用户名: 密码: 验证码:
无线体域网中人体动作监测与识别若干方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线体域网是由可感知人体多种生理参数的轻便、可穿戴或可植入的传感器节点构建的无线网络。无线体域网为人体健康监测提供了新的手段,在疾病监控、健康恢复、特殊人群监护等领域有着巨大的应用意义和需求。通过佩戴在身体上的微惯性传感器,体域网可以采集人体的运动信号,在人体动作监测方面得到广泛应用,可实现人体动作识别、异常动作检测、步态识别与分析、运动能耗分析等目的。
     在利用无线体域网进行人体运动监测过程中,如何在满足身体活动监测指标要求的同时提高传感器节点的能量有效性,以便能在实际应用中长时间不间断地进行人体动作监测,是一个具有挑战性的问题。本文以由多个可穿戴的微惯性传感器构成的无线体感网为研究对象,围绕能量有效性,以稀疏表示和压缩感知理论为主线,从信号识别、信号压缩、数据融合、功率控制这四个方面展开研究。主要工作和创新点如下:
     (1)提出了一种基于自学习稀疏表示的动态手势识别方法L-SRC.针对手势识别中手势长短不一的问题,将手势样本向量进行归一化线性插值,从而将手势识别问题转化为求解待识别样本在训练样本中的稀疏表示问题;针对如何提高手势识别精度和速度的问题,采用基于类别的字典学习方法寻求一个较小的并经过优化的超完备字典来计算待识别样本的稀疏表示,从而在手势识别阶段大幅度缩减识别算法的计算复杂度,满足快速识别要求。在包含18种手势的数据集上验证了提出的L-SRC手势识别方法在保证识别精度的同时提升了识别速度。
     (2)提出了两种压缩分类的动作识别方法RP-CCall和RP-CCeach.针对运动信号的时间冗余性和稀疏性,结合压缩感知和稀疏表示理论,将传感信号压缩与动作识别相结合,以满足一定动作识别率的同时降低传感器节点的能耗。两种RP-CC方法是在传感器节点上利用随机投影对运动信号进行数字化的压缩采样,通过减少无线体域网的数据传输量来节省能耗;在基站上直接对压缩的数据建立稀疏表示的人体运动模式识别模型,利用稀疏系数的分布来实现动作识别。理论分析了压缩分类动作识别方法能正确识别的基本条件。找到了能在存储和计算资源有限的传感器节点上实现的随机投影矩阵。在包含13种动作的数据集上进行了验证,结果显示RP-CCall方法和RP-CCeach方法在对压缩的数据识别时也能达到无压缩时相近似的识别准确率,并高于最近邻、支持向量机等分类方法。
     (3)提出了基于分布式压缩感知和联合稀疏表示的动作识别方法DCS-JSRC.针对无线体域网中多传感器采集的运动数据之间的时空相关性,采用分布式压缩感知在传感器节点进行分布式压缩,充分利用这种相关性来进一步压缩数据以降低传输能耗。在基站通过探索多传感器节点感知运动信号的时空相关性,构建适用于动作识别的联合稀疏表示模型,将多传感器的动作识别问题转化为多变量稀疏线性回归问题来求解。采用层次贝叶斯模型来求解稀疏表示系数,利用不同传感器节点的相互关联来进一步提高动作识别的准确率。在动作数据集上进行验证,实验结果显示DCS-JSRC方法在相同压缩比的情况下获得了比RP-CCall方法和RP-CCeach方法更高的识别准确率。
     (4)设计了轻量级的基于动作行为的自适应功率反馈控制机制PID-A。针对无线体域网中链路通信质量受人的运动、姿态变化影响具有动态时变特性,通过实测人体不同动作以及发射功率变化对无线链路的影响,分析和总结了在人体不同运动状态下节点的发射功率与链路通信质量的变化特性和规律,在此基础上建立基于反馈的功率控制系统模型,结合人体动作识别的结果,来动态调整无线体域网中节点的发射功率。实验结果显示PID-A功率控制机制可保证在数据包成功接收的条件下降低了传感器节点发送数据包的平均能耗。
     (5)为了验证算法在实际系统中的性能,设计并实现了用于人体运动监测的无线体域网原型系统。利用所构建的基于微惯性传感器的无线体域网,采集人体在日常活动中的动作信号,实际验证了所提出的动作识别算法的识别准确率,并对传感器节点的能耗进行了分析,验证了算法的能量有效性。
A Wireless Body Area/Sensor Network (WBAN/WBSN) is a kind of wireless network which is formed by physiological parameters sensors placed in the human body, on the body surface or around the body. As a pratical and innovative approach to improve health care and the quality of life, WBSN has been in great demand in remote monitoring of the physically or mentally disabled, the elderly, and children, medical diagnosis and treatment, physical rehabilitation and therapy. WBANs with inertial-based wearable sensors can collect motion signal of human body and have a broad range of applications in activity recognition, fall detection, estimation of energy expenditure, gait analysis and sports training.
     To improve the energy efficiency in meeting physical activity monitoring requirements is an important challenge for the practical deployment of WBSN in continuous long time of health monitoring. In this thesis, the WBSN with several wearable inertial sensors is taken as the research object, The energy efficiency, as the main concern of this thesis, is studied via the sparse representation and compressed sensing theory from4different aspects, whichi contain signal classification and signal compression, data confution, power control. The main contributions of the thesis are summarized below:
     (1) The L-SRC approach is proposed for accelerometer-based hand gesture recognition based on self-learning sparse representation. Linear interpolation is used on the acceleration signals to solve the problem of different lengths of traces for the same gesture so that the task of gesture recognition is casted as one of classifying among multiple linear regression models via sparse representation. Class-specific dictionaries learning is adopted and produced in an off-line procedure. The original sparse representation classification can be reduced from a large dictionary of all training samples to a small-sized one for sparse coding after dictionary learning, thereby obtaining significant speed-up. Experiments on the database of18hand gestures validate the performance of the proposed algorithm. The results show the L-SRC achieves high recognition accuracy while reducing the computing cost and time of recognition.
     (2)The RP-CCall and RP-CCeach mehods of compressed classification are presented for activity recognition. In view of the time redundancy and sparsity of the motion signal, these two approaches combine data classification with compression based on sparse representation and compressed sensing to reduce the energy consumption while maintaining the sufficient recognition accuracy of activity. The two approaches firstly compress the sensing data by random projection on the sensor nodes, and then recognize activities on compressed samples after transmitting to the central node by sparse representation, which can result in reduction of the energy consumption for data transmission. The performances of the two methods are evaluated on the Wearable Action Recognition Database (WARD) using inertial sensors placed on various locations on a human body. Experimental results show that the compressed classifiers achieve comparable recognition accuracies on the compressed sensing data. The recognition accuracies of our approaches are higer than the other classifiers such as the nearest nerbour and the support vector machine.
     (3)The DCS-JSRC approach is proposed, which explores a novel joint sparse representation method for activity classification of multi-sensor fusion. This approach utilizes the theory of distributed compressed sensing and joint sparse representation to develop a simultaneous dimension reduction and classification approach for multi-sensor activity recognition in BSNs. Both temporal and spatial correlations of sensing data among the multiple sensors are exploited for the purpose of compression and classification. Activity recognition with multiple sensors is formulated as a multi-task joint sparse representation model to combine the strength of multiple sensors for improving the classification accuracy. A hierarchical Bayesian modeling is used for simultaneous sparse approximation of multiple related signals. This method is validated on the WARD dataset. Experimental result shows that the DRP-JSRC achieves better classification performance than the RP-CCall and RP-CCeach·
     (4) The PID-A mechanism for dynamic power control of WBSN is proposed, which can adapt transmit power in real-time based on feedback information in order to simultaneously satisfy the requirements of energy efficiency and link reliability. The properties of the link states by using the recived signal strength indicator under different scenarios with body posture change and dynamic body motions are first experimentally investigated. The empirical evidence of real human environment shows the rapid change of wireless link quality in WBSN. The dynamic nature of on-body links with varing body postures is characterized based on experimental results. The PID-A mechianism utilizes the feedback results of activity recognition and RSSI to adjust the optimal transmission power assignments. The performance of the PID-A is experimentally evaluated and compared with a number of static power assignment schemes. Experimental results show that the PID-A can gain higher packet delivery rate and reduce the energy consumption of a packet at the same time.
     (5) A prototype of WBAN is designed and developed for verifying the performance of our proposed approaches. The real gesture and activity data were collected by using our prototype platform. The proposed mehods are verified on real dataset and the recognition accuracies of our methods are derived. Energy consumption is measured and analsized based on the energy profile of node platform and the energy efficiency of our proposed approaches is demonstrated.
引文
[1]宫继兵,王睿,崔莉.体域网BSN的研究进展及面临的挑战.计算机研究与发展.2010,47(5):737-753.
    [2]Chen M, Gonzalez S, Vasilakos A. Body area networks:a survey. ACM/Springer Mobile Networks and Applications,2010,16(2):171-193.
    [3]MobiHealth project, http://www.mobihealth.org/,2013-11-9
    [4]SENSI project, http://www.sensei-project.eu/,2013-11-9
    [5]Groot H D, Ashouei M, Penders J, et al. Human++:key challenges and trade-offs in embedded system design for personal health care. In:Proc of 14th Euromicro Conf on Digital System Design, Washington:IEEE,2011,4-10.
    [6]Willig A, Hauer J H, Karowski N, et al. The ANGEL WSN architecture. In: Proc of the 14th IEEE Int Conf on Electronics, Circuits and Systems. Washington:IEEE,2007:633-636.
    [7]CodeBlue project. http://fiji.eecs.harvard.edu/CodeBlue,2013-11-9
    [8]Gao T, Massey T, Selavo L, et al. The advanced health and disaster aid network: a light-weight wireless medical system for triage. IEEE Transactions on Biomedical Circuits and Systems,2007, 1(3):203-216.
    [9]Oliver N, Flores M F. HealthGear:a real-time wearable system for monitoring and analyzing physiological signals. In:Proc of Int Workshop on Wearable and Implantable Body Sensor networks(BSN06'). Washington:IEEE,2006:1-4
    [10]Belifemine F, Fortino G, Giannantonio R, et al. SPINE:a domain-specific framework for rapid prototyping of WBSN applications. Journals of Software: Practice & Experience,2011,41(3):237-265.
    [11]Waluyo A B, Yeoh W S, Pek I, et al. MobiSense:mobile body sensor network for ambulatory monitoring. ACM Transactions on Embedded Computing Systems,2010,10(1):13-28.
    [12]Lu Shilong, Wang Rui, Cui Li, et al. Wireless networked Chinese telemedicine system:method and apparatus for remote pulse information retrieval and diagnosis. In:Proc of the 6th Annual Int Conf on Pervasive Computing and Communications. Washington:IEEE,2008:698-703.
    [13]张志强,黄志蓓,吴健康.髋关节角多模型贝叶斯动态估计.电子与信息学报.2011,33(4):775-780.
    [14]Ren H L, Meng Q H, Chao H. Tracking service for mobile body sensor networks based on transmission power aware medium access ontrol. In:Proc of the Int Conf on Mechatronics and Automation. Washington:IEEE,2007:1-4.
    [15]李国峰.基于生物医学信号的体域网低功耗设计与研究:[吉林大学硕士学位论文].吉林:吉林大学,2009.
    [16]陈希玉,陈鑫磊,孙光等.超宽带体域网信道测量及传输特性分析.清华大学学报.2011,51(11):1621-1626.
    [17]Chen S L, Lee H Y, Chu Y W, et al. A variable control system for wireless body sensor network. In:Proc of Int Symp on Circuits and Systems. Washington: IEEE,2008:2034-2037.
    [18]Bao S D, Zhang Y T, Shen L F. A design proposal of security architecture for medical body sensor networks. In:Proc of the Int Workshop on Wearable and Implantable Body Snesor Networks(BSN'06). Washington:IEEE,2006:1-4.
    [19]Wang Z, Jiang M, Hu Y. An incremental learning method based on probabilistic neural networks and adjustable fuzzy clustering for human activity. IEEE Trans on Information Technology in Biomedicine,2012,16(4):691-699.
    [20]刘蓉.人体运动信息获取及物理活动识别研究:[华中科技大学博士学位论文].武汉:华中科技大学,2009.
    [21]Yun J, Patel S N, Reynolds M S, et al. Design and performance of an optimal inertial power harvester for human-powered devices. IEEE Tranction on Mobile Computing,2011,10(5):669-683.
    [22]Sasaki S, Karube I. The development of micro fabricated biocatalytic fuel cells. Trends in Biotechnology,1999,17(2):50-52.
    [23]Kim E, Park S, Cha J. Improved performance of UWB system for wireless body area netwoks. IEEE Transactions on Consumer Electronics,2010,56(3): 1373-1379.
    [24]Seyedi M, Kibret B, Lai D T H, et al. A survey on intrabody communication for body area network applications. IEEE Transactions on Biomedical Engineering, 2013,60(8):2067-2079.
    [25]Hooi B L, Baumann D, Erping L, et al. A human body model for efficient numerical characterization of UWB signal propagation in wireless body area networks. IEEE Transactions on Biomedical Engineering,2011,58(3):689-697.
    [26]Liu B, Yan Z, Chen C. CA-MAC:a hybrid context-aware MAC protocol for wireless body area networks. In:Proc of the 13th Int Conf on e-Health Networking Applcations and Services. Washington:IEEE,2011:213-216.
    [27]Otal B, Alonso L, Verikoukis C. Highly reliable energy-saving MAC for wireless body sensor networks in healthcare systems. Jounal on Selected Area in Communications,2009,27(4):553-565.
    [28]Ulian N, Khan P, Kwak K S. A very low power MAC (VLPM) protocol for wireless body area networks. Sensors,2011,11(4):3717-3737.
    [29]Zhang Yan, Dolmans G. Priority-guaranteed MAC protocol for emerging wireless body area networks. Annals of Telecommunications,2011,66(3): 229-241.
    [30]Huaming L, Jndong T. Medium access for body sensor networks. In:Proc of the 16th Int Conf on Computer Communicatons and Networks. Washington:IEEE, 2007:210-215.
    [31]Reusens E, Joseph W, Latre B, et al. Characterization of On-body commmunication channel and energy efficient toplogy design for wireless body area networks. IEEE Transactions on Information Technology in Biomedicine, 2009,13(6):933-945.
    [32]Sana U, Henry H, Bar B, et al. A comprehensive survey of wireless body area networks on PHY, MAC, and Network layers solutions
    [33]Li H, Tan J. Body sensor network based context aware QRS detection. In:Proc of the 28th IEEE Annual Int Conf in Engineering in Medicine and Biology Society(EMBS'06). Washington:IEEE,2006:3266-3269.
    [34]Thiemjarus S, Lo B, Yang G. A spatio-temporal archetecture for context aware sensing. In:Proc of the Int Workshop on Wearable and Implantable Body Sensor Network(BSN'06). Washington:IEEE,2006:1-4.
    [35]Ming L, Lou W, Ren K. Data security and privacy in wireless body area networks. IEEE Transactions on Wireless Communications,2010,17(1):51-58.
    [36]Poon C C, Zhang Y T, Bao S D. A novel biometrics method to secure wireless body area sensor networks for telemedicine and M-health. IEEE Communication Magazine,2006,44(4):73-81.
    [37]Hu C, Cheng X, Zhang F, et al. OPFKA:secure and efficient ordered-physiological-feature-based key agreement for wireless body area networks. In:Proc of the 32th Int Conf on Computer Communications(INFOCOM'13). Washington:IEEE,2013,971-979.
    [38]Hu C, Zhang N, Li H, et al. Body area network security:a fuzzy attribute-based signcryption scheme. IEEE Journals on Selected Areas in Communications, 2013,31(9):37-46.
    [39]Yoo H J, Cho N, Yoo J. Low energy wearable body-sensor-network. In:Proc of the Annual Int Conf on Engineering in Medicine and Biology Society. Washington:IEEE,2009,3209-3212.
    [40]Lorincz K, Chen B R, Challen G W. Mercury:a wearable sensor network platform for high-fidelity motion analysis. In:Proc of the 7th ACM conf on Embedded Networked Systems(SenSys'09). New York:ACM,2009,183:196.
    [41]Singh M, Patterson D J. Involuntary gesture regonition for predicting cerebral palsy in high-risk infants. In:Proc of Int Symp on Wearable Computer. Washington:IEEE,2010,10-13.
    [42]Bao L, Intille S. Activity recognition from user-annotated acceleration data. Pervasive Computing-Lecture notes in computer science.2004,31:1-17.
    [43]Ermes M, Parkka J, Mantyjarvi J, et al. Detection of daily activities and sports with wearalbe sensors in controlled and unconrolled conditions. IEEE Trans on Information technology in biomedicine,2008,12(1):20-26.
    [44]Nam Y, Par J W. Child activity recognition based on cooperative fusion model of a triaxial accelerometer and a barometric pressure sensor. IEEE Jounals of Biomedicial and Health Informatics,2013,17(2):420-426.
    [45]Cheng J, Chen X, Shen M. Detection based on surface electromyography and accelerometer signals. IEEE Journals on Biomedical and Health Informatics, 2013,17(1):38-45.
    [46]Boissy P, Choquette S, Hamel M, et al. User-based motion sensing and fuzzy logic for automated fall detection in older adults. Telemedicine and e-Health, 2007,13(6):683-694.
    [47]Bourke A, Brien J, Lyons G. Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait & posture,2007,26(2):194-199.
    [48]Yin J, Yang Q, Pan J. Sensor-based abnormal human-activity detection. IEEE Trans on Knowledge and Data Engineering,2008,20(8):1082-1090.
    [49]Dejnabadi H, Jolles B M, Aminian K. A new approach for quantitative analysis of inter-joint coordination during gait. IEEE Trans on Biomedical Engineering, 2008,55(2):755-764.
    [50]Jasiewicz J, Allum J, Middleton J, et al. Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals. Gait & Posture,2006,24(4):502-509.
    [51]Lin S, Wang L, Huang B, et al. A pilot study on bsn-based ubiquitous energy expenditure monitoring. In:Proc of the 6th Int Workshop on Wearable and Implantable Body Sensor Network(BSN'09). Washington:IEEE,2009:49-52.
    [52]Albinali F, Intille S, Haskell W, et al. Using wearable activity type detection to improve physical activity energy expenditure estimation. In:Proc of the 12th ACM Int Conf on Ubiquitous Computing(UbiComp'10). Berlin:Springer,2010: 311-320.
    [53]King R, Mcllwarith D, Lo B, et al. Body sensor networks for monitoring rowing technique. In:Proc of 6th Int Workshop on Wearable and Implantable Body Sensor Networks(BSN'09). Washington:IEEE,2009:251-255.
    [54]Ghasemzadeh H, Jafari R. Coordination analysis of human movements wih body sensor networks:a signal processing model to evaluate baseball swings. IEEE Sensors Journal,2011,11(3):603-610.
    [55]Arvind D, Valtazanos A. Speckled tango dancers:real-time motion capture of two-body interactions using on-body wireless sensor networks. In:Proc of 6th Int Workshop on Wearable and Implantable Body Sensor Networks(BSN'09). Washington:IEEE,2009:312-317.
    [56]薛洋.基于单个加速度传感器的人体运动模式识别:[华南理工大学博士学位论文].广州:华南理工大学,2011.
    [57]Preece S J, Goulermas J Y, Kenney L, et al. Activity identification using body-mounted sensors—a review of classification techniques. Journals of Physiological Measurement,2009,30:1-33.
    [58]Karantonis D.M, Narayanan M.R, Mathie M, et al. Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans on Information Technology in Biomedicine, 2006,10(1):156-167.
    [59]Patel S, Lorinca K, Hughes R, et al. Monitoring motor fluctuations in patients with parkinson's disease using wearable sensors. IEEE Tranc on Information Technology in Biomedicine,2009,13(6):864-873.
    [60]Kela J, Korpipaa R, Mantyjarvi J, et al. Accelerometer-based gesture control for a design environment. Personal and Ubquitous Computing,2006,10(5): 285-299.
    [61]Preece S, Goulermas J Y, Kenny L P, et al. A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Trans on Biomedical Engineering,2009,56(3):871-879.
    [62]Zhang M, Sawchuk A A. A feature selection-based framework for human activity recognition using wearable multimodal sensors. In:Proc of the 6th Int Conf on Body Area Networks(BodyNets'11). NewYork:ACM,2011:92-98.
    [63]Mantyla J, Himberg J, Seppanen T. Recognizing human motion with multiple acceleration sensors. In:Proc of Int Conf on Systems, Man and Cybernetics. Washington:IEEE,2001:747-752.
    [64]Maurer U, Smailagic Asim, Siewiorek D, et al.Activity recognition and Monitoring using multiple sensors on different body positions. In:Proc of Int Workshop on Wearable and Implantable Body Sensor Networks(BSN'06). Washington:IEEE,2006:113-116.
    [65]Ghasemzadeh H, Guenterberg E. Energy-efficient information driven coverage for physical movement monitoring in body sensor networks. IEEE Journals on Selected Area in Communications,2009,27(1):58-69.
    [66]Atallah L, Lo B, King R, et al. Sensor positioning for activity recognition using wearable accelerometers. IEEE Trans on Biomedical Circuits and Systems, 2011,5(4):320-329.
    [67]Liu J, Zhong L, Wickramasuriya, et al. uWave:Accelerometer-based personalized gesture recognition and its applications. Pervasive and Mobile Computing, Elsevier,2009,5(6):657-675.
    [68]Zhu C, Sheng W. Realtime recognition of complex human daily activity using human motion and location data. IEEE Trans on Biomedical Engineering.2012, 59(9):2422-2430.
    [69]Khan A.M, Lee Y.K, Lee S.Y, et al. A triaxial accelerometer-based physical activity recognition via augmented signal features and a hierarchical recognizer. IEEE Trans on Information Technology in Biomedicine,2010,14(5): 1166-1172.
    [70]Ward J A, Lukowica P, Troester G, et al. Activity recognition of assembly tasks using body-worn microphones and accelerometers. IEEE Trans on Pattern Analysis and Machine Intelligence,2006,28(10):1553-1567.
    [71]姜鸣.基于体感网的人体动作监测识别的研究:[大连理工大学博士学位论文].大连:大连理工大学,2012.
    [72]Altun K, Barshan B, Tuncel O. Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition, 2010,43:3605-3620.
    [73]Anthony D, Olaighin G. Comparing supervised learning techniques on the task of physical activity recognition. IEEE Jounals of Biomedicial and Health Informatics,2013,17(1):46-52.
    [74]李方敏,徐文君,刘新华.无线传感器网络功率控制技术.软件学报.2008, 19(3):716-732.
    [75]Kawadia V, Kumar P R. Principles and protocols for power control in wireless ad hod networks. IEEE Journals on Selected Areas in Communications,2005, 23(1):76-88.
    [76]Yu CS, Shin K G, Lee B. Power-stepped protocol:enhancing spatial utilization in a clustered mobile ad hoc network. IEEE Journals on Selected Areas in Communications,2004,22(7):1322-1334.
    [77]Zawodniok M, Jagannathan S. A distributed power control MAC protocol for wireless ad hoc networks. In:Proc of the Wireless Communications and Network Conference. Washington:IEEE,2004:1915-1920.
    [78]Lin S, Zhang J, Zhou G, et al. ATPC:adaptive transmission power control for wireless sensor networks. In:Proc of the 4th ACM Conf on Embedded Networked Sensor Systems(SenSys'06), New York:ACM,2006,223-236.
    [79]Muqattash A, Krunz M. POWMAC:a single-channel power-control protocol for throughput enhancement in wireless sensor networks. IEEE Journals on Selected Areas in Communications,2005,23(5):1067-1084.
    [80]Monks J, Bharghavan V, Hwu W. A power controlled multiple access protocol for wireless packet networks. In:Proc of the 20th Int Conf on Computer Communications(INFOCOM'01). Washington:IEEE,2001:219-228.
    [81]Wright J, Yang J, Ganesh S, et al. Robust face recognition via sparse representation. IEEE Trans on Pattern Analysis and Machine Intelligence,2009, 31(2):210-227.
    [82]Donoho D L. Compressed sensing. IEEE Trans on Information Theory,2006, 52(4):1289-1306.
    [83]Elad M. Sparse and redundant representation:from theory to applications in signal and image processing. New York:Springer,2010.
    [84]Mallat S, Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE Trans on Signal Process.1993,41(12):3397-3415.
    [85]Candes E, Tao T. Decoding by linear programming. IEEE Trans on Information Theory,2005,51(12):4203-4215.
    [86]Ji S, Xue Y, Carin L. Bayesian compressed sensing. IEEE Trans on Signal Processing.2008,56(6):2346-2356.
    [87]Duarte M F, Eldar Y C. Structured compressed sensing:from theory to applications. IEEE Trans on Signal Processing.2011,59(9):4053-4085.
    [88]Duate M F, Sarvotham S, Baron D, et al. Distributed compressive sensing of jointly sparse signals. In:Proc of the 3th Asilomar Conf on Signal, Systems and Computer. Washington:IEEE,2005:1537-1541.
    [89]孙洪,张智林,余磊.从稀疏到结构化稀疏:贝叶斯方法.信号处理.2012,28(6):759-773.
    [90]He Z, Jin L, Zhen L, et al. Gesture recognition based on 3D accelerometer for cell phones. In:Proc of IEEE Asia Pacific Conference on Circuits and Systems, Washington:IEEE,2008,217-22.
    [91]Wu J, Pan G, Zhang D, et al. Gesture recognition with a 3-D accelerometer. In: Proc of the 6th International Conf on Ubiquitous Intelligence and Computing. New York:ACM,2009,25-38.
    [92]Xu R, Zhou S, Li W. MEMS accelerometer based non-specific user hand gesture recognition. IEEE Transations on Sensors,2012,12(5):1166-1173.
    [93]梁秀波,张顺,李启雷等.运动传感驱动的3D直观手势交互.计算机辅助设计与图形学学报.2010,22(3):521-533.
    [94]王万良,杨经纬,蒋一波.基于运动传感器的手势识别.传感技术学报.2011,24(12):1723-1727.
    [95]Thomas S, Benjamin P. Gesture recognition with a Wii controller. In:Proc of the 2nd Int Conf on Tangible and Embedded Interaction, Wanshington:IEEE, 2008,11-14.
    [96]Taiwoo P, Jinwon L, Inseok H. E-gesture:a collaborative architecture for energy-efficient gesture recognition with hand-worn sensor and mobile devices. In:Proc of the 9th ACM Conf on Embedded Networked Sensor Systems(SenSys'11), New York:ACM,2011,260-273.
    [97]Akl A, Feng C, Valaee S. A novel accelerometer-based gesture recognition system. IEEE Transactions on Signal Processing,2011,59(12):6197-6205.
    [98]Moiz F, Natoo P, Derakhshani R, et al. A comparative study of classification methods for gesture recognition using a 3-axis accelerometer. In:Proc of the Int Conf on Neural Networks, Wanshington:IEEE,2011,2479-2486.
    [99]Arce F, Valdez J. Accelerometer-based hand gesture recognition using artificial neural networks. Transations on Soft Computing for Intelligent Control and Mobile Robotics,2011,318:67-77.
    [100]Yuan T, Wang B. Accelerometer-based Chinese traffic police gesture recognition system. Chinese Journal of Electronics,2010,19(2):270-274.
    [101]Wang L, Gu T, Tao X P, et al. A hierarchical approach to real-time activity recognition in body sensor networks. Pervasive and Mobile Computing,2012, 8(1):115-130.
    [102]Li C G, Guo J, Zhang H G. Local sparse representation based classification. In: Proc of the 20th Int Conf on Pattern Recognition, Washington:IEEE,2010, 649-652
    [103]胡正平,宋淑芬.基于类别相关近邻子空间的最大似然稀疏表示鲁棒图像识别算法.自动化学报.2012,38(9):1420-1427.
    [104]Engan K, Aase S O, Husoy J H. Multi-frame compression:theory and design. EURASIP Signal Process.2000,80(10):2121-2140.
    [105]Aharon M, Elad M, Bruckstein A M. The K-SVD:a algorithm for designing of over-complete dictionaries for sparse representation. IEEE Trans on Signal Processing,2006,54(11):4311-4312.
    [106]Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A. Discriminative leanred dictionaries for local image analysis. In:Proc of IEEE Int Conf on Computer Vision and Pattern Recognition(CVPR'08), Wanshington:IEEE,2008,1-8.
    [107]Meng Y, Zhang D, Xiangchu F. Fisher discrimination dictionary learning for sparse represenation. In:Proc of IEEE Int Conf on Computer Vision, Wanshington:IEEE,2011,543-550.
    [108]Qiang Z, Bao X. Discriminative K-SVD for dictionary learning in face recognition. In:Proc of IEEE Int Conf on Computer Vision and Pattern Recognition(CVPR'10), Wanshington:IEEE,2010,2691-2698.
    [109]Zhuolin J, Zhe L, Davis L.S. Learning a discriminative dictionary for sparse coding via label consistent K-SVD. In Proc of IEEE Int Conf on Computer Vision and Pattern Recognition(CVPR'11), Wanshington:IEEE,2011, 1697-1704.
    [110]Berg E V, Friedlander M P. SPGL1:A solver for large-scale sparse reconstruction [OL]. http://www.cs.ubc.ca/labs/scl/spgll.2009.5
    [111]Cheng L, Hailes S, Chen Z, et al. Compressed Inertial motion data in wireless sensing systems—an initial experiment. In:Proc of the 5th Inte Workshop on Wearable and Implantable Body Sensor Networks(BSN'08). Washington:IEEE, 2008,293-296.
    [112]Wu C H, Tseng Y C. Data compression by temporal and spatial correlations in a body-area sensor network:a case study in pilates motion recognition. IEEE Trans on Mobile Computing,2011,10(10):1459-1472.
    [113]Ghasemzadeh H, Jafari R. Physical movement monitoring using body sensor networks:a phonological approach to construct spatial decision trees. IEEE Trans on Industrial Informatics,2011,7(1):66-77.
    [114]Zois D S, Levorato M, Mitra U. Energy-efficient, heterogeneous sensor selection for physical activity detection in wireless sensor area networks. IEEE Trans on Signal Processing,2013,61(7):1581-1594.
    [115]Ghasemzadeh H, Guenterberg E. Energy-efficient information driven coverage for physical movement monitoring in body sensor networks. IEEE Journals on Selected Area in Communications,2009,27(1):58-69.
    [116]Ghasemzadeh H, Loseu V, Jafari R. Structural action recognition in body sensor networks:distributed classification based on string matching. IEEE Trans on Information Technology in Biomedicine,2010,14(2):425-435.
    [117]Yang Y, Jafari R, Shankar S, et al, Distributed recognition of human actions using wearable motion sensor networks. Journal of Ambient Intelligence and Smart Environments,2009,1(2):1-5.
    [118]Yang S, Gerla M. Energy-efficient accelerometer data transfer for human body movement studies. In:Proc of the 2010 IEEE Int Conf on Sensor networks, Ubiquitous, and Trustworthy Computing. Washington:IEEE,2010,304-311.
    [119]Mamaghanian H, Khaled N, Atienza D, et al. Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes. IEEE Trans on Biomedical Engineering,2011,58(9):2456-2466.
    [120]Zhang Z, Jung T P, Makeig S, et al. Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ECG via block sparse Bayesian learning. IEEE Trans on Biomedical Engineering,2013,60(2):300-309.
    [121]Davenport M A. Boufounos P T, Wakin M B, et al. Signal processing with compressive measurements. IEEE Trans on Selected Topics in Signal Processing,2010,4, (2):445-460.
    [122]Davenport M, Duarte M, Wakin M, et al. The smashed filter for compressive classification and target recognition. In:Proc of SPIE Sympoiums on Computational Imaging, San Jose,2007:326-330.
    [123]Mamaghanian H, Khaled N, Atienza D, et al. Design and Exploration of low-power analog to informantion conversion based on compressed sensing. IEEE Journals on Emerging and Selected Topics in Circuits and Systems,2012, 2(3):493:501.
    [124]Chen F, Chandrakasan A P, Stojanoic V M. Design and analysis of a hardware-efficient compressed sensing architecture for data compression in wireless sensors. IEEE Jouranls on Solid-State Circuits,2012,47(3):744-756.
    [125]Fradkin D, Madigan D. Experiments with random projections for machine learning. In:Proc of the 9th ACM SIGKDD Int Conf on Knowledge discovery and data mining. New York:ACM,2003,517-522.
    [126]Johnson W B, Lindenstrauss J. Extensions of Lipschitz mappings into a Hilbert space. In:Proc of Conf on Modern Analysis and Probability, New Haven,1984, 189-206.
    [127]Baraniuk R, Davenport M, Devore R, et al. A simple proof of the restricted isometry property for random matrices. Journals on Constructive Approximation,2008,28(3):253-263.
    [128]Li ping, Hastie T J, Church K W. Very sparse random projections. In:Proc of the 12th ACM SIGKDD Int Conf on Knowledge discovery and data mining. New York:ACM,2006,287-296.
    [129]Gilbert A, Indyk P, Spare. Sparse recovery using sparse matrices. Proceedings of the IEEE,2010,98(6):937-947.
    [130]方红,章权,兵韦穗.基于亚高斯随机投影的图像重建方法.计算机研究与发展,2008,45(8):1402-1407.
    [131]Berinde R, Gilbert A C, Indyk P, et al. Combining geometry and combinatorics: a unified approach to sparse signal recovery. In:Proc of Allerton Conf on Communication Control Comput,2008,798-805.
    [132]Park J Y, Yap H L, Rozell C J, et al. Concentration of measure for block diagonal measurement matrices with applications to compressive signal processing. IEEE Trans on Signal Processing,2011,59 (12):5859-5875.
    [133]Candes E J, Eldar Y C,Needell D, et al. Compressed sensing with coherent and redundant dictionaries. Journals on Applied and Computational Harmonic Analysis,2011,31(1):59-73.
    [134]Hall M, Frank E, Holmes G, Pfahringer, Reutemann, Witten I H. The WEKA data mining software:An update. Trans on ACM SIGKDD Explorations Newslett,2009,11(1):10-18.
    [135]Chang C C, Lin C J. LIBSVM:A library for support vector machines. ACM Trans on Intelligent Systems and Technology,2011,2(3):1-39.
    [136]Li M, Rozgic V, Thatte G, et al. Multimodal physical activity recognition by fusing temporal and cepstral information. IEEE Trans on Neural Systems and Rehabilitation Engineering.2010,18(4):369-380.
    [137]Cheng J, Xie C, Bian W, et al. Feature fusion for 3D hand gesture recognition by learning a shared hidden space. Pattern Recognition Letters,2012,33: 476-484.
    [138]Liu S, Gao R X, John D, et al. Multisensor data fusion for physical activity assessment. IEEE Trans on Biomedical Engineering.2012,59(3):687-696.
    [139]Zappi P, Stiefmeier T, Farella E, et al. Activity recognition from on-body sensors by classifier fusion:sensor scalability and robustness. In:Proc of the 3rd Int Conf on Intelligent Sensors, Sensor networks and Information. Washington:IEEE,2007,281-286.
    [140]Zhu C, Sheng W. Wearable sensor-based hand gesture and daily activity recognition for robot-assisted living. IEEE Trans on Systems, Man, and Cybernetics—PART A:Systems and Humans.2011,41(3):569-573
    [141]Yuan X T, Yan S. Visual classification with multi-task joint sparse representation. In:Proc of 2010 IEEE Int Conf on Computer Vision and Pattern Recognition(CVPR10). Washington:IEEE,2010,3493-3500.
    [142]Zhang H, Zhang Y, Nasrabadi N M. Joint-structured-sparsity-based classification for multiple-measurement transient acousitic signals. IEEE Trans on Systems, Man, and Cybernetics—Part B:Cybernetics.2012,42(6): 1586-1598.
    [143]Ji S, Dunson D, Carin L. Multitask compressive sensing. IEEE Trans on Signal Processing.2009,57(1):92-106.
    [144]Tipping M E. Sparse Bayesian learning and the relevance vector machine. Journals of Machine Learning Research.2011:211-244.
    [145]Anastasi G, Conti M, Francesco M, et al. Energy conservation in wireless sensor networks:a survey. Ad Hoc Networks,2009,7(3):537-568.
    [146]Kim S, Kim S, Eom D S. RSSI/LQI-based transmission power control for body area networks in healthcare environment. IEEE Journals of Biomedical and Health Informatics,2013,17(3):561-571.
    [147]Vaggelis G, Douros C, George C. Revew of some fundamental approaches for power control in wireless networks. Computer Communications, Elsevier, Available online 6 March 2011.
    [148]Krunz M, Muqattash A, Sung L. Transmission Power Control in Wireless Ad Hoc Networks:Challenges, Solutions, and Open Issues. IEEE Trans on Network,2004,18(5):8-14.
    [149]Nar P C, Cayirci E. PCSMAC:a power controlled sensor-MAC protocol for wireless sensor networks. In:Proc of the 2nd European Workshop on Wireless Sensor Networks. Washington:IEEE,2005:81-92.
    [150]Son D, Krishnamachari B, Heidemann J. Experimental study of the effects of transmission power control and blacklisting in wireless sensor network. In: Proc of the 1st Annual IEEE Communications Society Conferene on Sensor and Ad Hoc Communictions and Networks(SECON'04). Washington:IEEE,2004: 289-298.
    [151]Paschalidis I C, Lai W, Starobinski D. Asymptotically optimal transmission policies for large-sclae low-power wireless sensor networks. IEEE/ACM Trans on Networking,2007,15(1):105-108.
    [152]Zurita A B, Fischione C, Speranzon A, et al. On Power Control for Wireless Sensor Networks:System Model, Middleware Component and Experimental Evalution. In:Proc of the European control conference,2007,4293-4300.
    [153]Mahdi A, Walsh M, Hayes M. Robust power control for IEEE 802.15.4 wireless sensor networks with round-trip time-delay uncertainty. Wireless Communication and Mobile Computing, Wiley InterScience,2010,10(6): 811-825.
    [154]Xiao S, Dhamdhere A, Sivaraman V, Burdett A. Transmission power control in body area sensor networks for healthcare monitoring. IEEE Journal on Selected Areas in Communications,2009,27(1):37-48.
    [155]Quwaider M, Rao J, Biswas S. Transmission Power Assignment with Postural Position Inference for On-Body Wireless Communication Links. ACM Transactions on Embedded Computing Systems,2010,10(6):14-27
    [156]CC2420datasheet. www.ti.com.cn/product/cn/cc2420.html,2013-1-1.
    [157]Yang G Z. Body sensor networks. New York:Springer,2006.
    [158]Shimmer node, shimmer-research.com,2013-10-1.
    [159]Barth A T, Hanson M A, Powell H C, et al. TEMPO 3.1:a body area sensor network platform for continuous movement assessment. In:Proc of Int Workshop on Wearable and Implantable Body Sensor networks(BSN09'). Washington:IEEE,2009:71-76.
    [160]Maurer U, Comput S C, Tech U M. eWatch:a wearable sensor and notification platform. In:Proc of Int Workshop on Wearable and Implantable Body Sensor Networks(BSN'06). Washington:IEEE,2006:141-145.
    [161]Kwapisz J R, Weiss G M, Moore S A. Activity recognition using cell phone accelerometers. In:Proc of the 3th ACM SIGKDD Int. Workshop on Knowledge Discovery from Sensor Data. New York:ACM,2010,12(2):74-82.
    [162]Sazonov E S, Fulk G, Hill J, et al. Monitoring of posture allocations and activities by a shoe-based wearable sensor. IEEE Trans on Biomedical Engineering,2011,58(4):983-990.
    [163]Merilahti J, Ermes M.3D accelerometer features'difference between young and older people, and between lower back and neck band sensor placements. In: Proc of the IEEE Annual Int Conf on Engineering in Medicine and Biology Society. Washington:IEEE,2011,7885-7887.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700