用户名: 密码: 验证码:
胃癌源性EGFL7对人脐静脉内皮细胞生物学行为影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分EGFL7在胃癌组织中的表达及其临床病理关系的研究
     目的:探讨胃癌组织中表皮生长因子样结构域7(EGFL7)的表达及其与胃癌临床病理特征的关系。
     方法:采用免疫组织化学SP法分别检测45例胃癌组织中EGFL7的表达水平及微血管密度(MVD,CD34标记),分析EGFL7的表达与MVD及胃癌临床病理特征之间的关系。
     结果:EGFL7的表达在有淋巴结转移组中的阳性率(84.6%)高于无淋巴结转移组(57.9%),在浸润浆膜层组中的阳性率(84.4%)高于未浸润浆膜层组(46.2%)。胃癌组织中EGFL7的表达与淋巴结转移和浸润程度呈正相关(p<0.05),但与患者的年龄、性别、肿瘤的分化程度无关(p>0.05)。
     胃腺癌低分化组MVD(37.62±10.42)高于高分化组(27.91±9.93)和中分化组(28.40±9.18);浸润至浆膜层组MVD(34.25±10.43)高于未至浆膜层组(26.69±8.66);有淋巴结转移组MVD(33.00±9.99)高于无淋巴结转移组(25.94±9.34)。癌组织中MVD值与分化程度、浸润深度及有无淋巴结转移呈正相关(p<0.05),但与年龄、性别无关(p>0.05)。
     在EGFL7表达阳性的肿瘤组织中MVD均值为33.80±10.56,高于EGFL7表达阴性的肿瘤组织中MVD均值26.00±7.21(p<0.05),采用Pearson积差相关系数进行分析,发现MVD值与EGFL7的表达成正相关(r=0.313,p<0.05)。
     结论:EGFL7的高表达可能促进了胃癌的浸润和转移,其机制可能与促进胃癌组织中的血管新生有关。
     第二部分shRNA介导的瘤源性EGFL7基因沉默对人脐静脉内皮细胞生物学行为的影响
     目的:探讨瘤源性EGFL7对人脐静脉内皮细胞(HUVEC)生物学行为的影响。
     方法:利用免疫细胞化学、western bolt方法检测四株胃癌细胞SGC7901、BGC823、MKN28、MKN45中EGFL7的表达,选取表达最强的一株用于后续实验;设计合成针对EGFL7基因的RNA干扰序列,建立稳定转染的EGFL7干扰胃癌细胞株,将该株细胞与HUVEC体外共培养,检测HUVEC增殖、粘附及迁徙能力的改变。
     结果:1.SGC7901、BGC823、MKN45和MKN28四株胃癌细胞均表达EGFL7蛋白,且表达均定位于细胞浆中;western blot检测显示EGFL7在BGC823中的表达最强;2.将稳定转染EGFL7基因RNA干扰序列的BGC823细胞株(命名为BGC2-13)、未转染BGC823细胞及转染阴性质粒的BGC823细胞株(命名为BGCHK)与HUVEC共培养,发现降低瘤源性EGFL7的分泌导致HUVEC增殖速率降低,同时可使其粘附能力、迁徙能力下降(p<0.05)。
     结论:瘤源性EGFL7能够促进内皮细胞的增殖、粘附及迁徙,从而有可能促进血管的新生。
Party I The study on clinical significance of the expression of EGFL7 in gastric carcinoma
     Objective:To explore the expression of EGFL7in gastric carcinoma and its correlation with tumor clinical and pathological features.
     Methods:The expression of EGFL7 protein and MVD in 45 cases gastric carcinoma were detected by immunohistochemical methods.
     Result:The expression of EGFL7in the team which has lymph node metastasis (84.6%) is higher than the team which hasn't (57.9%),in the serosal invasion team (84.4%) is higher than the team which doesn't have serosal invasion (46.2%). The expression of EGFL7 in gastric carcinoma is related with tumor invasion and lymph node metastasis (p<0.05),but isn't related with the patients'age, sex and tumor differentiation (p>0.05)
     The MVD of poorly differentiation team (37.62±10.42)is higher than the well-differentiation team (27.91±9.93) and differentiated team (28.4±9.18). The serosal invasion team's MVD(34.25±10.43)is higher than the team which is not (26.69±8.66),the team's MVD which has lymph node metastasis (33.00±9.99) is higher than the team which hasn't (25.94±9.34).The MVD is related with tumor differentiation, invasion and lymph node metastasis, but isn't related with the age and sex (p>0.05)
     MVD in the tumor which express EGFL7 is 33.80±10.56, that is higher than the MVD in the tumor which don't express EGFL7 (26.00±7.21) (p<0.05).Pearson analysis shows MVD and EGFL7 expression is positive correlation (r=0.313,p<0.05)
     Conclusion:High expression of EGFL7 would progress the infiltration and metastasis of gastric caicinoma. The mechanism maybe related with angiogenesis.
     PartyⅡStudy on the effect on human umbilical vein endothelial cell biology behavior when EGFL7 gene silence in gastric carcinoma cell
     Objective:To explore the effect on HUVEC's biological behavior when silence EGFL7 in gastric carcinoma cell.
     Methods:Use immunocytochemistry and western blot to defect EGFL7 expression in 4 gastric carcinoma cell line, SGC7901, BGC823, MKN28 and MKN45, select the highest expression cell line for next experiment. Design and synthesis RNA interference sequence for EGFL7, establish a stable transfected gastric carcinoma cell line, use this cell line and HUVEC do co-culture in vitro, detect the change in HUVEC's proliferation, adhesion and migration ability.
     Result:1.The 4 gastric carcinoma cell line SGC7901, BGC823, MKN45, MKN28 all express EGFL7 protein and the protein locate in the cytoplasm. Western blot show the BGC823 cell line has the highest expression; 2.The BGC823 cell line which is stable transfected (named BGC2-13), BGC823 cell line which is untranfected and BGC823 cell line which is transfected negative plasmid(named BGCHK)do co-culture with HUVEC, we find that lower EGFL7 expression cause the proliferation rate of HUVEC lower, and lower its adhesion and migration ability also (p<0.05)
     Conclusion:Tumor-derived can progress HUVEC's proliferation, adhesion and migration ability, and then would progress angiogenesis.
引文
1. Yang L. Incidence and mortality of gastric cancer in China. World J Gastroenterol [J].2006,12(1):17-20
    2.陈志新,张波.胃癌综合治疗现状及展望.中国普外基础与临床杂志[J].2008,15(1):71-3
    3. Chambers AF,Groom AC,MacDonald IC.Dissemination and growth of cancer cells in mestastatic sites [J]. Nat Rev Cancer,2002,2(8):562-72
    4. Cao RH, Brakenhielm E, Pawliuk R, et al. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med,2003,9:604-613
    5. Park LH, Schmidt M, Jin SW, et al. The endothelial-cell-derived secreted factor EGFL7 regulates vescular tube formation [J]. Nature,2004,428:754-758
    6. Soncin F, Mattot V, Lionneton F, et al. VE-statin, an endothelial repressor of smooth muscles cell migration [J]. EMBO J,2003,22:5700-5711
    7. Campagnolo L, Leahy A, Chitnis S, et al. EGFL7 is a chamoattractant for endothelial cells and is up-regulated in angiogenesis and arterial injury [J]. American Journal of Pathology,2005,167:275-284
    8. Morgenbesser SD, Dufault MR, Martin TS, et al. Characterization of EGFL7 expression and function in tumorigenesis and angiogenesis. Proceedings of the American Association for Cancer Research Annual Meeting,2005,46:1103
    9. Wu F, Yang LY, Li YF, et al. Novel role epidermal growth factor-like domain 7 in metastasis of human hepatocellular carcinoma. [J]. Hepatology,2009, Dec,50(6):1839-50
    10. Huang CH, Li XJ, Zhou YZ, et al. Expression and clinical significance of EGFL7 in malignant glioma. [J]. J Cancer Res Clin Oncol.2010. Mar 6.[Epub ahead of print]
    11. Sun Y, Bai Y, Zhang F, Wang Y, Guo Y, Guo L. miR-126 inhibits non-small cell lung cancer cells proliferation by targeting EGFL7. Biochem Biophys Res Commun,2010,391(3):1483-9
    12. Remmele W, Stegner HE. Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER 2 ICA) in breast cancertissue [J]. Pathologe,1987,8(3): 138-40
    13. Weidner N, Folkman J, Pozza F, et al. Tumor angiogenesis:a new significant and independent prognostic indicator in early stage breast carcinoma [J]. J Natl Cancer,1992.84 (24):1875-1887.
    14.贾麾,宋永喜,王洪.胃癌侵袭转移相关基因研究进展.现代生物医学进展,2008,8(12):2583-5
    15.李惠,叶庆,殷晓进,李运曼.肝细胞肝癌血管新生的研究进展.临床肿瘤学杂志,2009,14(4):369-72
    16. Carmeliet P. Angiogenesis in health and disease. Nat Med,2003,9:653-60
    17. Delongchamp sNB, PeyromaureM. The role of vascular endothelial growth factor in kidney and p rostate cancer[J]. Can J Urol,2007,14 (5):3669-3677
    18. Doliana R, Bot S, Bonaldo P, et al. EMI, a novel cysteine-rich domain of EMILINs and other extracellular proteins, interacts with the gC1q domain and participates in multimerization [J]. FEBS Lett,2000,484:164-168
    19. Callebaut I, Mignotte V, Souchet M, et al. EMI domains are widespread and reveal the probable orthologs of the Caenorhabditis elegans CED-1 protein [J]. Biophys. Res. Commun,2003,300:619-623
    20. Fitch M. J.,Campagnolo L,Kwhnet F,et al.EGFL7,a novel epidermal growth factor-domain gene expressed in endothelial cells [J]. Developmental Dynamics, 2004,230:316-324
    21. Schmidt M,Paes K,Maziere AD,et al.EGFL7 regulates the collective migration of endothelial cells by restricting their spital distribution [J]. Development,2007,1 34:2913-2923
    22. Rossant J,Hirashima M.Vascular development and patterning:making the right choices[J].Curr Opin Genet Dev,2003,408-412
    23. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis [J]. Nat Med,2000, 6:389-395
    24. Folkman J, D'Amore PA. Bloods vessel formation:what is its molecular basis [J]. Cell,1996,87:1153-1155
    25. Risau W.Mechanisms if angiogenesis [J]. Nature,1997,386:671-674
    26. Folkman J. Fundamental concepts of the angiogenic process [J]. Curr Mol Med, 2003,3:643-651
    27. Rossant J, Howard L. Signaling pathways in vascular development [J].Annu Rev Cell Dev Biol,2002,18:541-573.
    28. Yancopoulos GD, Davis S, Gale NW, et al. Vescular-specific growth factors and blood vessel formation [J]. Nature,2000,407:242-248
    29. Tallquist MD, Soriano P, Klinghoffer RA. Growth factor signaling pathways in vascular development [J]. Oncogene,1999,18:7917-7932
    30. Iso T, Kedes L, Hamamori Y. HES and HERP families:multiple effectors of the Notch signaling pathway [J]. J Cell Physiol,2003,194:237-255
    31. Gridley T. Notch signaling during vascular development [J]. Proc Natl Acad Sci USA,2001,98:5377-5378
    32.张晓东,宋保利,方敬爱,正常大鼠腹膜透析模型中腹膜血管新生与HIF-1α及VEGF的表达研究。中国中西医结合肾病杂志,2008,3(9):242-244
    33.倪永兵,王斌,肖继皋.低氧诱导因子Ⅰ和血管内皮生长因子与血管再生[J].国外医学生理、病理与临床分册,2002,22(3):266-269.
    34.涉古正史.VEGFと血管[J].实验医,2000,18(5):701-707.
    35.朱建伟,郁宝铭.血管内皮生长因子家族及其受体的结构、功能分析及应用研究进展[J].医学综述,2002,8(4):192.193.
    36.黄世杰.血管新生的生物学:最重要的分子机制[J].国际药学研究杂志,2008,2(35):65-67
    37. Seghezzi G,Patel S,Ren CJ,et al.Fibroblast growth factor-2 (FGF-2) induces cascular endothelial growth factor(VEGF)expression in the endothelial cells of forming capillaries:an autocrine mechanism contributing to angiogenesis.J Cell Biol,1998,141(7):1659-1673
    38.余瑛.成纤维细胞生长因子(FGFs)促进血管形成的研究进展[J].微循环杂志,2003,13(4):58-60
    39. Fire A,Xu S,Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J].Nature,1998,391 (6669):806-811.
    40. Brummelkamp TR, Bernards R, Agarni R. A system for stalbe expression of short interfering RNAs in mammalian cells. Science,2002; 296(5567):550-553
    41. Yu JY, DeRuiter SL, Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA,2002,99(9):6047-6052
    42. Ribatti D, Nico B, Crivellato E, et al. The structure of the vascular network of tumors[J]. Cancer Lett,2007,248(1):18-23.
    43. Prince LS. Hyperoxia and EGFL7:saving cells from too much of a good thing[J]. Am J Physiol Lung Cell Mol Physiol,2008,294(1):L15-16
    44. Rossant J, Hirashima M. Vascular development and patterning:making the right choices [J]. Curr Opin Genet Dev,2003,408-412
    [1]Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in mestastatic sites [J]. Nat Rev Cancer,2002,2 (8):562-72
    [2]Bernards R. Cancer:cue for migration [J]. Nature,2003,425 (6955):247-8
    [3]Oppenheimer SB. Cellular basisi of cancer mestastasis:A review of fundamentals and new advances [J]. Acta Histochem,2006,108 (5):327-34
    [4]Woodhouse EC, Chuaqui RF, Liotta LA. General mechanisms of mestastasis [J]. Cancer,1997,80 (8-suppl):1529-37
    [5]Mundy GR, Demartino S, Rowe DW. Collagen and collagen-derived fragments are chemotactic for tumor cells [J]. J Clin Invest,1981,68:1102-5
    [6]Park LH, Schmidt M, Jin SW, et al. The endothelial-cell-derived secreted factor EGFL7 regulates vescular tube formation [J]. Nature,2004,428:754-758
    [7]Soncin F, Mattot V, Lionneton F, et al. VE-statin, an endothelial repressor of smooth muscles cell migration [J]. EMBOJ,2003,22:5700-5711
    [8]Doliana R, Bot S, Bonaldo P, et al. EMI, a novel cysteine-rich domain of EMILINs and other extracellular proteins, interacts with the gC1q domain and participates in multimerization [J]. FEBS Lett,2000,484:164-168
    [9]Callebaut I, Mignotte V, Souchet M, et al. EMI domains are widespread and reveal the probable orthologs of the Caenorhabditis elegans CED-1 protein [J]. Biophys. Res. Commun,2003,300:619-623
    [10]Stenflo J, Stenberg Y, Muranyi A. Calcium-bingding EGF-like modules in coagulation proteinases:function of the calciumion in module interactions [J]. Biochim. Biophy. Acta,2000,1477:51-63
    [11]Fehon R. G., Kooh P. J., Rebayl, et al. Molecular interactions between the protein products of the neurogenic loci Notch and Delta, two EGF-homologous genes in Drosophiala [J]. Cell,1990,523-534
    [12]Van der weiden R. M., Wisse L. J., Helmerhorst F. M., et al. Immunohistochemical and ultrastructural localization of prostaglandin H synthase in the preimplantation mouse embryo [J]. J Reprod Fertil,1996,107: 161-166
    [13]Fitch M. J., Campagnolo L, Kwhnet F, et al. EGFL7, a novel epidermal growth factor-domain gene expressed in endothelial cells [J]. Developmental Dynamics, 2004,230:316-324
    [14]Rao Z, Handford P, Mayhew M, et al. The structure of a Ca2+-bingding epidermal growth factor-like domain:its role in protein-protein interaction [J]. Cell,1995,82:131-141
    [15]Downing A. K., Knott V, Werner J. M., et al. Solution structure of a pair of calcium-binding epidermal growth factor-like domains:implications for the Manfan syndrome and other genetic disorders [J]. Cell.1996,85:597-605
    [16]Handford P. A., Mayhew M, Baron M, et al. Key residues involved in calcium-bingding motifs in EGF-like domains [J]. Nature,1991,351:164-167
    [17]Putnam E. H., Zhang H, Ramirez F, et al. Fibrillin-2 (FBN2) mutations result in the Manfan-like disorder, congenital contractural arachnodactyly [J]. Nat Genet,1995,11:456-458
    [18]Wu Y. S., Bevilacqua V. L., Berg J. M. Fibrillin domain folding and calcium bingding:significances to Manfan syndrome [J]. Chem Biol,1995,2:91-97
    [19]Reinhardt D. P., Ono R. N., Botbohm H, et al. Mutations in calcium-binding epidermal growth factor modules render fibrillin-1 susceptile to proteolysis. A spetential disease-causing mechanism in Manfan syndrome [J]. J Biol Chem, 2000,275:12339-12345
    [20]Sato T. N., Qin Y, Zozak C. A., et al. Tie-1 and tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system [J]. Proc. Natl Acad. Sci. USA,1993,90:9355-9358
    [21]Chnurch H., Risau W. Expression of tie-2, a member of a novel family of receptor tyrosine kinases, in the endothelial cell lineage [J]. Development, 1993,119:957-968
    [22]Breier G., Breviario F., Caveda I., et al. Molecular cloning and expressing of murine vascular endothelial-cadherin in early stage development of cardiovascular system [J]. Blood,1996,87:630-641
    [23]Dumont D. J., Fong G. H., Puri M. C., et al. Vascularization of the mouse embryo:a study of flk-1, tek, tie and vascular endothelial growth factor expression during development [J]. Dev. Dyn,1995,203:80-92
    [24]Campagnolo L, Leahy A, Chitnis S, et al. EGFL7 is a chamoattractant for endothelial cells and is up-regulated in angiogenesis and arterial injury [J]. American Journal of Pathology,2005,167:275-284
    [25]Obeso J, Weber J, Auerbach R. A hemangioendothelioma-derived cell line: its use as a model for the study of endothelial cell biology [J]. Lab Invest,1990, 63:259-269
    [26]Wang SJ, Greer P, Auerbach R. Isolation and propagation of yolk-sac-derived endothelial cells from a hypervascular transgenic fps/fes proto-oncogene [J]. In Vitro Cell Dev Biol Anim,1996,32:292-299
    [27]O'Connell KA, Edidin M. A mouse lymphoid endothelial cell line immortalized by simian virus 40 binds lymphocytes and retains functional characteristics of normal endothelial cells [J]. J Immunol,1990,144:521-525
    [28]Carmeliet P. Mechanisms of angiogenesis and arteriogenesis [J]. Nat Med,2000, 6:389-395
    [29]Folkman J, D'Amore PA. Bloods vessel formation:what is its molecular basis [J]. Cell,1996,87:1153-1155
    [30]Risau W. Mechanisms if angiogenesis [J]. Nature,1997,386:671-674
    [31]Carmeliet P. Angiogenensis in health and disease [J]. Nat Med,2003,9:653-660
    [32]Folkman J. Fundamental concepts of the angiogenic process [J]. Curr Mol Med, 2003,3:643-651
    [33]Hanhan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis [J]. Cell,1996,86:353-364
    [34]Folkman J. Role of angiogenesis in tumor growth and metastasis [J]. Semin Oncol,2002,16 (suppl6):15-18
    [35]Rossant J, Howard L. Signaling pathways in vascular development [J]. Annu Rev Cell Dev Biol,2002,18:541-573
    [36]Yancopoulos GD, Davis S, Gale NW, et al. Vescular-specific growth factors and blood vessel formation [J]. Nature,2000,407:242-248
    [37]Tallquist MD, Soriano P, Klinghoffer RA. Growth factor signaling pathways in vascular development [J]. Oncogene,1999,18:7917-7932
    [38]Iso T, Kedes L, Hamamori Y. HES and HERP families:multiple effectors of the Notch signaling pathway [J]. J Cell Physiol,2003,194:237-255
    [39]Gridley T. Notch signaling during vascular development [J]. Proc Natl Acad Sci USA,2001,98:5377-5378
    [40]Rossant J, Hirashima M. Vascular development and patterning:making the right choices [J]. Curr Opin Genet Dev,2003,408-412
    [41]Schmidt M, Paes K, Maziere AD, et al. EGFL7 regulates the collective migration of endothelial cells by restricting their spital distribution [J]. Development, 2007,134:2913-2923
    [42]Bjorkeru S. Effects of transforming growth factor-β1 on human arterial smooth muscle cells in vitro. Arterioscler [J]. Thromb,1991,11:892-902
    [43]Hashizume H, Baluk P, Morikawa S, et al. Openings between defective endothelial cells explain tumor vessel leakiness [J]. Am J Pathol.2000 Apr, 156 (4):1363-80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700