用户名: 密码: 验证码:
钛晶体塑性变形机制的分子动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属钛是二十一世纪最重要的结构材料之一,由于其优良的性能而越来越广泛的应用于各领域,金属钛的塑性变形机制一直是人们研究的热点,本文采用分子动力学的方法研究金属钛单晶的塑性变形机制。
     本文利用分子动力学研究方法,采用钛的分析型嵌入式原子势,建立了不同加载条件下金属钛的剪切、拉伸、压缩变形的分子动力学模型,研究了金属钛在不同加载条件下的塑性变形行为。比较了截面尺寸、温度、变形速度对金属钛拉伸性能的影响,得出以下主要研究结论:
     利用分析型的原子间作用势形式得到了金属钛的嵌入式原子势(EAM),通过计算金属钛的熔点、空位形成能验证了金属钛嵌入式原子势的准确性。计算得到的金属钛的熔点为1920K,空位形成能为1.50eV。通过与实验值进行比较,得出建立的嵌入式原子势准确性较高,可以用于塑性变形模拟。
     建立了沿(0001)晶面[2110]方向与沿(1010)晶面[2110]剪切的分子动力学模型,研究了加载方向对剪切变形的影响。结果表明:在300K,0.01nm/ps加载速度下,沿(0001)晶面[2110]方向进行剪切起始塑性变形应力、应变分别为0.27GPa、0.05;沿(1010)晶面[2110]方向进行剪切起始塑性变形应力、应变分别为0.57GPa、0.18。基面的剪切变形比柱面的更容易。
     建立了沿[0001]晶向和[0110]方向拉伸模型,结果表明:两种方向的拉伸均包含弹性变形阶段、均匀塑性变形阶段、颈缩阶段、断裂阶段。沿[0001]方向拉伸时,滑移系少,取向偏离软取向。变形时屈服强度为3.55GPa,屈服应变为0.095,断裂时的应变为0.55。沿[0110]方向拉伸时滑移系多,取向接近软取向。变形的屈服强度为2.41 GPa,屈服应变为0.067,断裂时的应变达到1.28,沿[0110]的拉伸变形更容易进行,表现出的塑性更好。
     建立了沿[0110]压缩模型,研究了压缩变形过程,结果表明:压缩变形的应力-应变规律经历了弹性变形阶段、屈服阶段、应力上升阶段。沿[0110]压缩,滑移系多,取向接近软取向。变形时的屈服强度为2.42GPa,屈服应变为0.04,可以看出与沿[0110]拉伸屈服应力基本相同。
The metal titanium is one of the most important structural materials in 21st century, due to its excellent performance and has been widely used in various fields. The plastic deformation mechanism of titanium has been a focus for researchers. In this paper, through the method of molecular dynamics, the plastic deformation mechanism of single crystal titanium has been investigated.
     With an embedded atomic potential (EAM) and molecular dynamic (MD)method, deformation model of shear, tensile and compression have been established and plastic deformation behaviour have been investigated on titanium through different loading style. The influence of temperature, size and tensile speed on the properties of titanium has been analyzed. The main conclusions are as follow: An embedded atomic potential (EAM) was selected and used to simulated the melting point, the formation energy of vacancy of titanium to check its accuracy and efficacy. The calculated melt point temperature and the formation energy of a vacancy are 1920K and 1.469 eV, respectively. These values are very close to the experimental findings, providing strong evidence that this EAM could be used to simulate the plastic deformations of titanium.
     MD model of shear deformation along (0001)[2110] and (1010)[2110] have been established and the influence of shearing direction on deformation behaviour have been compared. The result shows that the initial stress and strain of plastic deformation are 0.27GPa, 0.05 and 0.57GPa, 0.18 respectively for shearing along (0001)[2110] and (1010)[2110], with deforming speed 0.01nm/ps, 300K. Shear deformation along basal plane is easier than prismatic plane.
     Model of tensile deformation with tensile direction along [0001] and [ 0110] have been established. The results show that tensile process of both two directions contains four stages, ie, elastic deformation, uniform plastic deformation, necking and fracture. The slip system is few and the orientation deviates from the soft orientation when tension applied along [0001]. The yielding stress and strain are 3.55GPa and 0.095 respectively while the fracture strain is 0.55. For [ 0110] tension, the slip system is more and the orientation is close to soft orientation. The yielding stress and strain are 2.41GPa and 0.067 respectively while the fracture strain is 1.28. The plastic deformation along [0110] tension is easier as well as the plasticity is better.
     Model of compression deformation with compress applied along [0110] has been established and the process of deformation has been investigated. The result shows that curve of stress vs strain implies three deforming stages, ie, elastic, yielding, and hardening. The slip system is close to soft orientation. The yielding stress and strain are 2.42GPa, 0.04 respectively, with the same yielding stress as [0110] tension.
引文
1庾晋,周洁.金属钛的性能、发展与应用.南方金属.2004,2:17~27
    2周廉.钛工业的形势与任务.有色金属工业.2002 , (9) :23~29
    3马国印,李超.钛及钛合金性能及设备应用特点.2006,5(27):55~57
    4 Marc Long, H.J. Rack. Titanium alloys in total joint replacement-a materials science perspective. 1998,19: 1621~1639
    5陈岩.钛工业提速需求继续扩大.中国有色金属报, 2003,5 :10~12.
    6陈翔,龚明,夏源明.工业纯钛高温动态拉伸力学行为的微观机制. 2009,39(6):611~621
    7 Q.Y.Sun,H.C.Gu.Tensile and low-cycle fatigue behavior of commercially pure tit- anium and Ti–5Al–2.5Sn alloy at 293 and 77 K .Materials Science and Engineeri- ng A 316,2001:80~86
    8刘静安.钛合金的特性与用途及其在汽车上的应用潜力.轻金属.2003,3:15~18
    9曾立英,赵永庆,李丹柯,李倩. SPZ钛合金超塑性变形后的微观组织研究.稀有金属材料与工程.2005,34(12):1940~1943
    10 J. Shimada . A soldering of titanium and alloy with IR soldering equipment.J Dent Mater,1991,10:362~375.
    11 P.A. Blenkinsop, W.J.Evans,H.M.Flowereds. Ti 95 Science and Technology. London:The Institute of Metals,1996,2:739~729
    12蔡盛强,汪洋,夏源明.孪晶对多晶纯钛塑性变形影响的实验研究.实验力学. 2007,27(2):97~102
    13常亚喆,刘楚明,詹从堃,李慧中,陈志永.高应变率下纯钛动态压缩力学性能各向异性.湖南有色金属.2008,24(4) :33~36
    14 L.Qiang, Y.B. Xu, M.N. Bassim. Dynamic mechanical behavior of pure titanium. Journal of Materials Processing Technology. 2004(155-156):1889~1892
    15 Deepak R. Chichili, K.T. Ramesh, Kevin J. Hemker. Adiabatic shear localizati- on inα-titanium:experiments, modeling and microstructural evolution. Journal of the Mechanics and Physics of Solids. 2004(52) :1889~1909
    16 W. G. Guo ,J. Y. Cheng. Mechanical properties and deformation mechanisms ofa commercially pure titanium. Acta Meter. 1999,47(13):3705-3720
    17李炎,长谷川明,吴逸贵.经塑性变形的多晶钛中的面心立方相的研究.chin Electr Microsc Soc.23(4):385~387
    18孙巧艳,朱蕊花,刘翠萍,于振涛.工业纯钛机械孪晶演化及其对纯钛低温力学性能的影响.中国有色金属学报.2006,16(4):592~599
    19黄文,汪洋,李子然,夏源明.温度和应变率对多晶纯钛孪晶变形的影响.The Chinese Journal of Nonferrous Metals.2008,18(8):1440~1445
    20 S. Farenc, D.Caillard,. An in situ study of prismatic glide inαtitanium at low temperatures . Acta Metallurgica et Materialia.1993,41:2701~2709
    21 Z.P. Zeng, Y.S.Zhang, J.Stefan. Deformation behaviour of commercially pure titanium during simple hot compression. Materials and Design.2009(30):3105~3111
    22 J.M.Yuan,V.P.W.Shim.Tensile response of ductileα-Titanium at moserately high strain rates. International Journal of Solids and Structures.39(1):213~224
    23杨萍,孙益民.分子动力学模拟方法及其应用.安徽师范大学学报(自然科学版).2009,32(1).51~54
    24 A.R. Leach ,Molecular Modelling-Principles and Applications.Pearson Edu- cation Limited:Harlow,England,2001,3,18~23
    25 T.Egami,K.Macda etal.Structural defects in amorphous solids A computer simulation study.Philosophical Magazine A,1980,41(6):883~889
    26文玉华,周富信,刘日武,周承恩.纳米晶铜单向拉伸变形的分子动力学模拟.力学学报.2001(1):15~18
    27 S.J.Zhou, D.LPreston, P.S.Lomdahl etal. Large-scale molecular dynamics simulations of dislocation intersection in copper. Science,1986,279:1525~1529
    28张永伟,王自强.分子动力学方法在材料力学行为中的应用进展.力学进展,1996, 26(1):14~19
    29 H.S.Park,J.A.Zimmerman.Modeling in elasticity and failure in gold nanowires, Phys Rev B,2005,72(5):1~9
    30 V.K.Sutrakar,D.R.Mahapatra, Formation of stable ultra-thin pentagon Cu nano- wires under high strain rate loading. J Physics - Condensed Matter, 2008,20:1~6
    31 Lin Yuan, Debin Shan, Bin Guo.Molecular dynamics simulation of tensile de-formation of nano-single crystal aluminum.Materials Processing Technology . 2007, 1:1~5
    32 A.Y.Kuksin, V.V. Stegailov,A.V.Yanilkin. Molecular-dynamics simulation of ed- gedislocation dynamics in aluminum. 2008, 53:287~291
    33 E. B. Webb III, J. A. Zimmerman, S. C. Seel, Reconsideration of Continuum Thermomechanical Quantities in Atomic Scale Simulations, 2008,13: 221~266
    34梁海弋,王秀喜,吴恒安,王宇.纳米铜单晶拉伸力学性能的分子动力学模拟.2001, 31(4):444~448
    35单德彬,袁林,郭斌.单晶铜弯曲裂纹萌生和扩展的分子动力学模拟.哈尔滨工业大学学报.2003,35(10):1183~1185
    36徐洲,王秀喜,梁海弋.铜纳米丝的应变率和尺寸效应的分子动力学模拟.2003,17(3):262~267
    37朱纯章,郭万林.纳米铜双晶拉伸与剪切变形的分子动力学模拟.南京航空航天大学学报.2003,35(5):459~463
    38刘飞,梁迎春,白清顺,郭永博.纳米切削多晶铜的分子动力学仿真研究.哈尔滨工业大学(工具计算). 2006,42(10):1071~1074
    39王宇,王秀喜,王海龙.非晶材料压缩变形中纳米晶化现象的分子动力学模拟.2006,42(10):1071~1074
    40何晓梅,朱晓雅,董洁,刘晓燕.剧烈塑性变形条件下工业纯钛晶粒细化机理研究.材料热处理技术.2009,38(22):56~63
    41李卓谡,赵玉洁,贾晓娜,张丽荣.分子动力学计算机模拟技术进展.机械管理开发.2004,24(2):174~176
    42赵素,李金富,周尧和.分子动力学模拟及其在材料科学中的应用.材料导报.2007,21(4):5~8
    43 R. Car, M.Parrinello. Unified approach for molecular dynamics and density fu- nctional theory. Phys Rev Lett ,1985 ,55 :2471~2474
    44 S. Enrico,A.Paul. Madden. Orbital-free kinetic-energy functionals for first pri- nciples molecular dynamics. Phys Rev B ,1994 ,49 :5220-5526
    45 W.G.Wiechert. Modeling and simulation: tools for metabolic engineering. Jou- rnal of Biotechnology.2002,94.37~63
    46 R.W.Hockney ,J.W.Eastwood.Computer simulation Using Particles. McGraw-Hill.1981,22:478~482
    47余大启陈民.刚性多原子分子的正则系综分子动力学算法.物理学报. 2006,55(6):1628~1632
    48 J. Hafner. Atomic-scale computational materials science.Acta Materialia. 2000,48(1):71~79
    49 B.J.Alder, T. E.Wainwright .Studies in molecular dynamics.Ⅰ. General method. J.Chem.Phys.1959,31(2):459~466
    50唐玉兰,胡适,王东旭,赵健伟,梁迎春,董申.纳米工程中大规模分子动力学仿真算法的研究进展.机械工程学报.2008,44(2):5~15
    51 S.Nose. A unified formulation of the constant temperature molecular dynamics methods. J.Chem.Phys,1984,81:5~11
    52 W.G.Hoover. Canonical dynamics:Equilibrium phase-space distributions.Phys. Rev.A.1985,31(3):1695~1702
    53陈强,曹红红,黄海波.分子动力学中势函数研究.天津理工学院学报. 2004,22(2):101~105
    54 J. Dana. Honeycutt, C. Hans. Andersen. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem .1983 ,91 :4950~4956
    55 J. Uddin, M. I. Baskes, S. G. Srinivasan, Thomas R. Cundari, Angela K.Wilson. Modified embedded atom method study of the mechanical properties of carbon nanotube reinforced nickel composites. Phys. Rev. B.2010,81.1~12
    56 S.M. Daw, M. I. Baskes. Embedded atom method :Derivation and application to impurities , surfaces , and other defect s in metals . Phys Rev B, 1984 ,29 : 6443~6449
    57 H.F.Stillinger, A.Weber.Thomas . Computer simulation of local order in con- densed phases of silicon. Phys. Rev. B.1985, 31:5262~5271
    58 J. Tersoff. Modeling solid-state chemistry: Interatomic potentials for multi- component systems. Phys. Rev. B.1989 ,39 :5566~5568
    59 X. D.Li, S.M.Fei, T. Zhang. Median MSD-based method for face recognition. Neurocomputing. 2009,72(16-18): 3930~3934
    60 R. Albaki, J. F. Wax, J. L. Bretonnet.Dynamic properties of expanded liquid cesium. Journal of Non-Crystalline Solids.2002,312: 153~157
    61 http://lammps.sandia.gov/
    62 http://www.ks.uiuc.edu/Research/vmd/
    63 M.S. Daw, M. I. Baskes. Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals. Phys. Rev. Lett. 1983 ,50 :1285~1288
    64 X. W. zhou, H. N. g. wandley, R. a. Johnson, D.j.larson.Atomic scale structure of sputtered metal multilayers. Acta mater. 2001 ,49 :4005~4015
    65 http://lammps.sandia.gov/doc/pair_eam.html
    66赵良举,李斌,高虹,李德胜. Au纳米团簇熔点的分子动力学模拟.重庆大学学报.2009(32):67-70
    67张喜燕,赵新春,贾冲,刘庆.计算典型结构金属元素空位形成能的新方法.重庆大学学报.2008,31(12):1341-1350
    68 R. Würschum, K. Badura-Gergen, E. A. Kümmerle, C. Grupp. Characterization of radiation-induced lattice vacancies in intermetallic compounds by means of positron-lifetime studies. Phys. Rev. B.1996,54:849-856
    69 S. Nemat-nasser, W.G.Guo, J.Y.cheng. Mechanical properties and deformation mechanisms of a commercially pure titanium. Acta Metallurgica Inc.47(13): 3705-3720
    70 W. C. Leslie. The Physical Metallurgy of Steels. Hemisphere Publishing Corp.1981: 396
    71张银玲,张勇,汲德体. PZT薄膜的有效模量与取向因子的关系.广西轻工业.2008,1:39-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700