Mo2N[J]. Journal of Catalysis,1993,139(1):34-40.
    [37]Stanczyk K, Kim H S, Sayag C, et al. HDN of 1-4 tetrahydroquinoline over MoNxOy and NbNxOy: effect of transition metal, solvent and ammonia[J]. Chemistry Letters,1998,53(1-2):59-64.
    [38]Ramanathan S, Oyama S T. New Catalysts for Hydroprocessing:Transition Metal Carbides and Nitrides[J]. Journal of Physical Chemistry,1995,99(44):16365-16372.
    [39]Furimsky F. Metal carbides and nitrides as potential catalysts for hydroprocessing[J]. Applied Catalysis A,2003,240(1-2):1-28.
    [40]Milad I K, Smith K J, Wong P C, et al. A comparison of bulk metal nitride catalysts for pyridine hydrodenitrogenation[J]. Chemistry Letters,1998,52(1-2):113-119.
    [41]Sajkowski D J, Oyama S T. Catalytic hydrotreating by molybdenum carbide and nitride:unsupported Mo2N and Mo2C/Al2O3[J]. Applied Catalysis A,1996,134(2):339-349.
    [42]Melo-Banda J A, Dominguez J M, Sandoval-Robles G. Hydrotreating of heavy vacuum gas oil (HVGO) on molybdenum and tungsten nitrides catalytic phases[J]. Catalysis Today,2001,65(2-4): 279-294.
    [43]Robinson W R A M, Van Gastel J N M, Koranyi T, et al. Phosphorus promotion of ni(co)-containing mo-free catalysts in quinoline hydrodenitrogenation[J]. Journal of Catalysis,1996,161(2):539-550.
    [44]Stinner C, Prins R, Weber T. Formation, structure, and HDN activity of unsupported molybdenum phosphide[J]. Journal of Catalysis.2000,191(2):438-444.
    [45]Li W, Dhandapani B, Oyama S T. Molybdenum phosphide:a novel catalyst for hydrodenitrogenation[J]. Chemistry Letters,1998,27(3):207-208.
    [46]Wang X, Clark P, Oyama ST. Synthesis, characterization, and hydrotreating activity of several iron group transition metal phosphides[J]. Journal of Catalysis,2002,208(2):321-331.
    [47]Oyama ST, Wang X, Lee YK, et al. Effect of phosphorus content in nickel phosphide catalysts studied by XAFS and other techniques[J]. Journal of Catalysis,2002,210(1):207-217.
    [48]Zuzaniuk V, Prins R. Synthesis and characterization of silica-supported transition-metal phosphides as HDN catalysts[J]. Journal of Catalysis,2003,219(1):85-96.
    [49]赵天波,李凤艳,李翠清等.磷化铝加氢精制催化剂的制备及加氢反应条件的考察[J].石油炼制与化工,2003,34(1):38-41.
    [50]赵天波,赵志芳,李凤艳等.制备条件对MoP/γ-Al2O3催化剂加氢性能的影响[J].石油化工,2004,33(10):925-927.
    [51]赵志芳,李凤艳,赵天波等.钴和镍对MoP/γ-Al2O3加氢精制催化剂活性的影响[J].石油炼制与化工,2004,35(5):12-14.
    [52]Oyama ST, Wang X, Requejo FG, et al. Hydrodesulfurization of petroleum feedstocks with a new type of nonsulfide hydrotreating catalyst[J]. Journal of Catalysis,2002,209(1):1-5.
    [53]Yang S H, Satterfield C N. Some effects of sulfiding of a NiMo/Al2O3 catalyst on its activity for hydrodenitrogenation of quinoline[J]. Journal of Catalysis,1983,81(1):168-178.
    [54]George C H, John B B, Joshua S D. Catalysis and mechanism of hydrodenitrogenation:the piperidine hydrogenolysis reaction[J]. Industrial and Engineering Chemistry Research,1992,31(11):2503-2516.
    [55]Jian M, Prins R. Determination of the nature of distinct.catalytic sites in hydrodenitrogena(?)ion by competitive adsorption[J]. Catalysis Letters,1998,50(1-2):9-13.
    [56]Kim S C, Massoth FE. Kinetics of the hydrodenitrogenation of indole[J]. Industrial and Engineering Chemistry Research,2000,39(6):1705-1712.
    [57]Schwartz V, Da Silva VT, Oyama ST. Push-pull mechanism of hydrodenitrogenation over carbide and sulfide catalysts[J]. Journal of Molecular Catalysis A,2000,163(1-2):251-268.
    [58]Keller V, Lauron-Pernot H, Djega-Mariadassou G. Kinetic approach of surface acidity of W2N, Mo2N and NbN catalysts using methylbutynol as molecular probe[J]. Journal of Molecular Catalysis A, 2002,188(1-2):163-172.
    [59]Miga K, Stanczyk K, Sayag C, et al. Bifunctional behavior of bulk MoOxNy and nitrided supported nimo catalyst in hydrodenitrogenation of indole[J]. Journal of Catalysis,1999,183(1):63-68.
    [60]Nagai M, Goto Y, Miyata A, et al. Temperature-programmed reduction and XRD studies of ammonia-treated molybdenum oxide and its activity for carbazole hydrodenitrogenation[J]. Journal of Catalysis,1999,182(2):292-301.
    [61]Nagai M, Yamamoto Y, Aono R. Surface properties and fractal approach to molybdenum nitrides and their surface activity for hydrodenitrogenation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2004,241(1-3):257-263.
    [62]Wu Z, Sun F, Wu W, et al. On the surface sites of MoP/SiO2 catalyst under sulfiding conditions:IR spectroscopy and catalytic reactivity studies[J]. Journal of Catalysis,2004,222(2):41-52.
    [63]Oyama S T, Clark P, Da Silva T, et al. XAFS characterization of highly active alumina-supported molybdenum phosphide catalysts (MoP/Al2O3) for Hydrotreating[J]. Journal of Physical Chemistry B, 2001,105(21):4961-4966.
    [64]Clark P, Wang X, Deck P, et al. Push-pull mechanism of hydrodenitrogenation over silica-supported MoP, WP, and MoS2 hydroprocessing catalysts[J]. Journal of Catalysis,2002,210(1):116-126.
    [65]Oyama S T, Lee Y L. Mechanism of hydrodenitrogenation on phosphides and sulfides[J]. Journal of Physical Chemistry B,2005,109(6):2109-2119.
    [66]Nelson N, Levy R B. The organic chemistry of hydrodenitrogenation[J]. Journal of Catalysis,1979, 58(3):485-488.
    [67]Cattenot M, Portefaix J L, Afonso J, et al. Mechanism of carbon-nitrogen bond scission on unsupported transition metal sulfides[J]. Journal of Catalysis,1998,173(2):366-373.
    [68]Portefaix J L, Cattenot M, Guerriche M, et al. Conversion of saturated cyclic and noncyclic amines over a sulphided NiMo/Al2O3 catalyst:mechanisms of carbon-nitrogen bond cleavage[J]. Catalysis Today,1991,10(4):473-487.
    [69]Vivier L, Dominguez V, Perot G, et al. Mechanism of C-N bond scission. Hydrodenitrogenation of 1,2,3,4-tetrahydroquinoline and of 1,2,3,4-tetrahydroisoquinoline[J]. Journal of Molecular Catalysis, 1991,67(2):267-275.
    [70]Zhao Y, Kukula P, Prins R. Investigation of the mechanism of the hydrodenitrogenation of n-hexylamines over sulfided NiMo/γ-Al2O3[J]. Journal of Catalysis,2004,221(2):441-454.
    [71]Laine R M. Comments on the mechanisms of heterogeneous catalysis of the hydrodenitrogenation reaction[J]. Catalysis Reviews:Science and Engineering,1983,25(3):459-474.
    [72]Jian M, Kapteijn F, Prins R. Kinetics of the hydrodenitrogenation ofortho-propylaniline over NiMo(P)/Al2O3 catalysts[J]. Journal of Catalysis,1997,168(2):491-500.
    [73]Jian M, Prins R. mechanism of the hydrodenitrogenation of quinoline over NiMo(P)/Al2O3 catalysts[J]. Journal of Catalysis,1998,179(1):18-27.
    [74]Bunch A, Zhang L P, Karakas G, et al. Reaction network of indole hydrodenitrogenation over NiMoS/y-Al2O3 catalysts[J]. Applied Catalysis A:General,2000,190(1):51-60.
    [75]Ferdous D, Dalai A K, Adjaye J. Comparison of hydrodenitrogenation of model basic and nonbasic nitrogen species in a trickle bed reactor using commercial NiMo/Al2O3 catalyst[J]. Energy Fuels, 2003,17(1):164-171.
    [76]Callant M, Holder K A, Grange P, et al. Effect of H2S and H2 partial pressures on the hydrodenitrogenation (HDN) of aniline and indole over a NiMoP/γ-Al2O3 catalyst[J]. Bulletin des Societes Chimiques Belges,1995,104(4-5):245-251.
    [77]Prins R, Egorova M, Rothlisberger A, et al. Mechanisms of hydrodesulfurization and hydrodenitrogenation[J]. Catalysis Today,2006,111(1-2):84-93.
    [78]Zhang L P, Karakas G, Ozkan U S. NiMoS/y-Al2O3 catalysts:the nature and the aging behavior of active sites in HDN reactions[J]. Journal of Catalysis,1998,178(2):457-465.
    [79]相春娥,柴永明,柳云骐等.二苯并噻吩和吲哚在NiMoS/γ-Al2O3上加氢脱硫和加氢脱氮反应的相互影响[J].燃料化学学报,2008,36(6):684-690.
    [80]Satterfield C N, Modell M, Mayer J F. Interactions between catalytic hydrodesulfurization of thiophene and hydrodenitrogenation of pyridine[J]. AIChE Journal,1975,21(6):1100-1107.
    [81]La Vopa V, Satterfield C N. Poisoning of thiophene hydrodesulfurization by nitrogen compounds[J]. Journal of Catalysis,1988,110(2):375-387.
    [82]Prins R, Jian M, Flechsenhar M. Mechanism and kinetics of hydrodenitrogenation[J]. Polyhedron, 1997,16(18):3235-3246.
    [83]Laredo G C, Altamirano E, De los Reyes J A. Self-inhibition observed during indole and o-ethylaniline hydrogenation in the presence of dibenzothiophene[J]. Applied Catalysis A:General, 2003,242(2):311-320.
    [84]Sun M, Nelson A E, Adjaye J. First principles study of heavy oil organonitrogen adsorption on NiMoS hydrotreating catalysts[J]. Catalysis Today,2005,109(1-4):49-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700