用户名: 密码: 验证码:
BaFCl:Sm~(2+)透明玻璃陶瓷的制备和研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
BaFCl:Sm2+由于光子选通光谱烧孔特性,在频域光存储研究中受到了广泛关注。但是粉末材料难以满足光学应用的要求,大尺寸的单晶BaFCl:Sm2+很难生长,而玻璃基质中均匀线宽又大于单晶。透明玻璃陶瓷材料,则克服了粉末、单晶和玻璃的这些缺点,更有研究价值和应用潜力。为了提高BaFCl:Sm2+材料的性能和应用价值,我们首次成功的制备出了BaFC:Sm2+透明玻璃陶瓷,并着重对其光谱进行了分析。
     我们通过高温固相反应法,将原料在1150℃,碳粉作为还原气氛的条件下,灼烧2小时,制备出了含有BaFCl:Sm2+微晶的透明玻璃陶瓷。通过XRD,SEM等手段对透明玻璃陶瓷材料做了表征,认为在氧化物玻璃中已经形成了BaFCl:Sm2+微·晶。同时,我们通过高温固相反应法制备了BaF(Cl0.5Br0.5):Sm2+和BaFCl:Sm2+粉末样品,通过XRD图谱的对比证实了BaF(Cl0.5Br0.5):Sm2+的晶体结构与BaFCl:Sm2+基本一致,Br-部分替代了Cl-的位置。
     本文对BaFCl:Sm2+透明玻璃陶瓷的发射光谱和激发光谱进行了分析。通过与粉末样品对比,发现透明玻璃陶瓷中Sm3+的发射谱线发生了宽化,而Sm2+的发射谱线未发生宽化。这表明:1,在氧化物玻璃态中的Sm3+离子发射谱线的宽化主要是由非晶局域环境使其非均匀线型宽化引起的;2,Sm3+离子在玻璃态中的数量高于在微晶中的数量,而Sm2+离子则是在微晶中的数量更多。这可能是因为在制备过程中,微晶中的Sm离子更容易被还原。在用418nm激发光激发样品时,由于光谱分辨率的提高,观察到了696nm处的发射峰,分析认为这是晶场中5D0-7F1谱线劈裂形成的。本论文中,图22幅,表3个,参考文献31篇
BaFCl:Sm2+ has attracted much attention in frequency-domain optical storage for its photon-gated spectral hole burning properties. However, BaFCl:Sm2+ powder can not meet the demand of optical application, large size BaFCl:Sm2+ single crystal is difficult to grow, while the homogeneous line width in glass is much broader than that in crystal. The transparent glass ceramics materials have overcome these shortcomings. To improve the performance of BaFCl:Sm2+,we successfully prepared BaFCl:Sm2+ transparent glass ceramics and mainly analyzed the spectra.
     BaFCl:Sm2+ transparent glass ceramics were prepared by high temperature solid state reaction method. The raw materials were heated to 1150℃for 2h, in the conditions of reducing atmosphere. By XRD, SEM and other measurements, we found that BaFCl:Sm2+ microcrystallines have been formed in the oxide glass. BaF (Cl0.5Br0.5): Sm2+ and BaFCl:Sm2+ powder samples were also prepared. We found the BaF(Cl0.5Br0.5):Sm2+ have the same crystal structure with BaFCl:Sm2+.Br ions partially replaced Cl ions.
     Emission and excitation spectra were analyzed in this article. Relative to the powder material, the emission lines of Sm3+ in transparent glass ceramics are broadened and Sm2+ emission spectrum not broadened. These results suggest that (1) the emission line width of Sm3+ in the oxide glass state is mainly caused by its inhomogeneous broadening which is determined by the amorphous local environment; and (2) the amount of Sm3+ ions in glass is higher than in microcrystallines, while the amount of Sm2+ ions in glass is lower than in microcrystallines. Maybe it is because Sm ions in microcrystalline are easy to be induced, while Sm ions in glass is difficult to be induced. We found that there is a peak at 696nm,it may be due to 5D0-7F1 line splitting in crystal.
引文
[1]张东玲,汤清彬,施德恒.超高密度光存储技术.激光杂志.2006,27(4).4-6
    [2]营冀祁,张启程,王玉英等.光盘记录介质研究进展.半导体光电.2004.25(2).83-86
    [3]营冀祁,张启程,王玉英等.光存储材料及其存储机理.功能材料.2004.增刊35卷.419-420
    [4]徐端颐.高密度光盘数据存储.北京.清华大学出版社.2003.7.1-17
    [5]干福熹.光子学材料及其发展.材料科学与工程.1998.16(2).1-8
    [6]Tadaaki T. Analysis of efficiency of image formation and prediction of future of color film and digital still camera.感光科学与光化学.2001.19(1).48-71
    [7]王海卫,夏又新.光海量存储的现状及发展趋势.半导体光电.2002,23(5).351-355
    [8]李宵会,干福熹.可用于光存储的氧化物、次氧化物薄膜材料的研究及发展.光学技术.2002.28(1).11-15
    [9]黄世华.激光光谱学原理和方法.吉林大学出版社.2002.11-91
    [10]Macfarlane R M, Shelby R M. Photochemical and population spectral hole burning in the zero-phonon line of a color center-F3+in NaF. Phys.Rev.Lett.1979.42.788-791
    [11]Macfarlane R M,Vial J C. Spectral hole burning by population storage in Zeeman sublevels of LaF3.Nd3+.Phys.Rev.1987.B36.3511-3515
    [12]Wild U P, Bucher S E, Burkhalter F A. Hole burning, Stark effect, and data storage.Appl.Opt.1985.24.1526-1530
    [13]云彩丽,稀土发光材料的发展现状与趋势.内蒙古科技与经济.2007.21.322
    [14]李洁,张哲夫.稀土发光材料研究与发展方向.稀有金属与硬质合金.2002
    [15]刘行仁.我国稀土发光材料科学技术发展回顾与展望.世界科技研究与发展.2003
    [16]A.Meijerink and R.T. Wegh,Mat.Sci.Forurn.1999.315-317.11
    [17]徐光宪,稀土,北京冶金工业出版社,1995,133
    [18]P.Dorenbos,J.Lumin.,2000,91,91
    [19]Gleiter H, Nanostructured materials:basic concepts and microstructure, Acta Materialia, 2000,48:1-29
    [20]Mortier M, Auzel F, J Non, Cryst.Solids,1999,256/257:361-365
    [21]F.Auzel,D.Pecile,and D.Morin. J.Elctrochem.Soc.1975.112.101-105
    [22]Wang Y.,Ohwaki J,New transparent vitroceramics codoped with Er3+and Yb3+for efficient frequency upconversion,Appl.Phys.Lett.,1993,63(24):3268-327
    [23]Dejneka M J, The luminescence and structure of novel transparent oxyfluoride glass ceramics. J.Non-Crystsolids,1998,239:149-155
    [24]Doo Hee Cho,Yong Gyu Choi,Kyong Hon Kim.Energy transfer from Tm3+:3F4 to Dy3+:6H11/2 in oxyfluoride tellurite glasses.Chem.Phy.Lett.2000,322:263-266
    [25]孟婕,赵丽娟,余华,微晶结构对氟氧化物玻璃陶瓷发光特性的影响,物理学报,2005,54(3):1442-1446
    [26]李玮捷,Y2O3:Eu荧光粉的制备方法及性质研究进展,稀土,2000,21(5),60
    [27]孙彦彬,邱关明,陈永杰,稀土发光材料的合成方法,稀土,2003,24(1),76-81
    [28]李颖,王光祖,纳米材料的表征与测试技术,超硬材料工程,2007,19(2),39-42
    [29]Winnacker A, Shelby R M, Macfarlane R M. photon-gated hole burning:a new mechanism
    using two-step photoionization.Opt.Lett.1985.10:350-352
    [30]张家骅,黄世华,虞家琪,二价钐离子谱线的非均匀加宽、荧光窄化和永久性光谱烧孔,发光学报,2003,24(3),215-228
    [31]张思远,稀土离子的光谱学-光谱性质和光谱理论,科学出版社,2008,108-111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700