用户名: 密码: 验证码:
硫化物半导体纳米材料的可控制备及性能调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫化物半导体是重要的宽带隙无机半导体化合物材料,因其优异的特性已经迅速成为短波半导体光电材料研究的国际热点。研究纳米材料的控制生长技术以实现按照应用需求有目的性地合成特定形貌和尺度的纳米材料,是当前纳米材料研究领域亟待解决的重要科学问题。本文选取极具应用前景的硫化物半导体材料作为研究对象,研究其结构生长和形貌演化的内在规律,探索与奇特形貌相关的奇特物理性能。研究的重点集中在纳米材料的控制生长方法、纳米结构动力学控制规律以及形貌演化与实验参数的关系。
     主要研究内容及创新点包括以下两点:
     (1)对典型稀磁性半导体材料MnS的可控合成及性能调控研究。采用简单的溶剂热法可控合成出MnS的多种新颖花样结构(花状、三脚状、棒状、棱台状),考察了物源选择、反应温度、保温时间、反应物配比和溶剂选择等条件对产物形貌的影响,动态的研究了各形貌产物的形成过程和相互演化的规律,分析发现其形成机制遵循“Ostwaldripening”生长方式。对其顺磁特性和PL发光谱进行了研究,找出了形貌与性能之间的关系,发现花状结构具有较好的磁学和光学性能。
     (2)利用简单的无模板化学气相沉积法可控合成ZnS空心微球。利用SEM、EDS、XRD等对产物的形貌结构进行了研究,并对其PL谱进行研究。通过改变硫锌比,可实现对球壳厚度和光学性能调控。随着硫的增多,球壳增厚,PL谱出现光学淬灭。ZnS空心微球的生长过程可由Kirkendall现象来阐明。发展了无模板制备空壳结构的新方法。
Nanostructured Sulfide Semiconductors are very important wide-band-gap inorganic semiconductor materials. Therefore, much attention has been paid to the short-wave photoelectric semiconductor materials because of their excellent properties. Investigation on controlled growth of nanomaterials so as to realize the application tailored design and the synthesis of nanomaterials with specific morphologies and sizes is the tackling issue in the current research on nanomaterials. This present thesis aims to investigate in depth the growth mechanisms and the rules for the morphology evolution of applied sulfide semiconductor nanostructures; explore the novel physical properties correlated with novel structures. The research is mainly focused on controlled growth of nanomaterials, the growth dynamic rules and the correlation between morphology evolution and experimental parameters.
     The main contents and originality of the thesis are as follows:
     1. Controlled growth and property of typical Dilute Magnetic Semiconductor Manganic sulfide were researched. Many novel Manganic sulfide nanostuctures including flower-like ZnO, three-legged MnS, stick MnS and pyramid MnS has been successfully synthesized via solvothermal method. The effect of various experimental parameters including the sort of sulfide, the temperature at the reaction, reactive time, the ratio of reactant and the sort of solvent were studied on the properties. These nanostructures morphology growth processes and interactional evolution also have been studied. The growth mechanism of the MnS nanostructures is attributed to Ostwald ripening process. The optical properties of the products were also recorded by means of photoluminescence (PL) spectroscopy. Electron paramagnetic resonance measurement revealed the paramagnetic nature of the MnS crystals. That is significant for the investigation of novel physical properties originated from special structures. The optical properties and magnetic nature of the MnS nanoflower are the best than others.
     2. ZnS hollow microspheres were prepared via a facile template-free chemical vapor deposition (GVD) route. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometer (EDX). The optical properties of the products were also recorded by means of photoluminescence (PL) spectroscopy. The growth mechanism of the ZnS microstructures is attributed to Kirkendall process. The quantity of S is deemed as a critical parameter in modulating the shell thickness and PL intensity of ZnS microstructure. A higher S content increase the shell thickness, and cause the luminescence quenching. The growth mechanism of the ZnS microstructures is attributed to Kirkendall process. Hollow sphere structure was synthesized by a new template-free method.
引文
[1]张立德,牟季美,《纳米材料和纳米结构》,科学出版社,2000
    [2]耿保友,化学气相沉积制备准一维半导体纳米材料及可控生长研究,中国科学院固体物理研究所博士学位论文,2004
    [3]Ming Wei,Dan Zhi,Judith L et al.Morphology and magnetic properties of cobalt-doped ZnO nanostructures deposited by ultrasonic spray assisted chemical vapour deposition,Scripta Materialia,2006(54):5:817-821
    [4]B L rench,J J Wang,M.Y.Zhu et al,Evolution of structure and morphology during plasma-enhanced chemical vapor deposition of carbon nanosheets,Thin Solid Films,2006(494):105-109
    [5]Baoyou Geng,Xiaowang Liu,Xianwen Wei et al,Synthesis,characterization and optical properties of regularly shaped,single-crystalline sisal-like ZnO nanostructures,Materials Letters,2005(59)28:3572-3576
    [6]T Bret,I Utke,P Hoffmann,Influence of the beam scan direction during focused electron beam induced deposition of 3D nanostructures,Microelectronic Engineering,2005(78-79):307-313
    [7]K Shiji,M Hiramatsu,A Enomoto,et al,Vertical growth of carbon nanowalls using rf plasma-enhanced chemical vapor deposition,Diamond and Related Materials,2005(14):831-834
    [8]D Barreca,G Bruno,A Gasparotto et al,Nanostructure and optical properties of CeO_2 thin films obtained by plasma-enhanced chemical vapor deposition,Materials Science and Engineering:C,2003(23):1013-1016
    [9]Yubao Li,Yoshio Bando Tadao Sato,Preparation of network-like MgO nanobelts on Si substrate,Chemical Physics Letters,2002(359):141-145
    [10]H S Ahn,H M.Park,D Y.Kim et al,Observation of carbon clusters of a few nanometers in the oxyacetylene diamond CVD process,Journal of Crystal Growth,2002(234):399-403
    [11]A.T.Hubbard,,in:T.Sugimoto(Ed.),Surfactant Science Series,vol.92,Marcel Dekker Inc.,New York,Basel,2000.
    [12]N.Chestnoy,R.Hull,L.E.Brus,J.Chem.Phys.85(1986)2237.
    [13]C.B.Murray,D.J.Norris,M.G.Bawendi,J.Am.Chem.Soc.115(1993)8706.
    [14]X.Peng,L.Manna,W.Yang,J.Wickham,E.Scher,A.Kadavanich,A.P.Alivisatos, Nature 404(2000)59.
    [15]L.Manna,E.Scher,A.P.Alivisatos,J.Am.Chem.Soc.122(2000)12700.
    [16]Z.Tang,N.A.Kotov,M.Giersig,Science 297(2000)237.
    [17]J.D.Holmes,K.P.Johnston,R.C.Dory,B.A.Korgel,Science 287(2000)1471.
    [18]T.Hanrath,B.A.Korgel,J.Am.Chem.Soc.124(2002)1424.
    [19]Y.Jun,C.-S.Choi,J.Cheon,Chem.Commun.1(2001)101.
    [20]Y.Jun,S.-M.Lee,N.-J.Kang,J.Cheon,J.Am.Chem.Soc.123(2001)5150.
    [21]L.Manna,D.J.Milliron,A.Meisel,E.C.Scher,A.P.Alivisatos,Nat.Mater.2(2003)382.
    [22]C.Pacholski,A.Kornowski,H.Weller,Angew.Chem.Int.Ed.41(2002)1188.
    [23]Y.Jun,Y.Jung,J.Cheon,J.Am.Chem.Soc.124(2002)615.
    [24]D.J.Milliron,S.M.Hughes,Y.Cui,L.Manna,J.Li,L.-W.Wang,A.P.Alivisatos,Nature 430(2004)190.
    [25]Jin-Song Hu,Yu-Guo Guo,Han-Pu Liang,Li-Jun Wan,and Li Jiang Three-Dimensional Self-Organization of Supramolecular Self-Assembled Porphyrin Hollow Hexagonal Nanoprisms,J.Am.Chem.Soc.,2005,Vol.127,No.48,17090-17095.
    [26]Ge-Bo Pan,Jun-Min Liu,Hui-Min Zhang,Li-Jun Wan,Qi-Yu Zheng,Chun-Li Bai,Configurations of a Calix[8]arene and a C_(60)/Calix[8]arene Complex on a Au(111)Surface,Angew.Chem.Int.Ed.2003,Vol.42,No.24,2747-2751.
    [27]J.-R.Gong,L.-J.Wan,Q.-H.Yuan,C.-L.Bai,H.Jude,and P.J.Stang,Mesoscopic self-organization of a self-assembled supramolecular rectangle on highly oriented pyrolytic graphite and Au(111)surfaces,Proc.Natl.Acad.Sci.USA 2005,Vol.102,No.4,971-974.
    [28]Qun-Hui Yuan,Li-Jun Wan,Hershel Jude,and Peter J.Stang,Self-Organization of a Self-Assembled Supramolecular Rectangle,Square,and Three-Dimensional Cage on Au(111)Surfaces,J.Am.Chem.Soc.,2005,Vol.127,No.46,16279-16286.
    [29]Jin-Song Hu,Ling-Ling Ren,Yu-Guo Guo,Han-Pu Liang,An-Min Cao,Li-Jun Wan,Chun-Li Bai,Mass Production and High Photocatalytic Activity of ZnS Nanoporous Nanoparticles,Angew.Chem.Int.Ed.,2005,Vol 44,No.8,1269-1273.
    [30]An-Min Cao,Jin-Song Hu,Han-Pu Liang,Li-Jun Wan,Self-Assembled Vanadium Pentoxide(V_2O_5)Hollow Microspheres from Nanorods and Their Application in Lithium-Ion Batteries,Angew.Chem.Int.Ed.,2005,Vol 44,No.28,4391-4395.
    [31]Gleiter H,Progress in Mater.Sci.,33,223(1989).
    [32]王广厚,韩民,物理学进展,10(3),248(1999).
    [33]苏品书,超微粒子材料技术,复汉出版社(1989).
    [34]Hahn H,Averback R S,J.Appl.Phys.,87(2),1113(1990).
    [35]Vollater D,Aerosol methods and advanced Techniques for Nanoparticle Science and Nanopowder Technology.In:Fiβan H,Karow H V,Kauffeldt Th.Proc.Of the ESF Exploratory Workshop.Duisburge,Germany,15(1993).
    [36]Kear B H,Chang W,Skandan G S,et al.同上,25(1993).
    [37]加藤昭夫,森满由纪子,日化,23,800(1984).
    [38]Y.W.Wang,L.D.Zhang,G.Z.Wang,X.S.Peng,Z.Q.Chu,Z.H.Liang,Catalytic Growth of semiconducting Zinic Oxide nanowires and their photoluminescence properties,J.Crystal Growth,234,171-175(2002).
    [39]Hu,J.;Odom,T.W.;Lieber,C.M.;Chemistry and Physics in One Dimension:Synthesis and Properties of Nanowires and Nanotubes Acc.Chem.Res.32(5)435-445(1999).
    [40]X.Duan and C.M.Lieber,Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires,J.Am.Chem.Soc.122,188-189(2000).
    [41]X.Duan and C.M.Lieber,General Synthesis of Compound Semiconductor Nanowires,Adv.Mat.12,298-302(2000).
    [42]X.Duan,J.Wang and C.M.Lieber,Synthesis and optical properties of gallium arsenide nanowires,Appl.Phys.Lett.76,1116-1118(2000).
    [43]D.P.Yu,Q.L.Hang,Y.Ding,H.Z.Zhang,Z.G.Bai,J.J.Wang,Y.H.Zou,W.Qian,G.C.Xiong,and S.Q.Feng,Amorphous silica nanowires:Intensive blue light emitters,Appl.Phys.Lett.,73,3076-3078(1998).
    [44]B.Q.Wei,R.Vajtai,Y.Jung,J.Ward,R.Zhang,G.Ramanath,P.M.Ajayan,Organized assembly of Carbon nanotubes,Nature,416,495-496(2002).
    [45]P.D.Yang,C.M.Lieber,Nanorod-Superconductor Composites:A Pathway to Materials with High Critical Current Densities,Science,273,1836(1996).
    [46]Y.Wu,P.Yang,Germanium Nanowire Growth via Simple Vapor Transport Chem.Mater.12(3)605-607(2000).
    [47]M.H.Huang,Y.Wu,H.Feick,N.Tran,E.Weber,P.Yang,Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,Adv.Mater.,13(2),113-116(2001).
    [48]W.S.Shi,Y.F.Zheng,N.Wang,C.S.Lee,and S.T.Lee,Oxide-assisted growth and optical characterization of gallium-arsenide nanowires,Appl.Phys.Lett.,78,3304-3306(2001).
    [49]K.Hiruma,M.Yazawa,T.Katsuyama,i.Ogawa,K.Uaraguchi,M.Koguchi,and H.Kakibayashi,Growth and optical properties of nanometer-scale Gabs and InAs whiskers,J.hppl.Phys.,77,447-462(1995).
    [50]Y.Y.Wu,P.D.Yang,Direct Observation of Vapor-Liquid-Solid Nanowire Growth,J.Am.Chem.Soc.,123(13)3165-3166(2001).
    [51]P.Yang and C.M.Lieber,Nanostructured high-temperature superconductors creation of strong-pinning columnar defects in nanorod/superconductor composites,J.Mater.Res.12,2981-2996(1997).
    [52]Y Wu,B.Messer,P.Yang,Superconducting MgB_2 Nanowires,Adv.Mater.,13,1487-1489(2001).
    [53]N O Dantas,A F G Monte,F Qu,et al.Energy transfer in PbS quantum dots assemblies measured by means of spatially resolved photoluminescence,Applied Surface Science 2004(238):209-212
    [54]H Katayama-Yoshida,K.Sato,Spin and charge control method of ternary Ⅱ-Ⅵ and Ⅲ-Ⅴmagnetic semiconductors for spintronics,J.Physics and Chemistry of Solids,2003(64):1447-1452
    [55]Yunze Long,Zhaojia Chen,J L Duvail,et al.Electrical and magnetic properties of polyaniline/Fe_3O_4 nanostructures Physica B:Condensed Matter,2005(370):121-130
    [56]M Tan,W P Cai,L D Zhang,et al.Optical absorption of ZnS nanocrystals inside pores of silica,Appl.Phys.Lett.1997(71):3697-3699
    [57]X S Feng,S Z Kang,n G Liu,et al.Study of the photophysical properties of composite film assembled of porphyrin and TiO_2 nanoparticles Thin Solid Films,1999(352),223-227
    [58]Xuchu Ma,Fen Xu,Yankuan Liu,Double-dentate solvent-directed growth of multi-armed CdS nanorod-based semiconductors Materials Research Bulletin,2005(40)12:2180-2188
    [59]D C Look,Recent advances in ZnO materials and devices,Mater.Sci.Eng.B 2001(80):383-387
    [60]E Comini,Metal oxide nano-crystals for gas sensing,Analytica Chemical Acta,2006(568):28-40
    [61]B S Zhou,L Z Xiao,T J El,et al.Absorption redshift in TiO_2 ultrafine particles with surfacial dipole layer,Appl.Phys.Lett.1991(59):1826-1828
    [62]祁元春,赵彦保,许红涛,形貌可控γ-硫化锰纳米晶的制备及表征,化学研究,2006,17(4):60-62
    [63]范冬波,化学浴制备金属硫族化学光电功能薄膜,北京工业大学硕士学位论文,2004
    [64]Lokhande C D,Ennaoui A,Patil P S,et al.Process and characterisation of chemical bath deposited manganese sulphide(MnS)thin films,Thin Solid Films,1998,330(2):70-75
    [65]Subhajit B,Soumitra K,Subhadra C,Solvothermal synthesis of α-MnS single crystals,J.Cryst.Growth,2005,284(1-2):129-135
    [66]杨超,纳米硫磺的制备及在橡胶中的应用,中国地质大学硕士论文,2004
    [67]L.Canet,P.Seta.Ext raction and separation of metal cations in solution by supported liquid membrane using lasalocid A as carrier,J.Pure Appl.Chem.,2001,73(12):2039-2046

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700