用户名: 密码: 验证码:
杂多酸促进CuCl_2和CuCl催化甲醇液相氧化羰基化合成DMC
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳酸二甲酯(DMC)是一种环境友好的绿色化学品,甲醇液相氧化羰基化法合成碳酸二甲酯是一条热力学上有利、工艺成熟、原料廉价易得且符合21世纪绿色化学理念的工艺合成路线,已引起国内外学者的广泛关注。目前,该工艺采用的工业化催化剂CuCl由于Cl-流失存在催化剂易失活、设备腐蚀严重等缺点。研究学者们通过对CuCl负载化及添加助剂、配位剂等方法抑制Cl-流失造成的设备腐蚀、催化剂失活等问题。本文采用热稳定性优异的Keggin型杂多酸强氧化、强酸双功能催化剂,详细考察了三种Keggin型杂多酸及其铜盐对甲醇氧化羰基化反应的催化活性,并研究了其作为助催化剂对CuCl2均相催化剂的助催化作用,杂多酸改性载体对负载型铜基催化剂的催化性能影响。利用XRD、FTIR、H2-TPR、TG-DTA等分析手段对催化剂进行了表征。通过实验分析和研究得出以下结论:
     (1)Keggin型杂多酸H3PMo12O40、H3SiW12O40、H3PW12O40及其铜盐Cu1.5PMo12O40、Cu1.5SiW12O40、Cu1.5PW12O40不能有效催化甲醇合成碳酸二甲酯,对甲醇液相氧化羰基化反应无明显活性,杂多酸阴离子不能给活性中心Cu提供与Cl-相近的电子环境。
     (2)以硝酸铜,硫酸铜和氯化铜制备的复合型杂多酸铜盐催化剂中CuCl2-H3PW12O40/Al2O3具有较好催化活性,转化率超过4%,选择性超过80%,且具有可重复性。而无氯的其他复合杂多酸铜盐催化剂不具备活性,表明复合杂多酸铜盐催化剂的活性组分为CuCl2。
     (3)Keggin型杂多酸对CuCl2均相催化剂具有助催化作用,经重复使用后杂多酸保持原有Keggin型结构不变且保持相当活性。在连续式反应中最高甲醇转化率可达11.92%,选择性85.42%。高CO分压有利于提高催化剂选择性,最高可达93.66%。
     (4)负载型杂多酸催化剂CuCl2-HPA/Al2O3中杂多酸的助催化作用仍然体现,杂多酸保持良好Keggin型结构,未与碱性载体γ-Al2O3发生反应。杂多酸的助催化效果与氧化性能有直接关系,即Keggin杂多酸氧化性越强,催化剂活性越高(HPMo>HPW>HSiW)。最佳催化剂制备条件为焙烧温度200°C,负载量为W(CuCl2)/W(HPW)=1,进气比V(CO):V(O2)=2:1,在间歇式反应中最高甲醇转化率可达8.31%,选择性88.65%。
     (5)Keggin型杂多酸改性载体制备的负载型催化剂CuCl-HPA/Al2O3催化性能明显优于CuCl和单纯负载型催化剂CuCl/Al2O3,甲醇转化率及选择性均有提升。制备及反应条件对杂多酸改性催化剂的影响较大,最佳催化剂制备条件为:焙烧温度400°C,焙烧时间4h,CuCl负载量W(CuCl)/W(carrier)=1:3;最佳反应条件为:催化剂用量3g,反应时间2h。CuCl-HPW/Al2O3催化剂在间歇式反应中最高甲醇转化率达7.98%,选择性98.95%。
     (6)由XRD,TG-DTA及焙烧温度对负载型杂多酸催化剂活性影响的考察分析可知,随着焙烧温度的升高,Keggin型杂多酸及活性组分CuCl、CuCl2的XRD特征衍射峰逐渐减弱,有利于单层分散;当焙烧温度超过450°C时,杂多酸发生热分解致使Keggin型骨架结构坍塌,分解产物阻塞载体孔道,继而降低了催化剂反应活性。其中低焙烧温度对CuCl2-HPA/Al2O3催化活性有利,高焙烧温度对CuCl-HPW/Al2O3催化活性有利。
Dimethyl carbonate(DMC) is an environmental-friendly green chemistry, the synthesis route of methanol oxidative carbonylation to DMC in liquid-phase is in accord with the concept of the 21th century green chemistry, at the same time, it is very advantageous in thermodynamic and mature in technic with cheap materials and attracting more and more attention all over the world. It has been proved that the industrialized CuCl catalyst possesses the defect of deactive easily, serious causticity to equipment and polluting production. Researchers are used to carring CuCl and adding promoter or auxiliary agent to solve the above problems.As an excellent catalyst with strong oxidative and acid power,three Keggin-type heteropoly acids and their copper salts were evaluated to catalyse methanol to DMC.At the same time,the aidant function of heteropoly acids to homogeneous catalyst CuCl2 and loaded catalyst CuCl was studied.These catalysts were characteristic by XRD, FTIR, H2-TPR, TG-DTA,Through experiment research and analysis, the conclusion shows as below:
     (1) H3PMo12O40 , H3SiW12O40, H3PW12O40 and their copper salts with Keggin-type can not catalyse methanol to DMC effectively.It shows unconspicuous activity in methanol carbonylation reaction.Heteropoly acid negative ion can not provide an elevtronic environment like Cl- for active center Cu.
     (2) CuCl2-H3PW12O40/Al2O3 shows preferable repeated activity in heteropoly acid modified catalysts,the Cm and Sm of DMC exceeded 4%,80% respectively.While catalysts prepared with CuSO4 and Cu(NO3)2 show no activity in reaction of methanol to DMC.It means that active component is CuCl2.
     (3) Keggin-type heteropoly acid possess aidant function to homogeneous catalyst CuCl2.HPA- CuCl2 keeps quite activity after several times used with no Keggin structure altered.The Cm and Sm of DMC reach 11.92% and 85.42% respectively in continuous reaction. High CO pressure can enhace Sm of DMC and the maximum is 93.66%.
     (4) The assisted function of heteropoly acid exist in loaded catalyst all the same.Heteropoly acid keeps Keggin structure and no reaction was found between heteropoly acid and alkalescent carrierγ-Al2O3.There is a direct connection that the more oxidation capability HPA has,the more activity catalyst shows(HPMo>HPW>HSiW).The most suitable condition for preparing catalyst of CuCl2-HPA/Al2O3 is as following: catalyst cacined at 200°C, W(CuCl2)/W(HPW)=1, V(CO):V(O2)=2:1.Under this condition,the Cm and Sm of DMC reach the maximum and are 8.31% and 88.65% repectively in interrupted reaction.
     (5) Keggin-type heteropoly acid modified catalyst CuCl-HPA/Al2O3 shows better activity than CuCl and simple loaded catalyst CuCl/Al2O3.Prepared and reaction condition have great effects on loaded catalyst modified by heteropoly acid.The most suitable condition for preparing catalyst and reaction is as following: calcined for 4h at 400°C, W(CuCl)/W(carrier)=1:3, Wcatalyst=3g,reacting for 2h.Under this condition, he Cm and Sm of DMC reach the maximum and are 7.98% and 98.95% ,respectively.
     (6) The XRD,TG-DTA character and the study on effects of calcinations temperature on catalytic activity show that,with the calcinations temperature rising,the characteristic diffraction peaks of crystalline phase of CuCl, CuCl2 and heteropoly acid become weaker and dispersed on the surface of the support by single layer.However,when the calcinations temperature is over 450°C,heat decomposition occurred on heteropoly acid and the Keggin structure broke down. Decomposed substance blocked the holes of carrier and make the activity of catalyst depressed.It shows better activity that calcined CuCl2-HPA/Al2O3 at low temperature and CuCl-HPW/Al2O3 at high remperature.
引文
[1]李忠.甲醇氧化羰基化洁净合成DMC催化反应研究[D].太原,太原理工大学,2004.
    [2]王静康,龚俊波,鲍颖.21世纪中国绿色化学与化工发展的思考[J].化工学报,2004,55(12):1944-1949.
    [3]郭晓河,张胜田,马伟.绿色化学的研究现状与发展趋势[J].天津化工,2003,17(1):35-37.
    [4] Ugo Romano,Renato Tesel,Macello,etc.Synthesis of dimethyl carbonate from methanol, carbon momoxide and oxygen catalyzed by copper compounds[J].Ind Eng Chem Prod Res Dev, 1980, 19(3), 396-403.
    [5]肖博文,方云进.碳酸二甲酯合成及应用技术研究进展[J].化工科技,1998,6(04):1-6.
    [6] C.Li,X.Zhang S.Zhang.Environmental Benign Design of DMC Production Process [J]. Chemical Engineering Research an Design,2006,84(1):1-8.
    [7]舒婷,李光兴.碳酸二甲酯作甲基化试剂的研究进展[J].化工中间体,2008,(1):20-23.
    [8] H.Babad,A.G.Zeiler.Chemistry of phosgene[J].Chemical Reviews,1973,73(1):75-91.
    [9]方云进,肖文德,陆婉珍.碳酸二甲酯作汽油添加剂的应用研究[J].现代化工,1998(04):20-22.
    [10]屈强好.碳酸二甲酯的市场需求和生产技术进展[J].化工中间体,2005(06):22-26.
    [11] Berzeliue J.Pogg.Ann.[M]//王恩波,胡长文,许林.多酸化学导论:北京:化学工业出版社,1998.1.
    [12] Keggin J F.Proc.H.Soc.[M]//王恩波,胡长文,许林.多酸化学导论:北京:化学工业出版社,1998.2.
    [13]王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社,1998.
    [14] Pope M.T. Heteropoly and Isopoly Oxometalates[M].Berlin:New York Springer-Verlag,1983.
    [15] Kozhevnikov I V.精细化学品的合成:多酸化合物及其催化[M].唐培堃,李祥高,王世荣.北京:化学工业出版社,2005.
    [16] Marosi L,Otero Arean C. Catalytic Performance of Csx(NH4)yHz·Pmo12O40 and Related Heteropolyacids in the Methacrolein to Methacrylic Acid Conversion In Situ Structural Study of the Formation and Stability of the Catalytically Active Species[J]. Catal,2003,213(2):235-240.
    [17]贾继飞,吴通好.CsyP1.33-kMo12Sb1CumVnAskOx催化剂的研究[J].催化学报,1996,17(4):306-309.
    [18]郑荧光,董凤霞,吴通好等.杂多酸盐催化剂中反荷离子对V4+离子影响的ESR研究[J].高等化学学报,1996,17(4):622-625.
    [19]朱万春,孙方龙,常加贵等.磷钼杂多化合物催化剂上异丁烷的选择氧化[J].石油化工,2003,32(8):641-645.
    [20]戈军伟,杜治平,袁华等.Keggin型磷钼矾杂多化合物在氧化羰基化合成碳酸二苯酯中的应用[J].应用化工,2009,38(1):19-22.
    [21]郭晓俊,黄崇品.反荷离子及制备方法对Keggin型杂多化合物结构和性质的影响[J].石油化工,2008,37(3):216-221.
    [22] Tadaharu Ueda, Jun-ichi Nambu, Hirofumi Yokota,etc.The effect of water-miscible organic solvents on the substitution reaction of Keggin-type heteropolysilicates and -germanates with vanadium(V) ion[J].Polyhedron,2009(28):43-48.
    [23]任春霞,李越湘.光化学合成缺位型α-9-硅钨杂多化合物及其性质研究[J].泰山学院学报,2008,30(6):72-78.
    [24] Toth J.E,Anson F.C. Electrocatalytic reduction of nitrite and nitric oxide to ammonia with iron-substituted polyoxotungstates[J].Am Chem soc,1989(111):2444-2451.
    [25]华英杰,王崇太,李高仁,等.Keggin型缺位磷钨杂多阴离子的电化学性质及电催化还原过氧化氢[J].化学学报,2009,67(8):795-800.
    [26] Ouahab L,Bencharif M,Grangjean. Preparation and Structure Data of (TTF)6PW12O40(Et4N)2[J].C R Acid Sci Paris SerieII,1988,307:749.
    [27]祁素芳,付晓,毕冬琴.[Co(phen)3]2[Pmo12O40](OH)的水热合成及晶体结构[J].化学研究,2008,19(4):21-24.
    [28]任淑华,乔青安,郭振良等.新型杂多化合物Na7[Fe{Mo2O6CH3C(O)(PO3)2}2][J].鲁东大学学报,2007,23(3):249-252.
    [29] Takeshi Hasegawa,Hideyuki Murakami,Kaori Shimizu,etc.Formation of inorganicprotonic-acid polymer via inorganic–organic hybridization: Synthesis and characterization of polymerizable olefinic organosilyl derivatives of mono-lacunary Dawson polyoxometalate[J].Inorganica Chimica Acta,2008,361(5):1385-1394.
    [30] Roushan Khoshnavazi,Leila Kaciani,Farokhzad Mohammadi Zonoz. Dioxouranium complexes as ligand. Synthesis and characterization of sandwich-type polyoxometalates [X2W18(UO2)2{(H2O)3M}2O68]10-(X = AsV and PV) (M= CoII, CuII, MnII, NiII and ZnII)[J].Inorganica Chimica Acta,2009,362(4):1223-1228.
    [31] Yan-Chun Bai,Li-Ping Liu,Xing-Juan Yan. Three sandglass-type molybdophosphates obtained via a new route: Synthesis and characterization of X7[PMo8O30] (X = Na+, K+, NH4+) [J].Journal of Solid State Chemistry,2009,182(1):89-94.
    [32] Bing Li, Jun-Wei Zhao, Shou-Tian Zheng. A banana-shaped iron(III)-substituted tungstogermanate containingtwo types of lacunary polyoxometalate units[J].Inorganic Chemistry Communications,2009,12(2):69-71.
    [33] K.T. Venkateswara Rao,P.S.N.Rao, P.S. Sai Prasad,etc.Cesium exchanged heteropoly tungstate supported on zirconia as an efficient and selective catalyst for the preparation of unsymmetrical ethers[J].Catalysis Communications,2009,10(10):1394-1397.
    [34]单秋杰..11-钨钛杂多酸盐催化合成乙酸正丁酯[J].化学工业与工程,2009,26(5):391-394.
    [35]程丽华,黄敏,农兰平等.二氧化硅负载磷钨酸催化合成2-乙酰噻吩[J].精细石油化工,2009,26,(2):31-33.
    [36]欧国勇,杨辉荣,方岩雄.负载型杂多酸催化剂研究发展[J].化工进展,2001,(8):19-21.
    [37] N. Haddad, E. Bordes-Richard, A. Barama. MoOx-based catalysts for the oxidative dehydrogenation(ODH) of ethane to ethylene Influence of vanadium and phosphorus on physicochemical and catalytic properties[J].Catalysis Today,2009,142(3-4):215–219.
    [38] Ahmad Shaabani, Maryam Behnam, Ali Hossein Rezayan. Tungstophosphoric acid (H3PW12O40) catalyzed oxidation of organic compounds with NaBrO3[J].Catalysis Communications,2009,10(7):1074-1078.
    [39] Pankaj Sharma, Anjali Patel. Supported 12-molybdophosphoricacid: Characterization and non-solvent liquid phase oxidation of styrene[J].Journal of Molecular Catalysis A:Chemical,2009,299(1-2):37-43.
    [40] M.N.Timofeeva.Acid catalysis by heteropoly acids[J].Applied Catalysis A:General, 2003,256(1-2):19-35.
    [41]李瑞波,徐贵潭.杂多酸催化剂应用研究进展[J].牡丹江师范学院学报(自然科学版),2007,(3):25-27.
    [42]徐伟,刘重为,王皖林等.杂多酸催化剂在碳酸二甲酯制备中的应用研究[J].化工科技,2005,13(5):42-45.
    [43] Allaoui L A,Aouissi A.Effect of the Bronsted acidity on the behavior of CO2 methanol reaction[J].Journal of Molecular Catalysis A:Chemical,2006,259(1-2):281-285.
    [44] Kyung W L,Ji C J,Heesoo K,etc.Effect of acid-base properties of H3PW12O40/CexTit-xO2 catalysts on the direct synthesis of dimethyl carbonate from methanol and carbon dioxide[J].Journal of Molecular Catalysis A:Chemical,2007,269(1-2):41-45.
    [45] Kyung W L,Min H Y,Jin S C,etc.Synthesis of dimethyl carbonate from methanol and carbon dioxide by heteropoly-acid/metal oxide catalysts[C].Diffusion and Defect Data Pt.B: Solid State Phenomena, v 119,Nanocomposites and Nan-oporous Materials -ISNAM7- Proceedings of the 7th International Symposium on Nanocomposites and Nanoporous Mate-rials (ISNAM7),2007,287-290.
    [46] Kyung W L,Direct synthesis of dimethyl carbonate from CH3OH and CO2 by H3PW12O40/CexTit-xO2 catalyst[J].Reaction kinetics and Catalysis Letters,2006,89(2): 303-309.
    [47]曹发海,应卫勇,房鼎业.活性炭载体对甲醇氧化羰化合成碳酸二甲酯催化活性的影响[J].化学世界,2000,(4):195-197.
    [48]李茜.Cu分子筛及其水处理改性催化剂催化甲醇氧化羰基化的研究[D].太原,太原理工大学,2005.
    [49]周媛.硅锆复合氧化物负载铜催化剂的甲醇液相氧化羰基化反应性能研究[D].太原,太原理工大学,2007.
    [50]任军,李忠,周媛.甲醇液相氧化羰基化合成碳酸二甲酯反应工艺条件研究[J].现代化工,2007,27(增刊1),228-231.
    [51]孟凡会.CuCl/SiO2-Al2O3催化剂的制备表征及其甲醇氧化羰基化催化性能研究?[D].太原,太原理工大学,2008.
    [52]黄海滨.CuⅠ/SO42-/MxOy和CuⅠ/S2O82-/MxOy催化剂的制备与催化性能研究[D].太原,太原理工大学,2008.
    [53] Southeward B W L,Vaughan J S,Connor C T.Infrared and thermal analysis studies of heteropoly acids[J].Catal.1995,153:293-303.
    [54] Koyano G,Ueno K,Misono M.Three types of acid catalysis in liquid phase of metal salts of 12-tungstophosphoric acid[J].Catal A,1999,181:267-275.
    [55] Kaur J,Griffin K,Harrison B,etc.[J]Catal.,2002,208:448-455.
    [56] Heravi M M,Derikvand F,Bamoharram FF[J].J.Mol.Catal.A;Chemical,2005,242:173- 175.
    [57] King S. T., Oxidative carbonylation of methanol to dimethyl carbonate by solid-state ion-exchanged CuY catalysts[J].Catalysis Today, 1997, 33(1-3):173-182.
    [58]李忠,黄海彬,谢克昌.Cu(I)SO42-/ZnO和Cu(I)S2O82-/ZnO催化剂的制备与表征[J].高等学校化学学报,2008,29(8):1609-1615.
    [59]黄海彬,孟凡会,李威渊等.固体酸和固体超强酸负载CuI催化剂制备与催化合成碳酸二甲酯[J].太原理工大学学报,2008,39(4):343-346.
    [60]王大文.CO2和丙烯合成甲基丙烯酸杂多金属氧化物催化剂的制备、表征和反应性能[D].天津,天津大学,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700