用户名: 密码: 验证码:
大型水泵机组维修性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型水泵机组要求具有较高的可靠性和经济性,特别是南水北调东线调水工程,运行时间长,维修时间短,维修任务重。如果某一级泵站水泵机组出现故障,得不到及时、快速、准确的检修,抽水流量不能得到保证,则将影响到其他梯级泵站乃至整个调水工程的正常运行。因此,水泵机组的可靠性是首先要考虑的问题,而维修性则是可靠性的重要方面之一。大型水泵机组的维修性关系到能否保证大型泵站抗旱、排涝、调水功能长期、稳定地发挥作用。本文主要工作:
     调查水泵机组的常见故障,分析故障原因,简述排除部件故障的检修过程。根据维修性相关理论,针对水泵机组故障特点,分析影响机组维修性的因素,提出评价大型水泵机组维修性的定性和定量指标;建立水泵机组关键部件维修性评价的实用模型,并对关键部件—水泵导轴承的维修性进行评价。提出具有不确定性的多维修过程维修度的合成方法,建立基于可靠度的水泵机组维修度评价模型,并对几种典型水泵机组的维修度进行计算、比较和分析。综合多方面因素,提出提高水泵机组维修性的措施。
     研究结果表明:水泵机组的主要故障有:电机推力瓦烧损、电机定、转子线圈绝缘失效,水泵导轴承及轴颈磨损,水泵汽蚀,叶片调节机构失效等。影响机组维修时间的主要因素有:机组维修相关特征量,关键部件结构,维修资源,维修人员综合素质等。影响机组维修费用的主要因素有:故障率,大修周期,维修人工费,部件修理与更换费用等。水泵机组以及导轴承结构形式影响导轴承维修性,水润滑导轴承维修性优于油润滑导轴承。对于油润滑导轴承的维修性,立式水泵好于灯泡贯流泵。机组结构形式、尺寸大小和关键部件是影响机组维修性的主要因素;金属弯管式机组和半井筒式机组维修性相当,卧式机组的拆装工作量大,但由于安装要素调整时间少,所以,总的维修时间少于相同大小的立式机组。
     通过提高维修性要素,特别是改善水泵机组及关键部件的结构形式,选择合理的检修方法和采用状态维修方式,建立合理的维修制度等多方面措施,提高大型水泵机组维修性。
Large pump unites demand of high reliability and economy; especially the East Route Project of South to North Water Transfer (ERP), which is long running time, short maintenance time and heavy maintenance working. If failures of a pump unit in some step pump station occurs, or the pump unit is not checked and repaired timely, quickly and accurately, or the pumping discharge can not be guaranteed, it will influence the operation of other step pump stations, even the whole water transfer project. Therefore, the pump unit reliability is considered primarily, and maintainability is one of the most important aspects of reliability. The maintainability of large pump stations is related with whether operating functions are drought-resistant, draining waterlogged, transferring water for large pump stations, and guaranteed and displayed long, stably or not. Main works in this dissertation are as follows:
     Common failures of pump unit were investigated, reasons of failures were analyzed, and inspection procedures of eliminating parts failures were simply described. According to related theories of maintainability, aiming at the characteristics of pump unit failures, influencing factors of unit maintainability were analyzed. Qualitative and quantitative indicators were put forward to evaluate large pump units’maintainability. Practical models were established to evaluate the maintainability of pump units’key parts, and the maintainability of common and key parts- guiding bearings of water pump was evaluated. Maintenance synthetic methods of multi-maintenance process with uncertainty were put forward. Evaluating models of pump unit maintenance was established based on reliability. The maintainability of typical pump units was calculated, compared and analyzed. Synthesizing multi-aspect factors, measures to increase pump unit maintainability were presented.
     The results show that main failures are that a thrust bearing liner of motors is burned, failures of stator and rotor coil insulation of motors, guiding bearing and shaft neck of pumps are abraded, pump cavitations, adjusting mechanism of blades fail etc. Main factors of influencing pump units maintenance time are that related characteristic numbers of pump units, key parts structures, maintenance resources and synthesis disposition of persons etc. Main factors of influencing pump units maintenance costs are that failure rate, maintenance cycle, cost of labor used, changing costly parts etc. Pump units and guiding-bearing structure patterns influence guiding-maintainability, the maintainability of water lubricate guide bearing is better than that of the oil-lubricate bearing. As for oil-lubricate bearings maintainability, a vertical pump is better than a bulb tubular pump. Pump units structure pattern、size and key parts structure pattern are main influencing factors in pump units maintainability. The pump unit’s structure pattern influences equality of metal elbow casing pump units and half-well casing pump units. Horizontal pump unit is disassembled and installed heavily, but it is a little time to adjusting installation elements, the total maintenance time of it is less than that of vertical pump units of the same size.
     Through many measures which maintainability elements are improved, specially the improvement of structure patterns of pump units and key parts, the choosing of proper maintenance measures, the adoption of the current maintenance mode and the establishment of reasonable maintenance system improve the maintainability of large pump units.
引文
[1]陈学楚主编.现代维修理论.北京:国防工业出版社,2003
    [2]马利东,王立波,张德斌.可靠性及维修性对飞机系统效能的影响分析.工业工程,2005,8(1):16~18
    [3]李业农,施祖康.机械系统的维修性研究.火炮发射与控制学报,2000(4):57~60
    [4]韩永海.煤矿机械维修性的初探.煤矿机械,2005(6):114~116
    [5]张会奇,陈春良,高连华.维修性对装备维修工作量的影响分析.装甲兵工程学院学报,2005,(2):31~34
    [6]姜伟,陶凤和,段超等.人工神经网络在维修性预计中的应用.兵工自动化,2005,6 (24):25~26
    [7]张福强,徐龙堂,钟永照.机械系统维修预计方法分析与应用.装甲兵工程学院学报,1998,9 (3):77~84
    [8]曹玉坤,徐万里,郭金茂等.紧固件拆装时间预计模型.装甲兵工程学院学报,1999,3(19):46~51
    [9]何庆,成小英.绿色维修的关键技术.煤矿电机,2006 (2):27~28,32
    [10]童时中,童中钦编著.维修性及其设计技术.北京:中国标准出版社,2005
    [11]张玉柱,胡自伟,曹世民等编著.维修性验证试验与评定统计原理.北京:国防工业出版社,2006
    [12] GJB/Z57-94维修性分配与预计手册.北京:国防科技技术工业委军标出版发行部,1994
    [13] GJB/Z91-97维修性设计技术手册.北京:国防科技技术工业委军标出版发行部,1997
    [14] GJB1397-92故障模式、影响及危害性分析程序.北京:国防科技技术工业委军标出版发行部,1992
    [15] GJB2072-94维修性试验与评定.北京:国防科技技术工业委军标出版发行部,1995
    [16] GJB 1909.1-94装备可靠性维修性参数和指标确定要求总则.北京:国防科技技术工业委军标出版发行部,1995
    [17]曹国强,包明宇等.机械设备可靠性的模糊综合评价.辽宁工程技术大学学报,2006,25(2):258~260
    [18]孙怀义.关于维修策略备件储备的数学模型的探讨.自动化与仪器仪表,2002(6):53~63
    [19]程景东,程景湘.基于实验设备维修性模型的建立.山东理工大学学报,2005,4(19):35~39
    [20]陶凤和,甘茂治,于永利.机械系统与设备维修性模型的建立.中国机械工程,1999,10(12):1404~1406
    [21]吴波,谌先文,丁毓峰等.机械系统的维修策略模型及应用.武汉理工大学学报,2005,2(27):38~41
    [22]张伟,康建设,贾云献等.军用装备基于状态的维修策略研究.装甲兵工程学院学报,2005,3(19):16~19
    [23]王立群.人的因素在维修上的应用.航空标准化与质量,2001(3):34~37
    [24] Camerino P.RAMREQ:A computerized Tool for the Definition of RAM(Reliability,Availability,Maintainability) Requirements of Complex Systems.Government Report,USA,1991,N92-18647
    [25] Buckroyd A.Design for Testability,Reliability&Maintainability.IEE Colloquium(Digest) , 1994(177) :1~5
    [26] Dowlatshahi S.Morphological Approach to Product Design in a Concurrent Engineering Environment.International Journal of Advanced Manufacturing Technology,1994,9(5) :324~332
    [27] Keene S J,Keene K C.Reducing the Life Cycle Cost of Software Through Concurrent Enginnering.Proceedings of the Annual R&M Sympos-ium.Piscatway,NJ,USA,IEEE,1993:305~309
    [28] Huang G,sheldon D,Perks R.Concurrent Engineering by Cooperating Expert Systems.Design for Manufacturability,Transactions of the ASME:1993,5251~56
    [29] Vujosevic R, Raskar R,Yetukuri N V et al.Simulation, Animation, and Analysis of Design Disassembly for Maintainability Analysis.International Journal of Production Research,1995,33(11):2999~3022
    [30] Chang H Li T Y.Assembly Maintainability Study with Motion Planning.Proceedings—IEEE International Conference on Robotics and Automation.Piscataway,NJ,USA,IEEE,1995:1012~1019
    [31] Haug E J,Choi K K,Kuhl J G et al.Virtual Prototyping Simulation for Design of Mechanical Systems.Journal of Mechanical Design,Transaction of the ASME,1995,117B(6) :63~70
    [32] Hansen W A,Edson B N,Larter P C.Reliability,Availability and Maintainbility Expert System(RAMES) .Proccedings of the Annual R&M Symproium,Piscataway,NJ,USA,IEEE,1992:478~482
    [33]袁杰红,陶利民.维修性工程的发展现状与趋势.测控技术,2000,19(9):1~5
    [34] Shimomura Y,Tanigawa S,Umeda Y et al.Development of Self-Maintenance Photocopiers.AI Magazine,1995,16(4) :41~53
    [35] Umeda Y , Tomiyama T , Yoshikawa H . Design Methodology for Self-Maintenance Machines.Journal of Mechanical Design,Transactions of the ASME,1995,117(3) :355~362
    [36]仇宝云.泵站电机巴氏合金烧损分析.扬州大学学报,20003 (1) :62~65
    [37]仇宝云,王彤俊,魏强林等.大型泵站常见故障分析.排灌机械,1999 (2):20~24
    [38]滕晓艳.大型立式同步电动机烧瓦原因浅析.上海大中型电机,2004(2):40~41
    [39]仇宝云.大型立式轴流泵导轴承荷载分析计算.农业机械学报, 2000, 30(1):54~57
    [40] DB32大中型泵站主机组检修技术规程.江苏省质量技术监督局发布,2006
    [41]沈标正编著.电机故障诊断技术.北京:机械工业出版社,1996,296~366
    [42] Pedersen A, Crichton G C, Mc Allister IW. Partial discharge detection: theoretical and practical aspects[J]. IEE Proc.-Sci. Meas. Meas. Technical, 1995, 142(1):29~36
    [43]何凯希.改进的稀油润滑筒式导轴承的结构计算方法。大电机技术,1997(2):47~51
    [44]吴建康,马向能,黄玉盈.不同设计参数下螺旋槽径向液体润滑轴承油膜稳定性的比较计算。摩擦学学报,199(1):57~60
    [45]高光藩,张牢牢.迷宫密封性能影响因素分析.风机技术,1997(6):17~21
    [46]杨洪群,吴玲玲.泵站机组水导轴承的研究.排灌机械,2004,22(3):22~24
    [47]杨洪群,谢卫东,张建华.卧(斜)式水泵水导轴承存在的问题及其选型.水利水电科技进展,2004,24 (1):57~59
    [48]刘国选主编.灯泡贯流式水轮发电机组运行与检修.北京:中国水利水电出版社,2006
    [49]沈日迈主编.江都排灌站.北京:水利电力出版社,1979
    [50]李迎春,余占湖.轴流泵叶片调节机构常见故障分析与处理.水泵技术,2002(3):27~41
    [51]张玉柱,胡自伟,曹世民编著.维修性验证试验与评定统计原理.北京:国防工业出版社,2006
    [52]甘茂治主编.维修性设计与验证.北京,国防工业出版社,1995
    [53]冯兵,张静平.关于武器系统维修性设计评估方法的研究.兵工学报,2003,24(2):222~225
    [54]许树柏.层次分析法原理.北京:天津大学出版社,1998
    [55]宋光兴,邹平.多属性群决策中决策者权重的确定方法.系统工程,2001,19(4):84~89
    [56]肖位枢.模糊数学基础及应用.北京:航空工业出版社,1992
    [57]仇宝云.大型立式泵机组安装要素分析与控制.水泵技术,1998(6):19~23
    [58]仇宝云.大型立式泵机组轴线摆度的分析处理.大电机技术,1994(6):7~11
    [59]陈年平,段传曙.泵站电机绝缘老化原因及处理措施.湖南水利水电,2002(4):39~43
    [60]王汉功著.超音速电弧喷涂技术.北京:国防工业出版社,1999
    [61]储训,陈履.大型泵站建设和更新改造对策.南京:河海大学出版社,2000
    [62]杜刚海.大型泵站机组安装与检修.北京:水利电力出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700