用户名: 密码: 验证码:
设置钢筋加劲肋的方钢管混凝土轴压短柱力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
方形钢管混凝土具有截面抗弯刚度大、节点构造简单、易于装修等特点,工程应用日益增多。但方钢管对核心混凝土的约束作用不均匀,承载力和延性较同等截面尺寸的圆钢管低,且管壁易发生局部屈曲。为了改善方钢管混凝土的受力性能,本文提出了一种设置钢筋加劲肋的方钢管混凝土新型构件,并开展了以下几方面工作:
     (1)进行了8个设置加劲肋的方钢管混凝土和2个普通的方钢管混凝土轴压短柱试验,观察并分析了试件的变形特点、破坏模式和破坏机理。研究结果表明:钢筋加劲肋可以防止钢板过早发生局部屈曲,增强钢管对核心混凝土的约束作用,改善了试件的延性和承载力。但由于钢管宽厚比较大,端部效应影响显著,试件易发生端部破坏。
     (2)基于本文和他人的试验研究结果,利用有限元软件ABAQUS建立并验证了方钢管混凝土轴压短柱的有限元模型,对比分析了不同加劲肋形式对方钢管混凝土构件的承载力、延性及变形能力的影响。结果表明,圆形箍筋和斜置的矩形钢筋加劲肋对试件承载力和延性的改善最为显著;钢筋加劲肋中与钢管壁垂直的钢筋段是提高构件延性及变形能力的主要因素。
     (3)基于试验研究及理论分析,提出了两种构造简单、施工方便、造价低廉并能有效改善钢管对混凝土约束效果的斜拉及对拉钢筋加劲肋形式,并分析了钢管屈服强度、含钢率、钢筋直径和屈服强度等参数对钢筋加强的方钢管混凝土构件力学性能的影响。
As the strong bending-rigidity of the cross-section, simple connection details and decoration convenience, the Square Concrete-filled Steel Tubular columns (square CFST) have been increasingly applied in engineering practice. Nevertheless, the strength and ductility of square CFST are inferior to those of the circular CFST, due to its low confinement to core concrete and the premature local buckling of the steel plates. In order to improve the mechanical performance of square CFST, an innovative type of columns with steel bar stiffeners was put forward in this paper. The main contents are listed as follows:
     (1) 8 square CFST stub columns with stiffeners and 2 without stiffeners were tested under axial compression load. The features of deformation, failure models and failure mechanism were observed and analyzed. The test results show that the columns can be strengthened by adding the steel bar stiffeners. The steel bar stiffener can prevent the specimens from premature local buckling, which would enhance the confinement to concrete and improving the ultimate compression strength and ductility. However, the relatively large width-to-thickness ratio of the steel plates has obvious effects at the ends of the columns, which can cause the end failure.
     (2) Based on the experimental results of this paper and other reference, a finite element model were established and verified with ABAQUS software for square CFST under axial compression. The influences of stiffener shapes on the bearing capacity, ductility and deformation capacity of square CFST were analyzed and compared. Analysis results showed that circular stirrups and aslant-arranged rectangle steel bar stiffeners were superior to other shapes considering the improvement of the bearing capacity and the ductility. The steel bar stiffeners perpendicular to the plate are the main contributor to increase the ductility and the deformation capacity.
     (3) Based on the experimental and theoretical research,two new types of bar stiffener details was suggested, which is structurally simple, convenient in construction, low cost and a better results in improving the confinement of steel bar to core concrete. Beside, the finite element parametric analysis was carried out for the stub CFST columns with or without steel bar stiffeners. A detailed discussion was carried out for the influence of steel plate strength, steel plate thickness, steel bar diameter and strength.
引文
1钟善桐.钢管混凝土.第3版.清华大学出版社, 2002: 1-10, 49-59.
    2韩林海.钢管混凝土理论与实践.第2版.科学出版社, 2007:31-50.
    3蔡绍怀.现代钢管混凝土.第1版.人民交通出版社, 2003: 4, 5-7.
    4郭兰慧.矩形钢管混凝土构件力学性能的理论分析和试验研究.哈尔滨工业大学博士学位论文. 2006:1-5.
    5高光虎.高层及多层钢结构住宅设计~介绍陆海城、中福城、库尔勒钢结构住宅.建筑钢结构进展. 2001, (3):1-11.
    6钟善桐.住宅建筑中推广钢管混凝土柱的优点.钢结构. 2001, 17(2):16-19.
    7韩林海,杨有福。现代钢管混凝土技术[M].中国建筑工业出版社,2004年12月
    8 Neogi, P.K., Sen, H.K. and Chapman, J.C. (1969),“Concrete filled tubular steel columns under eccentric loading”, The Structural Engineer, 47(5), 187-195.
    9 Furlong, R. W. Strength of steel-encased concrete beam columns. Journal of the Structural Division. 1967, 93(5):113~124
    10 Knowles, R. B. and Park, R. Strength of concrete filled steel tubular columns. Journal of structural division, ASCE. 1969, 95(2):2565-2587
    11 Tomii, M. and Sakino, K. Experimental studies on concrete filled square steel tubular beam-columns subjected to monotonic shearing force and constant axial force. Transactions of the Architectural Institute of Japan. No. 281, July: 81-90.
    12 Shakir-Khalil, H., and Zeghiche, J. Experimental behavior of concrete filled rolled rectangular hollow-section columns. The Structural Engineer. 1989, 67(9):346-353
    13 Shakir-Khalil, H. Further tests on concrete-filled rectangular hollow section columns. The Structural Engineer. 1990, 68(20):405-413
    14 Cederwall, K., Engstrom, B., and Grauers, M. High-strength concrete used in composite columns. Second International Sympsium on Utilization of High-Strength Concrete, Hester, W. T. (ed.), Berkeley, California. May, 1990: 195-214.
    15 Ge, Hanbin and Tsutomu. Strength of concrete-filled thin-walled steel box columns: Experiment. Journal of structural engineering. 1992,118(11): 3036-3055
    16 Matsui, C., Tsuda, K., and El Din, H. Z. Stability design of slender concrete filled steel square tubular columns. Proceedings of the 4th East Asia-Pacific Conference on Structural Engineering and Construction, Vol.1, 1993:317-322.
    17 Tsuda, K., Matsui, C., and Mino, E. Strength and behavior of slender concrete filled steel tubular columns. Stability Problems in Designing, Construction and Rehabilitation of Metal Structures, Proccedings of the Fifth International Colloquium on Structural Stability, SSRC IC/BRASIL’96, Rio de Janerio, Brasil, August 5-7, 1996, Structural Stability Research Council, Bethlehem, Pennsylvania, 1996: 489-500.
    18 Shakir-Khalil, H. and Al-Rawdan, A. experimental behavior and numerical modeling of concrete-filled rectangular hollow section tubular columns. Composite Construction in Steel and Concrete III, Buckner, C. D. and Shahrooz, B. M. (eds.), Proceedings of the Engineering Foundation Conference, Irsee, Germany, June 9-14, 1996, American Society of Civil Engineers, New York, New York, 1997: 222-235.
    19 Uy. Brian. Strength of concrete filled steel box columns incorporating local buckling. Journal of Structural Engineering. 2000,126(3):341-352
    20 Uy. Brain. Strength of short concrete filled high strength steel box columns. Journal of Constructional Steel Research. 2001,57(2):113-134
    21 Brian Uy. Local and postlocal buckling of fabricated steel and composite cross sections. Journal of Structural Engineering. 2001,127(6):666-677
    22 Susantha, K.A.S. (Department of Civil Engineering, Nagoya University); Ge, H.; Usami, T. Source. Uniaxial stress-strain relationship of concrete confined by various shaped steel tubes. Engineering Structures, v 23, n 10, October, 2001, p1331-1347
    23 Liu, Dalin., Gho, Wiemin and Yuan, Jie. Ultimate capacity of high-strength rectangular concrete-filled steel hollow section stub columns. Journal of Constructional Steel Research. 2003,59(12):1499-1515
    24郭兰慧.方形、矩形钢管混凝土高强混凝土构件力学性能分析与试验研究.哈尔滨工业大学硕士论文. 2002.
    25叶再利.方形、矩形钢管高强棍凝土轴压短柱基本力学性能研究.哈尔滨工业大学硕士论文. 2001.
    26韩林海,杨有福.矩形钢管混凝土轴心受压构件强度承载力的试验研究.土木工程学报. 2001, 34(4):22-31.
    27蒋涛,沈之容,余志伟.矩形钢管混凝土轴压短柱承载力计算.特种结构. 2002, 19(2): 4-6.
    28王蕾,江雪.矩形钢管混凝土短柱受压承载力计算.桂林工学院学报. 2003, 10(4):441-444.
    29余志伟.多层住宅矩形钢管混凝土梁柱及节点性能理论及试验研究.同济大学硕士论文. 2003.
    30 Ge, H. B., and Usami, T. ~1992!.‘‘Strength of concrete-filled thin-walled steel box columns: Experiment.’’J. Struct. Eng., 118~11!, 3036–3054.
    31 Kitada T. Ultimate strength and ductility of state-of-the-art concrete-filled steel bridge piers in Japan. Engg Struct 1998;20(4):347–54.
    32 Young-Bong KWON, Jun-Yeup SONG, Kim-Sung KON. The Structural Behavior of Concrete-Filled Steel Piers. 16th Congress of IABSE,Lucerne,2000.
    33 J.Cai, Z.Q.He. Axial load behavior of square CFT stub column with binding bars.Journal of constructional steel research.2006,62,(5)472~483
    34 H.-L. Hsu, J.-L. Juang. Performance of thin-walled box columns strengthened with internal braces. Thin-Walled Structures 37 (2000) 241–258
    35 C.S.Huang,Y.K.Yeh.Axial load behavior of stiffened concrete-filled steel columns.Journal of structural engineering.2002,128(9):1222~1230
    36 Zhong Tao, Lin-Hai Han, Zhi-Bin Wang. Experimental behaviour of stiffened concrete-filled thin-walled hollow steel structural (HSS) stub columns. Journal of Constructional Steel Research 61 (2005) 962–983
    37陈勇.新型薄壁钢管混凝土柱静力性能研究.哈尔滨工业大学博士学位论文.2006
    38董志君.设肋薄壁钢管混凝土短柱静力性能研究.哈尔滨工业大学硕士学位论文.2005
    39范重.正方形断面钢管混凝土短柱轴心受压极限承载力的研究.建筑结构学报.1994,15(3):80-86
    40庄茁,张帆,岑松. ABAQUS非线性有限元分析与实例.科学出版社.2005:123-142.
    41董志君.设肋方形薄壁钢管混凝土短柱静力性能研究.哈尔滨工业大学硕士学位论文. 2005:45-63.
    42陈骥.钢结构稳定理论与设计.科学出版社. 2001: 343-385.
    43 Bridge.R.Q, O’shea.M.D. Behaviour of thin-walled steel box sections with or without internal restraint. Journal of constructional steel reseach. 1998, 47:73-91.
    44王玉银.圆钢管高强混凝土轴压短柱基本性能研究.哈尔滨工业大学博士学位论文. 2003.
    45 Schneider.S.P. Axially loaded concrete-filled steel tubes. Journal of structrural engineering. 1998, 124(10): 1125-1138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700