用户名: 密码: 验证码:
褪黑素对体外培养的脐静脉内皮细胞增殖和凋亡的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
褪黑素对体外培养的脐静脉内皮细胞增殖和凋亡的影响
     目的:第一部分:为了探讨褪黑素(MEL)在血管新生方面的作用和可能的抗肿瘤血管新生机制,以体外培养的脐静脉内皮细胞(HUVECs)为模型,观察MEL对HUVECs增殖和凋亡的影响。第二部分:在第一部分基础上,探讨高浓度MEL抑制HUVECs增殖和促其凋亡的可能细胞信号传导通路。
     方法:第一部分:原代培养HUVECs,免疫磁珠筛选后,并用免疫组化和电镜鉴定内皮细胞;MTT法测定不同浓度的MEL对HUVECs增殖的影响,并用流式细胞仪测定HUVECs细胞周期和细胞凋亡情况;免疫荧光、Western Blot和RT-PCR检测MEL对HUVECs内凋亡相关蛋白P53、Bcl-2和Bax及其基因表达情况。第二部分:在第一部分基础上,RT-PCR检测HUVECs褪黑素膜受体和核受体(MELR和RZR/ROR)的表达情况,以及MEL对其表达影响;检测高浓度MEL对影响HUVECs增殖和凋亡的重要的细胞内信号通路RTK/ERK/P13K/AKT/PKC/NF-κB蛋白表达影响;应用MELR受体阻滞剂Luzindole、ERK1/2激活抑制剂U0126、PI3K/AKT抑制剂LY294002以及PKC激活剂PMA和抑制剂GF 109203X,观察其对高浓度MEL抑制HUVECs增殖和相关细胞信号传递通路的影响。
     结果:第一部分:(1)成功的分离培养原代HUVECs,免疫磁珠筛选后能继续贴壁生长并传代,倒置显微镜下HUVECs呈鹅卵石状,Ⅷ因子内皮细胞细胞免疫化学着棕色,电镜下可见内皮细胞特征性的Weibel-Palade小体。(2)极低浓度MEL(lnmol/L)对HUVECs增殖无明显影响,但高浓度MEL(10nmol/L-1mmol/L)明显抑制HUVECs增殖,并有浓度依赖倾向,1mmol/L抑制作用最明显。(3)流式细胞仪显示高浓度MEL能明显阻滞HUVECs细胞周期,能阻止细胞进入S期,引起“S期停滞”;凋亡分析显示高浓度的MEL能明显促使HUVECs凋亡,1mmol/L时最明显。(4)高浓度MEL(100nmol/L和lmmol/L)明显调节凋亡相关基因P53、Bax和Bcl-2的表达。(5)Western Blot和免疫荧光检测高浓度MEL促进HUVECs凋亡与细胞内P53和Bax蛋白表达上调,Bcl-2蛋白下调有关。
     第二部分:(1)正常HUVECs中褪黑素膜受体MELlaR和MELlbR都有明显表达,而核受体家族中有RORa和RORb表达,以RORb表达更为突出,RORC几乎无表达。(2) MEL受体参与MEL抑制HUVECs增殖机制,膜受体阻滞剂Luzindole只能部分阻断高浓度MEL的增殖抑制效应。(3)外源性MEL可使HUVECs上MEL受体表达下调,此过程可能与PKCα表达上调有关。(4) ERK1/2、PI3K/AKT和PKC信号通路与HUVECs增殖密切相关,其特异的通路抑制剂能明显抑制HUVECs增殖。(5)高浓度MEL通过抑制ERK1/2、PI3K/AKT和PKC信号通路抑制了HUVECs增殖和促其凋亡,相应的通路抑制剂或激活剂能分别部分促进或阻断MEL抑制HUVECs增殖效应。(6) MEL抑制HUVECs中NF-κB的表达并抑制其和DNA结合,从而抑制HUVECs增殖和促其凋亡。(7)特异的ERK1/2、PI3K/AKT和PKC信号通路抑制剂能不同程度的阻断HUVECs中NF-κB的活性,和MEL作用类似,说明MEL可通过抑制ERK1/2、PI3K/AKT和PKC信号通路抑制NF-κB的活性,从而影响细胞增殖和凋亡。
     结论:(1)高浓度的MEL能明显抑制HUVECs增殖和促其凋亡;(2)高浓度的MEL抑制HUVECs的增殖和促其凋亡与P53和Bax/Bc1-2基因和蛋白的表达改变密切相关;(3)高浓度MEL抑制HUVECs的增殖和促其凋亡可能与MEL受体、PI3K/AKT/ERK/PKC/NF-κB等多条信号途径密切相关。
Effect and mechanism of melatonin's action on the proliferation and apotosis in human umbilical vein cells
     Objecive Part one: At present there are no direct data available as to melatonin's possible influence on angiogenesis, which is a major biological mechanism responsible for tumor growth and dissemination. The current study investigated the influence of melatonin on angiogenesis, and the action on the cell proliferation and apoptosis in human umbilical vein cells (HUVECs). Part two: on the basis of previous study, this study was designed to explore the possible cell signalling pathways when melatonin inhibited the HUVECs proliferation and induced apoptosis.
     Methods Part one: Primary HUVECs were isolated from fresh human umbilical veins and cultured, after immunomagnetic separation by anti-CD31 antibody coated Dynabeads, the HUVECs were indentified by FactorⅧimmuocytochemical staining and eletroscope observation; MTT method was carried out to assay the proliferation of HUVECs when treated with melatonin in concentrations from 0.1nmol/L to 1mmol/L (final concetration in the medium); and the cell cycle and apoptosis were detect using propidium iodione (PI) staining; the expressions of P53, Bax and Bcl-2 mRNA were detected by RT-PCR, also the proteins by immunofluorescence and Westem Blot anaysis. Part Two: the melatonin's receptors type expression in HUVECs was detected at first, and the interactions was observed when treated with melatonin; the possible intracellular signaling pathways include MAPK/ERK, PI3K/AKT and PKC were detected whether contributed to the anti-proliferative and pro-apoptotic effect of the indolamine in HUVECs by using specific inhibitors and activators; EMSA was used to detected the NF-κB binding activity in HUVECs when treated with melatonin and the relationship between NF-κB and its possible up-stream trigger signaling pathways.
     Results Part one: (1) Primary HUVECs were isolated sucessfully from fresh human umbilical veins and cultured, afer purified by immunomagnetic separation. The endothelial origin was confirmed by the positive labeling of von Willebrand Factor (vWF), CD31 and electronmicropy observation. (2) At near physiological concentrations (1nmol/L), melatonin had no significant effect on cellular proliferation. However, melatonin in higher concentrations (greater than 10 nmol/L) significantly decreased cell proliferation, and the negative effect on HUVECs proliferation was enhanced with increasing melatonin concentrations. Melatonin of 1mmol/L had the greatest antiproliferative effect on HUVECs with the cell viability no difference between the control and the melatonin-treatment groups. (3) FCM showed HUVECs treated with melatonin in high concentrations presented a very distinct hypodiploid peak of apoptosis (0.64% vs 31.3%, P<0.01), and Cell cycle analyzed also showed a reduction of cells entering in the S phase (S phase arrest). (4) The Bax or P53 mRNA expression is increasing when treatment with 100nmol/L after 24hr, whereas no obvious changes to Bcl-2, but when incubated with 1mmol/L melatonin, a very early increasing expression of P53 and Bax mRNA at 3hr and a later decrease of Bcl-2 mRNA were shown. (4) The up-regulation of P53 and Bax and down-regulation of Bcl-2 proteins possibly contributed to the apoptotis in HUVECs with melatonin.
     Part two: (1) In normal cultured HUVECs, G- protein- coupled membrane receptors of melatonin (MT1 and MT2) also with the nuclear receptors of melatonin (RORa and RORb, especially RORb) are both expressed, whereas no obvious expression of RORc in HUVECs. (2) The membrane receptors was involved in melatonin antiproliferative properties in HUVECs, and the receptor antagonist Luzindole could partially prevent the indolamine's efficacy. (3) In cultured HUVECs, melatonin, even at physiological concentrations, could suppress the expression of melatonin receptors, and it may be the outcome of a direct or indirect melatonin-mediated activation of constitutive PKCα. (4) The survival and proliferation of HUVECs is dependent on the activation of several intracellular signaling pathways include mitogen-activated protein kinases (MAPK)/extracellualar signal-related kinases (ERK), phosphoinositol-3-kinase (PI3K)/AKT and protein kinases C (PKC), and the blockade of these pathways by specifical inhibitors could decrease the cell growth rate respectively. (5) High concentration melatonin reduced the proliferation and induced the apoptosis direct or indirect by inactivation the ERK, PI3K/AKT and PKC, with the fact that the antiproliferative effect was partially regulated by its special inhibitors and activators. (6) HUVECs showed basal activation of NF-κB transcription factor, and high concetration melatonin inhibited the NF-κB expression and its binding to DNA. (7) All the signaling pathways specical inhibior could partially inhbit the NF-κB binding to DNA, thus suggest melatonin inhibited NF-κB activity possibly through inactivating these pathways, which may be responsible for the antiproliferative and pro-apoptotic effect of melatonin in HUVECs.
引文
1. Lerner AB CJ, Takahashi Y. Isolation of melatonin, a pineal factor that lightens melanocytes. Journal of the American Chemical Society, 1958, 80:2587-89.
    2. Schernhammer ES, Schulmeister K. Melatonin and cancer risk: does light at night compromise physiologic cancer protection by lowering serum melatonin levels? Br J Cancer, 2004, 90(5):941-3.
    3. Stevens RG. Circadian disruption and breast cancer: from melatonin to clock genes. Epidemiology, 2005, 16(2):254-8.
    4. Dubocovich ML CD, Delagrange P,Krause DN, Strosberg D, Sugden D, Yocca FD. Melatonin receptors; in: The IUPHAR Compendium of Receptor Characterization and Classification. London, IUPHAR Media, 2001:pp 270-77.
    5. Naji L, Carrillo-Vico A, Guerrero JM, et al. Expression of membrane and nuclear melatonin receptors in mouse peripheral organs. Life Sci, 2004, 74(18):2227-36.
    6. Dubocovich ML. Melatonin receptors: are there multiple subtypes? Trends Pharmacol Sci, 1995, 16(2):50-6.
    7. Dubocovich ML, Yun K, Al-Ghoul WM, et al. Selective MT2 melatonin receptor antagonists block melatonin-mediated phase advances of circadian rhythms. Faseb J, 1998, 12(12): 1211-20.
    8. Liu C, Weaver DR, Jin X, et al. Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron, 1997, 19(1):91-102.
    9. Becker-Andre M, Wiesenberg I, Schaeren-Wiemers N, et al. Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily. J Biol Chem, 1994, 269(46):28531-4.
    10. Garcia-Maurino S, Gonzalez-Haba MG, Calvo JR, et al. Involvement of nuclear binding sites for melatonin in the regulation of IL-2 and IL-6 production by human blood mononuclear cells. J Neuroimmunol,1998, 92(1-2):76-84.
    11. Wiesenberg I, Missbach M, Carlberg C. The potential role of the transcription factor RZR/ROR as a mediator of nuclear melatonin signaling. Restor Neurol Neurosci, 1998, 12(2-3): 143-50.
    12. Winczyk K, Pawlikowski M, Guerrero JM, et al. Possible involvement of the nuclear RZR/ROR-alpha receptor in the antitumor action of melatonin on murine Colon 38 cancer. Tumour Biol, 2002, 23(5):298-302.
    13. Reiter RJ. Mechanisms of cancer inhibition by melatonin. J Pineal Res, 2004, 37(3):213-4.
    14. Sanchez-Barcelo EJ, Cos S, Mediavilla D, et al. Melatonin-estrogen interactions in breast cancer. J Pineal Res, 2005, 38(4):217-22.
    15. Shiu SY, Li L, Xu JN, et al. Melatonin-induced inhibition of proliferation and G1/S cell cycle transition delay of human choriocarcinoma JAr cells: possible involvement of MT2 (MEL1B) receptor. J Pineal Res,1999, 27(3): 183-92.
    16.高列,许荣焜.褪黑素抗肿瘤机制的研究进展.生理科学进展,2001,32(2):160-62.
    17. Mediavilla MD, Cos S, Sanchez-Barcelo EJ. Melatonin increases p53 and p21WAFl expression in MCF-7 human breast cancer cells in vitro. Life Sci, 1999, 65(4):415-20.
    18. Sainz RM, Mayo JC, Rodriguez C, et al. Melatonin and cell death: differential actions on apoptosis in normal and cancer cells. Cell Mol Life Sci, 2003, 60(7): 1407-26.
    19. Allegra M, Reiter RJ, Tan DX, et al. The chemistry of melatonin's interaction with reactive species. J Pineal Res, 2003, 34(1): 1-10.
    20. Cerutti P, Ghosh R, Oya Y, et al. The role of the cellular antioxidant defense in oxidant carcinogenesis. Environ Health Perspect, 1994, 102 Suppl 10:123-9.
    21. Leon-Blanco MM, Guerrero JM, Reiter RJ, et al. Melatonin inhibits telomerase activity in the MCF-7 tumor cell line both in vivo and in vitro. J Pineal Res, 2003, 35(3):204-11.
    22. Risau W. Mechanisms ofangiogenesis. Nature, 1997, 386(6626):671-4.
    23. Folkman J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg, 1972, 175(3):409-16.
    24. Weidner N, Semple JP, Welch WR, et al. Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. N Engi J Med, 1991, 324(1):1-8.
    25. Bicknell E. Mechanistic insights into tumor angiogenesis. In: Bicknell ER, Lewis CE, Ferrara N, eds. Tumor angiogenesis. Oxford, UK: Oxford University Press;, 1997:19-28.
    26. Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol, 1995, 11:73-91.
    27. Turner HE, Harris AL, Melmed S, et al. Angiogenesis in endocrine tumors. Endocr Rev, 2003, 24(5):600-32.
    28. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 1996, 86(3):353-64.
    29. Relf M, LeJeune S, Scott PA, et al. Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-l, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res, 1997, 57(5):963-9.
    30. O'Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell, 1997, 88(2):277-85.
    31. O'Reilly MS, Holmgren L, Shing Y, et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell, 1994, 79(2):315-28.
    32.孙运良,孙为豪.环氧化酶2促肿瘤血管生成研究进展.中国肿瘤,2003,12(10):595-97.
    33. Garcia de la Torre N, Wass JA, Turner HE. Antiangiogenic effects of somatostatin analogues. Clin Endocrinol (Oxf), 2002, 57(4):425-41.
    34. Struman Ⅰ, Bentzien,F, Lee H, Mainfroid V, D'Angelo G, Goffin V, Weiner R I, Martial J A. Opposing actions of intact and N-terminal fragments of the human prolactin/growth hormone family members on angiogenesis: an efficient mechanism for the regulation of angiogenesis. Proc Natl Acad Sci U S A, 1999, 96(4): 1246-51.
    35. Bicknell R, Harris AL. Anticancer strategies involving the vasculature: vascular targeting and the inhibition ofangiogenesis. Semin Cancer Biol, 1992, 3(6):399-407.
    36.陶旭辉,唐德才.肿瘤血管生成及中药抗肿瘤血管生成研究进展.中药材,2003,26(5):379-81.
    37. Sang QX. Complex role of matrix metalloproteinases in angiogenesis. Cell Res, 1998, 8(3): 171-7.
    38. Sund M, Xie L, Kalluri R. The contribution of vascular basement membranes and extracellular matrix to the mechanics of tumor angiogenesis. Apmis, 2004, 112(7-8):450-62.
    39. Cos S, Blask DE. Melatonin modulates growth factor activity in MCF-7 human breast cancer cells. J Pineal Res, 1994, 17(1):25-32.
    40. Kajdaniuk D, Marek B, Kos-Kudla B, et al. Does the negative correlation found in breast cancer patients between plasma melatonin and insulin-like growth factor-I concentrations imply the existence of an additional mechanism of oncostatic melatonin influence involved in defense? Med Sci Monit, 2002, 8(6):CR457-61.
    41. Lissoni P, Rovelli F, Malugani F, et al. Anti-angiogenic activity of melatonin in advanced cancer patients. Neuro Endocrinol Lett, 2001, 22(1):45-7.
    42. Carmeliet P, Jain, R K. Angiogenesis in cancer and other diseases. Nature, 2000, 407(6801):249-57.
    43. Pogan L, Bissonnette P, Parent L, et al. The effects of melatonin on Ca(2+) homeostasis in endothelial cells. J Pineal Res, 2002, 33(1):37-47.
    44. Jaffe EA, Nachman RL, Becker CG, et al. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest, 1973, 52(11):2745-56.
    45. Lissoni P. The pineal gland as a central regulator of cytokine network. Neuroendocrinol Lett, 1999, 20:343-49.
    46. Grant K, Loizidou M, Taylor I. Endothelin-1: a multifunctional molecule in cancer. Br J Cancer, 2003, 88(2): 163-6.
    47. Siu SW, Lau KW, Tam PC, et al. Melatonin and prostate cancer cell proliferation: interplay with castration, epidermal growth factor, and androgen sensitivity. Prostate, 2002, 52(2):106-22.
    48.修瑞娟,沐桂藩。.SP2/0细胞和Hella细胞诱发血管发生的研究。.中华肿瘤杂志,1987,9(2):95—8.
    49. Mutin M, Canavy I, Blann A, et al. Direct evidence of endothelial injury in acute myocardial infarction and unstable angina by demonstration of circulating endothelial cells. Blood, 1999, 93(9):2951-8.
    50. Xiu R-J, Li H-W, et al. Isolation of microvessels and culture of endothelial cells from the rat brain. Zhonghua Yi Xue Za Zhi, 1987, 67(11):597-9.
    51. Xiu R-J, Li HW. Cultivation of endothelial cells from rat brain microvessels. Chinese Medical Journal, 1988, 102(9):649-53.
    52. Li H-W, Chi X, Xiu RJ. Time-Lapse videomicroscope and image analyse of endothelia cell mitosis. J Chinese Microcirculation, 2000,4(3): 183-6.
    53. Pawlikowski M, Winczyk K, Karasek M. Oncostatic action of melatonin: facts and question marks. Neuro Endocrinol Lett, 2002,23 Suppl 1:24-9.
    54. Burns TF, Bernhard EJ, El-Deiry WS. Tissue specific expression of p53 target genes suggests a key role for KILLER/DR5 in p53-dependent apoptosis in vivo. Oncogene, 2001, 20(34):4601-12.
    55. Zhu Z, Zhu MH. Reaseach advances on P53 gene network. Chinese Journal of Cancer, 2003, 22(5):547-55.
    56. Laronga C, Yang HY, Neal C, et al. Association of the cycle-dependent kinases and 14-3-3 sigma negatively regulates cell cycle progression. J Biol Chem, 2000, 274:36031-4.
    57. Mercer W. Cell cycle regulation and the p53 tumor suppressor protein. Crit Rev Eukaryot Gen Expr, 1992,2:251-63.
    58. Haupt S, Berger M, Goldberg Z, et al. Apoptosis - the p53 network. J Cell Sci, 2003, 116(Pt 20):4077-85.
    59. Muller M, Wilder S, Bannasch D, et al. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med, 1998, 188(11):2033-45.
    60. Bennett M, Macdonald K, Chan SW, et al. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science, 1998, 282(5387):290-3.
    61. Oda E, Ohki R, Murasawa H, et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science, 2000,288(5468): 1053-8.
    62. Thornborrow EC, Patel S, Mastropietro AE, et al. A conserved intronic response element mediates direct p53-dependent transcriptional activation of both the human and murine bax genes. Oncogene, 2002, 21(7):990-9.
    63. Yu J, Wang Z, Kinzler KW, et al. PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci U S A, 2003, 100(4): 1931-6.
    64. Robles A, Bemmels NA, Foraker AB and Harris CC. APAF-1 is a transcriptional target of p53 in DNA damage-induced apoptosis. Cancer Res, 2001, 61: 6660-64.
    65. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P and Moll, UM. p53 Has a Direct Apoptogenic Role at the Mitochondria. Mol. Cell, 2003, 11:577-90.
    66. Jimenez B, Volpert OV, Crawford SE, et al. Signals leading to apoptosis dependent inhibition of neovascularization by thrombospondin-1. Nat Med, 2000, 6:41-48.
    67. Yu J, Rak J, Coomber B, et al. Effect of P53 status on tumor response to antiangiogenic therapy. Science, 2002,295:1526-28.
    68. Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer, 2002,2(9):647-56.
    69. Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin, 2005, 55(3): 178-94.
    70. Kuwana T, Mackey MR, Perkins G, et al. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell, 2002, 111(3):331-42.
    71. Bouillet P, Strasser A. BH3-only proteins - evolutionarily conserved proapoptotic Bcl-2 family members essential for initiating programmed cell death. J Cell Sci, 2002, 115(Pt 8): 1567-74.
    72. Reed J. Bcl-2 family proteins: regulators of apoptosis and chemoresistance in hematologic malignancies. Semin Hematol, 1997, 34:9-19.
    73. Leon J, Acuna-Castroviejo D, Escames G, et al. Melatonin mitigates mitochondrial malfunction. J Pineal Res, 2005, 38(1):l-9.
    74. Trubiani O, Recchioni R, Moroni F, et al. Melatonin provokes cell death in human B-lymphoma cells by mitochondrial-dependent apoptotic pathway activation. J Pineal Res, 2005, 39(4):425-31.
    75. Miyashita T, Harigai M, Hanada M, et al. Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Res, 1994, 54:3131-35.
    76. Cos S, Mediavilla MD, Fernandez R, et al. Does melatonin induce apoptosis in MCF-7 human breast cancer cells in vitro? J Pineal Res, 2002, 32(2):90-6.
    77. Eck-Enriquez K, Kiefer TL, Spriggs LL, et al. Pathways through which a regimen of melatonin and retinoic acid induces apoptosis in MCF-7 human breast cancer cells. Breast Cancer Res Treat, 2000, 61(3):229-39.
    78. Buyukavci M, Ozdemir O, Buck S, et al. Melatonin cytotoxicity in human leukemia cells: relation with its pro-oxidant effect. Fundam Clin Pharmacol, 2006,20(1):73-9.
    79. Yemeni LK, Jayaraman S. Pharmacological action of high doses of melatonin on B16 murine melanoma cells depends on cell number at time of exposure. Melanoma Res, 2003, 13(2): 113-7.
    80. Blask DE, Dauchy RT, Sauer LA, et al. Melatonin uptake and growth prevention in rat hepatoma 7288CTC in response to dietary melatonin: melatonin receptor-mediated inhibition of tumor linoleic acid metabolism to the growth signaling molecule 13-hydroxyoctadecadienoic acid and the potential role of phytomelatonin. Carcinogenesis, 2004, 25(6):951-60.
    81. Mani I, Iversen L, Ziboh VA. Upregulation of nuclear PKC and MAP-kinase during hyperproliferation of guinea pig epidermis: modulation by 13-(S)-hydroxyoctadecadienoic acid (13-HODE). Cell Signal, 1998, 10(2): 143-9.
    82. Kilic E, Kilic U, Reiter RJ, et al. Prophylactic use of melatonin protects against focal cerebral ischemia in mice: role of endothelin converting enzyme-1. J Pineal Res, 2004, 37(4):247-51.
    83. Marelli MM, Limonta P, Maggi R, et al. Growth-inhibitory activity of melatonin on human androgen-independent DU 145 prostate cancer cells. Prostate, 2000, 45(3):238-44.
    84. Moretti RM, Marelli MM, Maggi R, et al. Antiproliferative action of melatonin on human prostate cancer LNCaP cells. Oncol Rep, 2000, 7(2):347-51.
    85. Moretti RM, Marelli MM, Motta M, et al. Activation of the orphan nuclear receptor RORalpha induces growth arrest in androgen-independent DU 145 prostate cancer cells. Prostate, 2001,46(4):327-35.
    86. Moretti RM, Montagnani Marelli M, Motta M, et al. Oncostatic activity of a thiazolidinedione derivative on human androgen-dependent prostate cancer cells. Int J Cancer, 2001, 92(5):733-7.
    87. Blask DE, Sauer LA, Dauchy RT. Melatonin as a chronobiotic/anticancer agent: cellular, biochemical, and molecular mechanisms of action and their implications for circadian-based cancer therapy. Curr Top Med Chem, 2002, 2(2): 113-32.
    88. Blask DE, Sauer LA, Dauchy RT, et al. Melatonin inhibition of cancer growth in vivo involves suppression of tumor fatty acid metabolism via melatonin receptor-mediated signal transduction events. Cancer Res, 1999, 59(18):4693-701.
    89. Girgert R, Bartsch C, Hill SM, et al. Tracking the elusive antiestrogenic effect of melatonin: a new methodological approach. Neuro Endocrinol Lett, 2003, 24(6):440-4.
    90. Martin V, Herrera F, Carrera-Gonzalez P, et al. Intracellular signaling pathways involved in the cell growth inhibition of glioma cells by melatonin. Cancer Res, 2006, 66(2):1081-8.
    91. Becker-Andre M, Andre E, DeLamarter JF. Identification of nuclear receptor mRNAs by RT-PCR amplification of conserved zinc-finger motif sequences. Biochem Biophys Res Commun, 1993, 194(3):1371-9.
    92. Coughlin SR, Moskowitz MA, Antoniades HN, et al. Serotonin receptor-mediated stimulation of bovine smooth muscle cell prostacyclin synthesis and its modulation by platelet-derived growth factor. Proc Natl Acad Sci U S A, 1981, 78(11):7134-8.
    93. Harrod CG, Bendok BR, Hunt Batjer H. Interactions between melatonin and estrogen may regulate cerebrovascular function in women: clinical implications for the effective use of HRT during menopause and aging. Med Hypotheses, 2005, 64(4):725-35.
    94. Meyer P, Pache M, LoefFler KU, et al. Melatonin MT-1-receptor immunoreactivity in the human eye. Br J Ophthalmol, 2002, 86(9): 1053-7.
    95. Urata Y, Honma S, Goto S, et al. Melatonin induces gamma-glutamylcysteine synthetase mediated by activator protein-1 in human vascular endothelial cells. Free Radic Biol Med, 1999,27(7-8):838-47.
    96. Mailliet F, Ferry G, Vella F, et al. Organs from mice deleted for NRH:quinone oxidoreductase 2 are deprived of the melatonin binding site MT3. FEBS Lett, 2004, 578(1-2): 116-20.
    97. Slominski A, Fischer TW, Zmijewski MA, et al. On the role of melatonin in skin physiology and pathology. Endocrine, 2005, 27(2): 137-48.
    98. Vella F, Ferry G, Delagrange P, et al. NRH:quinone reductase 2: an enzyme of surprises and mysteries. Biochem Pharmacol, 2005, 71(1-2): 1-12.
    99. Strassburg A, Strassburg CP, Manns MP, et al. Differential gene expression of NAD(P)H:quinone oxidoreductase and NRH:quinone oxidoreductase in human hepatocellular and biliary tissue. Mol Pharmacol, 2002,61(2):320-5.
    100. Fischer TW, Zmijewski MA, Zbytek B, et al. Oncostatic effects of the indole melatonin and expression of its cytosolic and nuclear receptors in cultured human melanoma cell lines. Int J Oncol, 2006, 29(3):665-72.
    101. Cos S, Fernandez R, Guezmes A, et al. Influence of melatonin on invasive and metastatic properties of MCF-7 human breast cancer cells. Cancer Res, 1998, 58(19):4383-90.
    102. Hill SM, Blask DE. Effects of the pineal hormone melatonin on the proliferation and morphological characteristics of human breast cancer cells (MCF-7) in culture. Cancer Res, 1988, 48(21):6121-6.
    103. Ram PT, Dai J, Yuan L, et al. Involvement of the mt1 melatonin receptor in human breast cancer. Cancer Lett, 2002, 179(2): 141-50.
    104. Chen RH, Sarnecki C, Blenis J. Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol Cell Biol, 1992, 12(3):915-27.
    105. Campbell SL, Khosravi-Far R, Rossman KL, et al. Increasing complexity of Ras signaling. Oncogene, 1998, 17(11 Reviews):1395-413.
    106. Wood KW, Sarnecki C, Roberts TM, et al. ras mediates nerve growth factor receptor modulation of three signal-transducing protein kinases: MAP kinase, Raf-1, and RSK. Cell, 1992, 68(6): 1041-50.
    107. Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase cascades. Adv Cancer Res, 1998, 74:49-139.
    108. Lenormand P, Sardet C, Pages G, et al. Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase kinase (p45mapkk) in fibroblasts. J Cell Biol, 1993, 122(5): 1079-88.
    109. Pouyssegur J, Volmat V, Lenormand P. Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochem Pharmacol, 2002, 64(5-6):755-63.
    110. Chen Z, Gibson TB, Robinson F, et al. MAP kinases. Chem Rev, 2001, 101(8):2449-76.
    111. Gonzalez FA, Raden DL, Davis RJ. Identification of substrate recognition determinants for human ERK1 and ERK2 protein kinases. J Biol Chem, 1991, 266(33):22159-63.
    112. Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev, 2004, 68(2):320-44.
    113. Seger R, Krebs EG. The MAPK signaling cascade. Faseb J, 1995, 9(9):726-35.
    114. Kohno M, Pouyssegur J. Pharmacological inhibitors of the ERK signaling pathway: application as anticancer drugs. Prog Cell Cycle Res, 2003, 5:219-24.
    115. Leevers SJ, Vanhaesebroeck B, Waterfield MD. Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr Opin Cell Biol, 1999, 11(2):219-25.
    116. Krasilnikov MA. Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation. Biochemistry (Mosc), 2000, 65(1):59-67.
    117. Whitman M, Downes CP, Keeler M, et al. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature, 1988, 332(6165):644-6.
    118. Nicholson KM, Anderson NG. The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal, 2002, 14(5):381-95.
    119. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med, 2000, 6(4):389-95.
    120. Shiojima I, Walsh K. Role of Akt signaling in vascular homeostasis and angiogenesis. Circ Res, 2002, 90(12): 1243-50.
    121. Wang F, Hansen RK, Radisky D, et al. Phenotypic reversion or death of cancer cells by altering signaling pathways in three-dimensional contexts. J Natl Cancer Inst, 2002, 94(19): 1494-503.
    122. Lawlor MA, Alessi DR. PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci, 2001, 114(Pt 16):2903-10.
    123. Oren M, Damalas A, Gottlieb T, et al. Regulation of p53: intricate loops and delicate balances. Biochem Pharmacol, 2002, 64(5-6):865-71.
    124. Le Good JA, Ziegler WH, Parekh DB, et al. Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science, 1998, 281(5385):2042-5.
    125. Er H, Turkoz Y, Mizrak B, et al. Inhibition of experimental proliferative vitreoretinopathy with protein kinase C inhibitor (chelerythrine chloride) and melatonin. Ophthalmologica, 2006, 220(1):17-22.
    126. Zhu Y, Dong Q, Tan BJ, et al. The PKCalpha-D294G mutant found in pituitary and thyroid tumors fails to transduce extracellular signals. Cancer Res, 2005, 65(11):4520-4.
    127. Shizukuda Y, Tang S, Yokota R, et al. Vascular endothelial growth factor-induced endothelial cell migration and proliferation depend on a nitric oxide-mediated decrease in protein kinase Cdelta activity. Circ Res, 1999, 85(3):247-56.
    128. Spyridopoulos I, Luedemann C, Chen D, et al. Divergence of angiogenic and vascular permeability signaling by VEGF: inhibition of protein kinase C suppresses VEGF-induced angiogenesis, but promotes VEGF-induced, NO-dependent vascular permeability. Arterioscler Thromb Vasc Biol, 2002, 22(6):901-6.
    129. Wang A, Nomura M, Patan S, et al. Inhibition of protein kinase Calpha prevents endothelial cell migration and vascular tube formation in vitro and myocardial neovascularization in vivo. Circ Res, 2002, 90(5):609-16.
    130. Xia P, Aiello LP, Ishii H, et al. Characterization of vascular endothelial growth factor's effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J Clin Invest, 1996, 98(9):2018-26.
    131. Yoshiji H, Kuriyama S, Ways DK, et al. Protein kinase C lies on the signaling pathway for vascular endothelial growth factor-mediated tumor development and angiogenesis. Cancer Res, 1999, 59(17):4413-8.
    132. Ueno H, Pradhan S, Schlessel D, et al. Nicotine enhances human vascular endothelial cell expression of ICAM-1 and VCAM-1 via protein kinase C, p38 mitogen-activated protein kinase, NF-kappaB, and AP-1. Cardiovasc Toxicol, 2006, 6(1):39-50.
    133. De Lorenzo MS, Farina HG, Alonso DF, et al. Role of protein kinase C-dependent signaling pathways in the antiangiogenic properties of nafoxidine. Anticancer Res, 2004, 24(3a): 1737-43.
    134. Sung CP, Arleth AJ, Nambi P. Evidence for involvement of protein kinase C in expression of intracellular adhesion molecule-1 (ICAM-1) by human vascular endothelial cells. Pharmacology, 1994, 48(3): 143-6.
    135. Wright PS, Cross-Doersen D, Miller JA, et al. Inhibition of angiogenesis in vitro and in ovo with an inhibitor of cellular protein kinases, MDL 27032. J Cell Physiol, 1992, 152(3):448-57.
    136. Foda HD, George S, Conner C, et al. Activation of human umbilical vein endothelial cell progelatinase A by phorbol myristate acetate: a protein kinase C-dependent mechanism involving a membrane-type matrix metalloproteinase. Lab Invest, 1996, 74(2):538-45.
    137. Shizukuda Y, Helisch A, Yokota R, et al. Downregulation of protein kinase cdelta activity enhances endothelial cell adaptation to hypoxia. Circulation, 1999, 100(18): 1909-16.
    138. Gilad E, Matzkin H, Zisapel N. Inactivation of melatonin receptors by protein kinase C in human prostate epithelial cells. Endocrinology, 1997, 138(10):4255-61.
    139. Rivera-Bermudez MA, Masana MI, Brown GM, et al. Immortalized cells from the rat suprachiasmatic nucleus express functional melatonin receptors. Brain Res, 2004, 1002(1-2):21-7.
    140. Gerdin MJ, Masana MI, Rivera-Bermudez MA, et al. Melatonin desensitizes endogenous MT2 melatonin receptors in the rat suprachiasmatic nucleus: relevance for defining the periods of sensitivity of the mammalian circadian clock to melatonin. Faseb J, 2004, 18(14): 1646-56.
    141. Ross AW, Webster CA, Thompson M, et al. A novel interaction between inhibitory melatonin receptors and protein kinase C-dependent signal transduction in ovine pars tuberalis cells. Endocrinology, 1998, 139(4):1723-30.
    142. Barrett P, Davidson G, Hazlerigg DG, et al. Mel 1a melatonin receptor expression is regulated by protein kinase C and an additional pathway addressed by the protein kinase C inhibitor Ro 31-8220 in ovine pars tuberalis cells. Endocrinology, 1998, 139(1):163-71.
    143. Sampson SR, Lupowitz Z, Braiman L, et al. Role of protein kinase Calpha in melatonin signal transduction. Mol Cell Endocrinol, 2006, 252(1-2):82-7.
    144. Rimler A, Jockers R, Lupowitz Z, et al. Differential effects of melatonin and its downstream effector PKCalpha on subcellular localization of RGS proteins. J Pineal Res, 2006,40(2): 144-52.
    145. Rimler A, et al. differential regulation by melatonin of cell growth and androgen receptro binding to androgen response element in prostate cancer cells. Neuro Endocrinol Lett, 2002,23:45-49.
    146. Chuang JI, Mohan N, Meltz ML, et al. Effect of melatonin on NF-kappa-B DNA-binding activity in the rat spleen. Cell Biol Int, 1996, 20(10):687-92.
    147. De Martin R, Hoeth M, Hofer-Warbinek R, et al. The transcription factor NF-kappa B and the regulation of vascular cell function. Arterioscler Thromb Vasc Biol, 2000, 20(11):E83-8.
    148. Moynagh PN. The NF-kappaB pathway. J Cell Sci, 2005, 118(Pt 20):4589-92.
    149. Shono T, Ono M, Izumi H, et al. Involvement of the transcription factor NF-kappaB in tubular morphogenesis of human microvascular endothelial cells by oxidative stress. Mol Cell Biol, 1996, 16(8):4231-9.
    150. Yoshida A, Yoshida S, Ishibashi T, et al. Suppression of retinal neovascularization by the NF-kappaB inhibitor pyrrolidine dithiocarbamate in mice. Invest Ophthalmol Vis Sci, 1999, 40(7): 1624-9.
    151. Scatena M, Almeida M, Chaisson ML, et al. NF-kappaB mediates alphavbeta3 integrin-induced endothelial cell survival. J Cell Biol, 1998, 141(4): 1083-93.
    152. Bond M, Fabunmi RP, Baker AH, et al. Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-kappa B. FEBS Lett, 1998,435(1):29-34.
    153. Karin M, Yamamoto Y, Wang QM. The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov, 2004, 3(1): 17-26.
    154. Lin A, Karin M. NF-kappaB in cancer: a marked target. Semin Cancer Biol, 2003, 13(2):107-14.
    155. Dominguez I, Sanz L, Arenzana-Seisdedos F, et al. Inhibition of protein kinase C zeta subspecies blocks the activation of an NF-kappa B-like activity in Xenopus laevis oocytes. Mol Cell Biol, 1993, 13(2): 1290-5.
    156. Lee FS, Peters RT, Dang LC, et al. MEKK1 activates both IkappaB kinase alpha and IkappaB kinase beta. Proc Natl Acad Sci U S A, 1998, 95(16):9319-24.
    157. Malinin NL, Boldin MP, Kovalenko AV, et al. MAP3K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1. Nature, 1997, 385(6616):540-4.
    158. Ozes ON, Mayo LD, Gustin JA, et al. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature, 1999,401(6748):82-5.
    
    159. Villunger A, Ghaffari-Tabrizi N, Tinhofer I, et al. Synergistic action of protein kinase C theta and calcineurin is sufficient for Fas ligand expression and induction of a crmA-sensitive apoptosis pathway in Jurkat T cells. Eur J Immunol, 1999, 29(11):3549-61.
    1. Stevens RG. Circadian disruption and breast cancer: from melatonin to clock genes. Epidemiology; 2005; 16(2): 254-258
    2. Lerner AB, Case JD, Takahashi Y. Isolation of melatonin, a pineal factor that lightens melanocytes. Journal of the American chemical Society. 1958; 80:2587-2589
    3. Schernhammer ES, Schulmeister K. Melatonin and cancer risk: does light at night compromise physiologic cancer protection by lowering serum melatonin levels? British Journal of Cancer. 2004; 90: 941-943
    4. Naji L, Carrillo-Vico A, Guerrero JM, Calvo JR. Expression of membrane and nuclear melatonin receptors in mouse peripheral organs. Life Science. 2004; 74:2227-2236
    5. Dubocovich ML, Cardinali DP, Delagrange P,Krause DN, Strosberg D, Sugden D, Yocca FD:Melatonin receptors; in: The IUPHAR Compendium of Receptor Characterization and Classification. London, IUPHAR Media, 2001, pp 270-277.
    6. Dubocovich ML: Melatonin receptors: Are there multiple subtypes? Trends Pharmacol Sci.1995; 16:50-56.
    7. Liu C, Weaver DR, Jin X, Sherman LP, Pieschl RL, Gribkoff VK, Reppert SM: Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron. 1997; 19:91-102.
    8. Dubocovich ML, Yun K, Al-Ghoul WM, Benloucif S, Masana MI: Selective MT2 melatonin receptor antagonists block melatonin-mediated phase advances of circadian rhythms. FASEB J 1998;1 2:1211-1220.
    9. Becker-Andre M, Wiesenberg I, Schaeren-Wiemers N, Andre E, Missbach M, Saurat J-H, Carlberg C: Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily. J Biol Chem 1994; 269: 28531-28534.
    10. Garcia-Maurino S, Gonzales-Haba MG, Calvo JR, Goberna R, Guerrero JM: Involvement of nuclear binding sites for melatonin in the regulation of IL-2 and IL-6 production by human blood mononuclear cells.J Neuroimmunol. 1998; 92:76-84.
    11. Wiesenberg Ⅰ, Missbach M, Carlberg C: The potential role of the transcription factor RZR/ROR as a mediator of nuclear melatonin signaling. Restr Neurol Neurosci. 1998; 12:143-150.
    12. Winczyka K, Pawlikowskia M, Guerrerod JM, Karasekb M. Possible Involvement of the Nuclear RZR/ROR-Alpha Receptor in the Antitumor Action of Melatonin on Murine Colon 38 Cancer. Tumor Biology.2002; 23:298-302
    13. Monica Ⅰ, Masana, Suzanne Doolen, et al. MT2 Melatonin Receptors Are Present and Functional in Rat Caudal Artery. J. Pharmacology and experimental therapeutics.2002; 302 : 1295-1302
    14. Reiter RJ. Editorial note: Mechanisms of cancer inhibition by melatonin. J Pineal Res. 2004; 37:213-214
    15. Sanchez-Barcelo EJ, Cos S, Mediavilla D, et al. Melatonin-estrogen interactions in breast cancer. J Pineal Res, 2005, 38(4):217-22
    16. Shiu SYW, Li L, Xu JN, et al. Melatonin-induced inhibition of proliferation and G1/S cell cycle transition delay of human choriocaxcinoma JAr ceN: Possible involvement of MT 2 (MEL1B) receptor. J Pineal Res. 1999,2 7:183-192
    17.高列,许荣煜。褪黑素抗肿瘤机制的研究进展.生理科学进展.2001,32(2):160-162
    18. Mediavilla MD, Cos S, Sanchez-Barcelo EJ. Melatonin increases p53 and p21WAF1 expression in MCF-7 human breast cancer cells in vitro. Life Sci, 1999, 65(4):415-20.
    19. Sainza RM, Mayoa JC, Rodriguezb C, Tana DX, Lopez-Burilloa S and. Reitera RJ. Melatonin and cell death: differential actions on apoptosis in normal and cancer cells. Cellular and Molecular Life Sciences. 2003; 60:1407-1426
    20. Allegra M, Reitter R J, Tan DX, Gentile C, Tesoriere L, Livrea MA. The chemistry of melatonin's interaction with reactive species. J Pineal Res. 2003; 34:1-10
    21. Cerutti P, Ghosh R, Oya Y, Amstad P. The role of the cellular antioxidant defense in oxidant carcinogenesis. Environ Health Perspect. 1994; 102(suppl. 10) : 123-129
    22. Leon-Blanco MM, Guerrero JM, Reiter RJ, Calvo JR, Pozo D. Melatonin inhibits telomerase activity in the MCF-7 tumor cell line both in vivo and in vitro. J Pineal Res. 2003; 35:204-211
    23. Risau W. Mechanisms ofangiogenesis. Nature. 1997; 386:671-674
    24. Folkman J. Anti-angiogenesis: a new concept for therapy of solid tumors. Ann Surg 1972; 175:409-416
    25. Weidner N, Semple JV, Welch WR, Folkman J. Tumor angiogenesis and metastasis: correlation in invasive breast carcinoma. N Engl J Med. 1991; 324:1-8
    26.孙运良,孙为豪.环氧化酶2促肿瘤血管生成研究进展。中国肿瘤,2003,12(10):595-597
    27. Tumer HE, Harris AL, Melmed S and Wass JAH Angiogenesis in Endocrine Tumors. Endocrine Reviews. 2003; 24 (5): 600-632
    28. Bicknell ER. Mechanistic insights into tumor angiogenesis. In: Bicknell ER, Lewis CE, Ferrara N, eds. Tumor angiogenesis. Oxford, UK: Oxford University Press; 1997; 19-28
    29. Risau W, Flamme Ⅰ. Vasculogenesis. Ann Rec Cell Dev Biol 1995; 1:73-91
    30. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996 ; 86:353-364
    31. Relf M, LeJeune S, Scott AE, Fox S, Smith K, Leek R, Moghaddam A, Whitehouse R, Bicknell R, Harris AL.Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor B-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res. 1997; 57:963-97
    32. O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell. 1994; 79:315-328
    33. O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88:277-285
    34.苏燕,修瑞娟。前列腺素与血管新生。国外医学生理、病理科学与临床分册。2005:25(4):317—9。
    35. Garcia de la Torre N, Wass JAH, Turner HE. Antiangiogenic effects of somatostatin analogues. Clin Endocrinol (Oxf) 2002; 57:425-441
    36. Struman Ⅰ, Bentzien F, Lee H, Mainfroid V, D'Angelo G, Goffin V, Weiner RI, Martial JA. Opposing actions of intact and N-terminal fragments of the human prolactin/growth hormone family members on angiogenesis: an efficient mechanism for the regulation of angiogenesis. Proc Natl Acad Sci USA 1999; 96:1246-1251
    37. Luo Z, Li H, Zhang J, Zhang H, Xiu RJ. Effects of human connective tissue growth factor gene transfection on migration of human umbilical vein endothelial cell. Clin Hemorheol Microcirc 2006;34 (1-2): 185-92
    38. Bicknell R, Harris. Anti-cancers strategies involving the vasculature: Vascular targeting and the inhibition of angiogenesis. Semin Cancer Biol. 1992,3:339.
    39. Sang QX. Complex role of matrix metalloproteinases in angiogenesis. Cell Res. 1998; 8:171-177
    40. Sund M, Xie L, Kalluri R. The contribution of vascular basement membranes and extracellular matrix to the mechanics of tumor angiogenesis. APMIS.2004; 112:450-62
    41. Pogan L, Bissonnette P., Parent L. and Sauve R. The effects of melatonin on Ca~(2+) homeostasis in endothelial cells. J. Pineal Res. 2002; 33:37-47
    42. Ferrara N, Houck KA, Jakeman LB, Leung DW. Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocrine Rev. 1992; 13:18-32
    43. Salven P, Maenppa H, Orpana A, Alitalo K, Joensuu H. Serum vascular endothelial growth factor is often elevated in disseminated cancer. Clin Cancer Res. 1997; 3:647-651
    44. Gabrilovich DI, Chen HL, Girgis KR, et al. Production of vascular endothelial growth factor by human tumor inhibits the functional maturation of dendritic cells. Nat Med. 1996; 2:1093-1103
    45. Di Nicola M, Anichini A, Mortarini R, et al. Human dendritic cells: natural adjuvants in antitumor immunotherapy. Cytok Cell Mole Ther. 1998; 4:265-273
    46. Maestroni GJM. The immunoneuroendocrine role of melatonin. J Pineal Res. 1993; 14:1-10
    47. Lissoni P, Barni S, Crispino S, Tancini G, Fraschini F. Endocrine and immune effects of melatonin therapy in metastatic cancer patients. Eur J Cancer Clin Oncol. 1989; 25:789-95
    48. Ka shimoto T. The biology of interleukin 6. Blood. 1989; 74:1-10
    49. Lissoni P, Rovelli F, Malugani F, Bucovec R, Conti A, Maestroni GJM. Anti-angiogenic activity of melatonin in advanced cancer patients. Neuroendocrinology letters. 2001; 22:45-47.
    50. Kaur C, Sivakumar V, Zhang Y, Ling EA. Hypoxia-induced astrocytic reaction and increased vascular permeability in the rat cerebellum. Glia. 2006; 54: 826-39.
    51. Salmon WJ Dr, Daughaday WH. A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J Lab Clin Med. 1957 Jun;49(6):825-36
    52. Rinderknect E, Humbel RE. The amino acid sequence of human insulin-like growth factor Ⅰ and its structural homology with proinsulin. J Biol Chem. 1978 Apr 25; 253(8): 2769-76.
    53.陈照丽,王欣,黄秉仁。IGF系统的生物学功能及其与肿瘤的关系。国外医学分子生物学分册。2003;25(1):34-37
    54. Wolf E, Hoeflich A, Lahm H. What is the function of IGF-Ⅱ in postnatal life? Answers from transgenic mouse models. Growth Horm IGF Res. 1998 Jun;8(3): 185-93.
    55. Zumkeller W, Westphal M. The IGF/IGFBP system in CNS malignancy. Mol Pathol. 2001 Aug;54(4):227-9.
    56. Martin MB, Stoica A. Insulin-like growth factor Ⅰ and estrogen interaction in breast cancer. J Nutr. 2002; 132(12):3799s-3801s
    57. Oesterreich S, Zhang P, Guler RL, et al. Re-expression of estrogen receptor alpha in estrogen receptor alpha negative MCF-7 cells restores both estrogen and insulin-like growth factor-mediated signaling and growth. Cancer Res. 2001; 61(15): 5771-5777
    58.董庆玉,张纪云,韩建奎。血清胰岛素样生长因子1与女性乳腺癌。国外医学临床生物化学与检验学分册。2004;25(3):252—254
    59. Blakesley VA et al. J Biol Chem,1998;273;18411
    60.李瑛,陈琼。胰岛素样生长因子与肺癌。国外医学呼吸系统分册。2004;24(4):263—266
    61.李晓愚,李少林。胰岛素样表皮生长因子—3在乳腺癌研究中的进展。中国药业。2004;13(7):25—27
    62. Poulsen JE. The Houssay phenomenon in man: recovery from retinopathy in a case of diabetes with Simmond's disease. Diabetes. 1953;2:7-12
    63. Schultz GS, Grant MB. Neovascular growth factors.Eye. 1991;5:170-180
    64. Grant MB, Mames RN, Fitzgerald C, Ellis EA, Aboufriekha M, Guy CJ. Insulin-like growth factor Ⅰ acta as a angiogenic agent in rabbit cornea and retina: comparative studies with basic basic fibroblast growth factor. Diabetologia. 1993; 36:282-291
    65. Hellstrom A, Perruzzi C, Ju M, Engstrom E, Hard A, Liu J, Albertsson-Wikland K, Carlsson B, Niklasson A, Sjodell L, LeRoith D, Senger DR, Smith LEH. Low IGF-Ⅰ suppress VEGF-suvival signaling in retinal endothelial cells: direct correlation with clinic retinopathy of prematurity. Proceedings of the National Academy of Science of the United States of America. 2001; 98:5804-5808
    66.欧阳平,刘伊丽,许顶立,侯玉清,黄洪莲,戴云,郭亚军,刘新坦。p53,Rb,IGF I,AT1B基因转移对血管新生内膜增殖的影响。第一军医大学学报。2001;21(3):173-176
    67. Epstein SE, Speir E, Guzman RJ, at al. The basis of molecular strategies for treating coronary restenosis after angioplasty. J Am Coll Cardiol. 1994; 23:1278-8.
    68. Poulaki V, Mitsiades CS, McMullan C, Sykoutri D, Fanourakis G, Kotoula V, Tseleni-Balafouta S, Koutras DA.and Mitsiades N. Regulation of Vascular Endothelial Growth Factor Expression by Insulin-Like Growth Factor Ⅰ in Thyroid Carcinomas. The Journal of Clinical Endocrinology & Metabolism. 2003; 88(11): 5392-5398.
    69. Neid M, Datta K, Stephan S, Khanna I, Pal S, Shaw L, White M and Mukhopadhyay D. Role of Insulin Receptor Substrates and Protein Kinase C- in Vascular Permeability Factor/Vascular Endothelial Growth Factor Expression in Pancreatic Cancer Cells. J. Biol. Chem.2004; 279(6): 3941-3948
    70. Jordan VC: Can all postmenopausal women with a diagnosis of breast cancer benefit from tamoxifen treatment? Reviews on Endocrine-Related Cancer, 1993; 43: 23-31
    71. Huynh HT, Tetenes E, Wallace L, Pollak M: In vivo inhibition of insulin-like growth factor 1 gene expression by tamoxifen. Cancer Res, 1993; 53:1727-173
    72. Kajdaniuk D, Marek B, Kos-Kudla B et al: Oncostatic effects of melatonin action - facts and hypotheses. Med Sci Monit, 1999; 5:350-356
    73. Vaughan MK, Buzzell GR, Hoffman RA et al: Insulin-like growth factor-1 in Syrian hamsters: interactions of photoperiod, gonadal steroids, pinealectomy, and continuous melatonin treatment. Proc Soc Exp Biol Med, 1994; 205:327-331
    74. Lissoni P, Barni S. Meregalli S et al: Modulation of cancer endocrine therapy by melatonin: a phase Ⅱ study of tamoxifen plus melatonin in metastatic breast cancer patients progressing under tamoxifen alone. Br J Cancer, 1995; 71:854-856
    75. Esposti D, Lissoni P, Tancini G et al: A study on the relationship between the pineal gland and the opioid system in patients with cancer. Cancer, 1988; 62:494-499
    76. Kajdaniuk D, Marek B. Influence of adjuvant chemotherapy with cyclophosphamide, methotrexate and 5-fluorouracil on plasma insulin-like growth factor-I and chosen hormones in breast cancer pre-menopausal patients. J Clin Pharm Ther, 2000; 25: 67-72
    77. Kajdaniuk D, Marek B, Kos-Kudla B, Zwirska-Korczala K, Ostrowska Z, Buntner B, Szymszal J. Does the negative correlation found in breast cancer patients between plasma melatonin and insulin-like growth factor-I concentrations imply the existence of an additional mechanism of oncostatic melatonin influence involved in defense? Med Sci Monk, 2002; 8 (6): CR457-461
    78. Haus E, Dumitriu L, Nicolau GY, Bologa S, and Sackett-Lundeen L. Circadian rhythms of basic fibroblast growth factor, epidermal growth factor, insulin-like growth factor-1, insulin-like growth factor binding protein-3, cortisol, and melatonin in women with breast cancer. Chronobiology international. 2001; 18(4), 709-727
    79. Cohen S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem. 1962; 237: 1555-62
    80. Chua CC et al. Isolation of collagenzse secretion in human fibroblast culture by growth promoting factors. J-Bio-Chemistry. 1985; 260(9): 5213-6
    81. Boyce ST, Ham RG. Calcium regulated differentiation normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. J Invest Dermatol. 1983; 81(suppl): 33s-40s
    82. Schriber A, Winkler ME, Derynck R, et al. Transforming growth factor alpha: a more potent angiogenic mediator than epidermal growth factor. Science. 1986; 232: 1250-53
    83. Stewart R, Nelson J, Wilson DJ, et al. EGF promotes chick embryonic angiogenesis. Cell Bio Inter Reports. 1989; 13(11): 957
    84. Alison MR, Sarraf CE. The role of growth factors in gastrointestinal cell proliferation. Cell Biol Inter Rep. 1994; 18(1): 1-9
    85. Skinner KA, Tepperman BL. Influence of desalivation on acid secretory output and gastric mucosal integrity in the rat. Gastroenterology. 1981; 81:335-9
    86. Sarosiek J, Bilski J, Nurty VLN, et al. Role of salivary epidermal growth factor in the maintenance of physicochemical characteristics of oral and gastric mucosal mucus coat. Biochem Biophys Res Commun. 1988; 152(3): 1421-1427
    87. Buzas G. Growth factors in experimental ulcer. Orv Hetil. 1994; 135(50): 2765-70
    88. Play ford RJ, Goodlad RA, et al. Epidermal growth factor and intestinal growth. Gastroenterology. 1995; 108(4): 1330-1
    89. Hui WM. Effect of EGF on gastric blood flow in rats. Gastroenterology. 1993; 104(6): 1605-11
    90. Suhardja A, Hoffman H. Role of growth factors and their receptors in proliferation of microvascular endothelial cells. Microsc Res Tech. 2003 Jan l;60(1):70-5
    91. Van Cruijsen H, Giaccone G, Hoekman K. Epidermal growth factor receptor and angiogenesis: Opportunities for combined anticancer strategies. Int J Cancer. 2005 Sep 8; [Epub ahead of print]
    92. Vallbohmer D, Lenz HJ. Epidermal growth factor receptor as a target for chemotherapy. Clin Colorectal Cancer. 2005 Apr;5 Suppl 1:S 19-27
    93. Trojan L, Thomas D, Knoll T, Grobholz R, Alken P, Michel MS. Expression of pro-angiogenic growth factors VEGF, EGF and bFGF and their topographical relation to neovascularisation in prostate cancer. Urol Res. 2004 May;32(2):97-103
    94. Konturek A, Barczynski M, Cichon S, Pituch-Noworolska A, Jonkisz J, Cichon W. Significance of vascular endothelial growth factor and epidermal growth factor in development of papillary thyroid cancer. Langenbecks Arch Surg. 2005 Jun;390(3):216-21
    95. Kishimoto K, Liu S, Tsuji T, Olson KA, Hu GF. Endogenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis. Oncogene. 2005 Jan 13;24(3):445-56
    96. Sun J, Wang DA, Jain RK, Carie A, Paquette S, Ennis E, Blaskovich MA, Baldini L, Coppola D, Hamilton AD, Sebti SM. Inhibiting angiogenesis and tumorigenesis by a synthetic molecule that blocks binding of both VEGF and PDGF to their receptors. Oncogene. 2005 Jul 7;24(29):4701-9
    97. Szkudlinski M, Sewerynek E, Wajs E, Lewinski A. Factors stimulating and/or inhibiting the growth processes in the adrenal cortex. II. The role of the renin-angiotensin system, tissue growth factors, pineal indole amines and the nervous system. Postepy Hig Med Dosw. 1991;45(6):435-45
    98. Cos S, Blask DE. Melatonin modulates growth factor activity in MCF-7 human breast cancer cells. J Pineal Res. 1994 Aug;17(1):25-32
    99. Ram PT, Kiefer T, Silverman M, Song Y, Brown GM, Hill SM. Estrogen receptor transactivation in MCF-7 breast cancer cells by melatonin and growth factors. Mol Cell Endocrinol. 1998 Jun 25; 141(1-2): 53-64.
    100. Blask DE, Sauer LA, Dauchy R, Holowachuk EW, Ruhoff MS. New actions of melatonin on tumor metabolism and growth. Biol Signals Recept. 1999 Jan-Apr; 8(1-2):49-55.
    101. Siu SW, Lau KW, Tarn PC, Shiu SY. Melatonin and prostate cancer cell proliferation: interplay with castration, epidermal growth factor, and androgen sensitivity. Prostate. 2002 Jul 1; 52(2): 106-22.
    102. Brazeau P, Vale W, Burgus R, Ling N,Butcher N, Rivier J, et al. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary grown hormone.Science. 1973; 179:77-9
    103.茆家定,吴佩。生长抑素与肿瘤细胞凋亡。皖南医学院学报。2003;23(1):74—76
    104. Greenberg R, Haddad R, Kashtan H, Kaplan O. The effects of somatostatin and octreotide on experimental and human acute pancreatitis. J Lab Clin Med.2000; 135:112-121
    105. Tomassetti P, Migliori M, Campana D, Brocchi E, Piscitelli L, Salomone T, Corinaldesi R.Basis for treatment of functioning neuroendocrine tumours. Dig Liver Dis. 2004 Feb; 36 Suppl 1: S35-41.
    106.余继海,许戈良,汪健。奥曲肽对人脐静脉内皮细胞增殖的影响。安徽医科大学学报。2003;38(2):113—5
    107. Watson JC, Balster DA, Gebhadt BM, et al. Growing vascular endothelial cells express somatostatin subtype 2 receptors. Br J Cancer. 2001; 85(2): 266-72
    108. Jia WD, Xu GL, Xu RN, et al Octreotide acts as an antitumor angiogenesis compound and suppresses tumor growth in nude mice bearing human hepatocellular carcinoma xenografts. J Cancer Res Clin Oncol, 2003; 129(6): 327334.
    109.许戈良,英卫东,徐荣楠,等。奥曲肽抑制肝癌切除术后复发转移的研究。中华实验外科杂志。2003;20(7):624—5
    110. Mentlein R, Eichler O, Forstreuter F, et al. Somatostatin inhibits the production of vascular endothelial growth factor in human glioma cells. Int J Cancer, 2001; 92 (4): 545-550
    111. Koizumi M, Onda M, Tanaka N, et al Antiangiogenic effect of octreotide inhibits the growth of human rectal neuroendocrine carcinoma. Digestion. 2002; 65(4): 200-206
    112.王春晖,唐承薇。奥曲肽抑制胃癌侵袭和转移的实验研究.中华医学杂志。2002;82(1):19-22
    113. Cascinu S, Del FE, Catlano G. A randomized trial of octretide vs best supportive care only in advlanced gastrointestinal cancer patients refractory to chemotherapy. Br J Cancer. 1995; 71(1): 97-101
    114. Richardson SB, Hollander CS, Prasad JA, Hirooka Y. Somatostatin release from rat hypothalamus in vitro: effects of melatonin and serotonin. Endocrinology. 1981 Aug; 109(2): 602-6
    115. Gupta D. The pineal gland in relation to growth and development in children. J Neural Transm Suppl. 1986; 21:217-32.
    116. Sinisi AA, Pasquali D, D'Apuzzo A, Esposito D, Venditto T, Criscuolo T, De Bellis A, Bellastella A. Twenty-four hour melatonin pattern in acromegaly: effect of acute octreotide administration. J Endocrinol Invest. 1997 Mar; 20(3): 128-33
    117. Melen-Mucha G, Winczyk K, Pawlikowski M. Somatostatin analogue octreotide and melatonin inhibit bromodeoxyuridine incorporation into cell nuclei and enhance apoptosis in the transplantable murine colon 38 cancer. Anticancer Res. 1998 Sep-Oct; 18(5A): 3615-9
    118. Wikner J, Wetterberg L, Rojdmark S. The role of somatostatin (octreotide) in the regulation of melatonin secretion in healthy volunteers and in patients with primary hypothyroidism. J Endocrinol Invest. 1999 Jul-Aug;22(7):527-34
    119. Izquierdo-Claros RM, Boyano-Adanez MC, Torrecillas G, Rodriguez-Puyol M, Arilla-Ferreiro E. Acute modulation of somatostatin receptor function by melatonin in the rat frontoparietal cortex. J Pineal Res. 2001 Aug; 31(1): 46-56
    120. Izquierdo-Claros RM, Boyano-Adanez Md Mdel C, Arilla-Ferreiro E. Acutely administered melatonin decreases somatostatin-binding sites and the inhibitory effect of somatostatin on adenylyl cyclase activity in the rat hippocampus. J Pineal Res. 2004 Mar; 36(20):87-94
    121. Izquierdo-Claros RM, Boyano-Adanez Mdel C, Arilla-Ferreiro E. Activity of the hippocampal somatostatinergic system following daily administration of melatonin. Brain Res Mol Brain Res. 2004 Jul 26; 126(2): 107-13.
    122. Grant K, Loizidon M, and Taylor I. Endothelin-1: a multifunctional molecule in caner. Br J Cancer. 2003; 88: 163-66.
    123. Kilic E, Kilic U, Reiter RJ, Bassetti CL, Hermann DM. Prophylactic use of melatonin protects against focal cerebral ischemia in mice: role of endothelin converting enzyme-1. J Pineal Res. 204; 37: 247-251.
    124. Kurcer Z, Sahna E, Olmez E. Vascular reactivity to various vasoconstrictor agents and endothelium-dependent relaxations of rat thoracic aorta in the long-term period of pinealectomy. Journal Pharmacol Sci. 101; 329-34.
    125. Cui PL, Luo ZH, Xiu, RJ, et al. Effect and mechanism of melatonin's action on the proliferation of human umbilical vein endothelial cells. J Pineal Res.2006; 358-62.
    126. Soybir G, Topuzlu C,Odabas O, et al. The effects of melatonin on angiogenesis and wound healing. Surg Today. 2003; 33: 896-901.
    127. Moss RW. Cancer and complementary and alternative medicine in Italy: personal observations and historical considerations. Integr Cancer Ther. 2004 Jun; 3(2): 173-88.
    128. Buyukavci M, Ozdemir O, Buck S, et al. Melatonin cytotoxicity in human leukemia cells: relation with its pro-oxidant effect. Fundam Clin Pharmacol, 2006, 20(1):73-9.
    129. Yemeni LK, Jayaraman S. Pharmacological action of high doses of melatonin on B16 murine melanoma cells depends on cell number at time of exposure. Melanoma Res, 2003, 13(2):113-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700