用户名: 密码: 验证码:
厌氧反应器的运行与在线监测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
厌氧生物处理技术在去除污染物的同时生成氢气或者甲烷,具有广阔的应用前景。但厌氧反应器的运行容易出现不稳定的问题,限制了它的推广应用。因此,很有必要实现对厌氧反应器的在线监测。但目前尚缺少针对厌氧反应器的实用检测方法和技术。
     本论文以上流式厌氧污泥床(UASB)反应器为对象,研究了有机废水连续厌氧发酵产氢工艺特性,优化了系统的主要工艺参数;以监测和优化厌氧产甲烷反应器的运行为目的,分别研发出了液相产物的监测系统和气相产物的监测系统,并对厌氧反应器的预警因子及其机制进行了系统的探索。主要研究内容和结果如下:
     1、研究了pH和水力停留时间(HRT)对连续流产氢UASB反应器的液相产物和氢气产生的影响。研究表明:液相产物中以丁酸和乙酸为主,己酸和戊酸在某些pH值下含量较高;在pH=7.0和9.0时氢气产率较高,说明反应器中存在对碱性环境较为适应的产氢微生物;通过热力学分析解析了戊酸和己酸的生成途径,发现在戊酸和已酸的生成过程中,氢气作为反应物而被消耗,以致H_2产率的降低,因此应改变反应器的运行条件以减少戊酸和己酸的生成;在HRT从30h逐渐降到3h的过程中,氢气的分压和产率变化不明显,液相产物以丁酸为主,底物降解效率保持在92%以上,说明HRT对产氢反应器的影响并不明显。
     2、将产氢UASB反应器的底物由蔗糖改变为乳糖后,氢气的分压和氢气产率出现明显的下降,同时己酸浓度迅速降低,乙酸和丙酸含量显著升高,高的乙酸产率对氢气的生成并没有做出贡献,证明反应器中同型产乙酸反应的存在。
     3、以UASB反应器的液相产物为监测对象,设计并研制了基于单片机、放大器、数据采集芯片的pH电极信号的数据采集和控制电路,研发了基于步进电机、精密滴定管和精密平移台的精密滴定装置,编写了基于Visual Basic语言的用于自动滴定的用户界面程序;将三者有机接合在一起,构建了用于测定厌氧反应器挥发性有机酸VFA浓度和碱度的自动滴定系统;将该系统应用于两步滴定法和五点滴定法的验证,发现滴定结果与气相色谱测定结果具有较好的相关性,测试结果证明该系统的具有良好的精密度和重现性;根据酸碱平衡理论,推导出用于VFA、碳酸盐和磷酸盐滴定的六点滴定模型,并通过滴定实验证明该模型对VFA和碳酸盐的测定结果优于两步法和五点法;该系统也能够用于对磷酸盐的测定。
     4、以UASB反应器的气相产物为监测对象,基于红外气体传感器和数据采集器,并通过Visual Basic编程,构建了反应器主要气相产物CH_4和CO_2的在线监测系统;利用该系统对UASB产甲烷反应器进行了监测和分析,结果表明该系统可以连续精准、稳定地测定反应器中CO_2和CH_4的实时浓度,能够连续准确地反映厌氧反应器的产气状态。
     5、集成本研究研发的液相VFA滴定系统和气相CH_4和CO_2监测系统,分析了底物浓度负荷和水力负荷对产甲烷UASB反应器的影响。当进水浓度负荷达到25g/L COD后,UASB反应器开始出现“酸败”现象:VFA滴定系统监测到了VFA的积累过程,但此时CH_4/CO_2分压和pH无明显变化;发现了辅酶F_(420)荧光峰对浓度负荷的敏感性,说明它可以用于预测酸败现象的发生;UASB反应器对水力负荷的承受能力要高于浓度负荷,反应器在5g/LCOD和8h的HRT条件下仍能保持较稳定的出水质量和较高的产甲烷菌活性,同时也证明所研制厌氧反应器在线监测系统的稳定性和有效性。
Anaerobic process could be used to degrade pollutants and generate energy (hydrogen or methane)simultaneously.It is cost-effective and environmentally friendly,and therefore becomes a favorable technique in the fields of both environmental and energy engineering.However,anaerobic reactors sometimes become unstable after the changes of environmental conditions or operating factors, which limits its application.Therefore,it is important to find out appropriate ways to monitor anaerobic reactors.
     In the present study,the technical aspects of fermentative biohydrogen production were investigated with an upflow anaerobic sludge blanket(UASB) reactor.The main operating parameters were optimized,and the thermodynamic analysis of biohydrogen production process was also performed.To monitor methanogenic reactors,a system for determining the liquor products and another for gas products were developed.The factors to cause the running errors of the monitoring system were investigated systematically and in depth.Main contents and results of the present work are as follows:
     1.The influences of pH,one of the main operating parameters,on biohydrogen production in a UASB reactor were studied.As the pH was increased from 6.1 to 9.5, the main aqueous products were butyrate and acetate,while the concentrations of caproate and valerate were significant at several pH levels.The maximum H_2 partial pressure was observed at pH 7.5,while both maximum H_2 production rate and H_2 yield were found at pH 7.0 and 9.0.This indicates that some microbes in the reactor preferred basic culture conditions.With a thermodynamic analysis,possible metabolic pathways for the formation of caproate and valerate were proposed.Results indicate that H_2 might be a reactant and could be consumed in the formation of valerate and caproate.
     2.In a similar way,the influences of hydraulic retention time(HRT),another important operating parameter,on biohydrogen production were also evaluated.After the HRT was decreased from 30h to 3h,the H_2 pressure changed slightly,while the max H_2 yield was found at an HRT 30h.The main aqueous product was butyrate,and the substrate degradation efficiency kept above 97%.The experimental results demonstrated that the influence of HRT on biohydrogen production was not significant.
     3.After the substrate was shifted from 10g/L sucrose to 10g COD/L lactose, both H_2 partial pressure and H_2 yield dropped.The caproate concentration decreased, while the acetate and propionate concentrations increased.Acetate became the main aqueous product,but the H_2 partial pressure and H_2 yield dropped to 0.07 atm and 0.008 mol-H_2/mol-sugar,respectively,which indicates that the homoacetogenic bacteria might exist in the reactor.
     4.Based on single chip microcomputer,amplifier and data acquisition chip,a circuit board was designed and printed to acquisition pH signals and control titration actions.With a stepping motor,burette and precision linear stage,a titration apparatus was fabricated to dose titrating solution quantitatively.A user interface program was compiled for controlling the titration process,and an online titration system to measure VFA and carbonate was assembled with the three parts above.This system had a good precision and repeatability,and was used to verify the 2-step and 5-point titration methods.The VFA titration results had a close correlation with those from the GC method.A 6-point titration model was developed according to the acid and alkali equilibrium theory.This model was used to measure VFA,bicarbonate and phosphate.The 6-point titration model was verified by the titration system,and had achieved satisfying results with the measurement of VFA and bicarbonate.
     5、With Infrared methane/carbon dioxide sensors,data acquisition unit and programming with Visual Basic language,an online CH_4/CO_2 monitoring system for anaerobic reactors was developed.This system was applied to a methanogenic UASB reactor.The monitoring data show that this monitoring system could record and display the gas partial pressure in situ.It was appropriate for biogas monitoring with a good precision.
     6.The VFA titration system and CO_2/CH_4 online monitoring system were integrated to monitor a lab-scale UASB methanogenic reactor.The COD concentration of the influent and the hydraulic retention time(HRT)were changed respectively and the reactor responses were monitored.After the influent COD reached 25g/L,the VFA concentration increased gradually and finally the reactor failed.The increase in VFA concentration from 96 mg/L to 1505 mg/L was recorded by the titration system before the effluent pH and the CH_4 partial pressure decreased suddenly,which demonstrates that the VFA titration system worked well and could give an earlier warning of the VFA-increasing risk.Fluorescence of coenzyme F_(420) could also be used for predicting acidification of the reactor.The UASB reactor had a low VFA concentration and stable CH_4/CO_2 partial pressure when the HRT was changed from 41h to 8h,indicating that the reactor had a better adaptability to an HRT shock than to a COD concentration shock.
引文
[1]李文华,杨修.2002.环境与发展.科学技术文献出版社.
    [2]Bockris JOM.2002.The origin of ideas on a Hydrogen Economy and its solution to the decay of the environment.Int.J.Hydrogen Energy 27(7-8):731-740.
    [3] Zeikus JG, Weimer PJ, Nelson DR, Daniels, L.1975. Bacterial methanogenesis: acetate as a methane precursor in pure culture. Arch. Microbiol. 104 (1): 129-134.
    [4] Zeikus JG. 1979. Microbial populations in digesters, Anaerobic Digestion, London: Applied Science Publishers.
    [5] Bryant MP, Wolin EA, Wolin MJ, Wolfe RS. 1967. Methanobacillus. omelianskii, a symbiotic association of two species of bacteria. Arch. Microbiol. 59:20- 31
    
    [6] 朱核光,史家梁.2002.生物产氢技术研究进展.应用和环境生物学报.8(1):98-104.
    
    [7] Hawkes FR, Dinsdale R, Hawkes DL, 2002. Hussy I. Sustainable fermentative hydrogen production: challenges for process optimization. Int. J. Hydrogen Energy. 27: 1339-1347.
    [8] Hallenbeck PC, Benemann JR. 2002. Biological hydrogen production: fundamentals and limiting process. Int. J. Hydrogen Energy. 27: 1185-1193.
    [9] Greenbaum E, Lee JW, Blankinship SL. 1999. Renewable hydrogen production by photosynthetic water splitting. Abstracts of Papers of the American Chemical Society. 8(22): 218.
    [10] Hans Z, Reinhard B. 1982. Aspects of growth and hydrogen production of the photosynthetic bacterium Rhodospirillum rubrum in continuous cultures. Biomass. 2(3): 165-174.
    [11] Singh SP, Srivastava SC. 1991. Isolation of non-sulfur photosynthetic bacterial strains efficient in hydrogen production at elevated temperatures. Int. J. Hydrogen Energy. 16(6): 403-405.
    [12] Gogotov IN, Zorin NA, Serebriakova LT. 1991. Hydrogen production by model systems including hydrogenase from phototrophic bacteria. Int. J. Hydrogen Energy. 16(6): 393-396.
    [13] Gaffron H, Rubin J. 1942. Fermentative and photochemical production of hydrogen in algae. J. Gen. Physiol. 26: 219-240.
    [14] Chadwick LJ, Irgens RL. 1991. Hydrogen Gas Production by an Ectothiorhodospira vacuolata strain. Appl. Environ. Microbiol. 57: 594-596.
    [15]Lichtl RR,Bazin MJ,Hall DO.1997.The biotechnology of hydrogen production by Nostoc flagelliforme grown under chemostat conditions.Appl.Microbiol.Biotechnol.47(6):701-707.
    [16]Gubili J,Borthakur D.1996.The use of a PCR cloning and screening strategy to identify lambda clones containing the hupB gene of Anabaena sp.strain PCC7120.J.Microbiol.Meth.27(2-3):175-182.
    [17]梁建光,吴永强.2002.生物产氢研究进展.微生物学通报.29(6):81-85.
    [18]Nandi R,Sengupta S.1998.Microbial production of hydrogen:an overview.Crit.Rev.Microbiol.24(1):61-84.
    [19]张克旭.1982.微生物发酵的代谢和控制.轻工业出版社.
    [20]胡永松,1987.王忠彦.微生物与发酵工程.四川大学出版社.
    [21]Gujer W,Zehnder AJB.1983.Conversion processes in anaerobic digestion.Wat.Sci.Tech.15:127-167.
    [22]Zinder SH.1984.Microbiology of anaerobic conversion of organic waste to methane:recent development.ASM News.50:294-298.
    [23]Tanisho S,Kuromoto M.,Kadokura N.1998.Effect of CO_2 removal of hydrogen production by fermentation.Int.J.Hydrogen Energy.23:559-563.
    [24]任南琪.1993.有机废水处理生物产氢原理与工程控制对策研究.哈尔滨.哈尔滨建筑大学博士学位论文.
    [25]Tanisho S,Ishiwata Y.1994.Continuous hydrogen production from molasses by the bacterium Enterobacter Aerogenes.Int.J.Hydrogen Energy.19:807-812.
    [26]Tanisho S,Ishiwata Y,1995.Continuous hydrogen production from molasses by fermentation using urethane foam as a support of flocks.Int.J.Hydrogen Energy.20:541-545.
    [27]贺延龄.1998.废水的厌氧生物处理.北京:中国轻工业出版社.
    [28]Schroepfer GJ.1955.The anaerobic contact process as applied to packinghouse wastes,Sewage and Ind.Wastes.27(4):460-480.
    [29]管运涛等.1998.两相厌氧膜生物系统处理有机废水的研究.环境科学.19(6):56-59.
    [30]Zaiat M,Rodrigues JAD,Ratusznei SM,Camargo EFM,Borzani W.2001. Anaerobic sequencing batch reactors for wastewater treatment:a developing technology.Appl.Microbiol.Biotechnol.55:29-35.
    [31]Sekiguchi Y,Kamagata Y,Ohashi A,Harada H.2002.Molecular and conventional analyses of microbial diversity in mesophilic and thermophilic upflow anaerobic sludge blanket granular sludges.Water Sci.Technol.45:19-25.
    [32]Show KY,Tay JH,Yang LM,Wang Y,Lua CH.2004.Effects of stressed loading on startup and granulation in upflow anaerobic sludge blanket reactors.J.Environ.Eng.-ASCE.130:743-750.
    [33]Show KY,Wang Y,Foong SF,Tay JH.2004.Accelerated start-up and enhanced granulation in upflow anaerobic sludge blanket reactors.Water Res.38:2293-2304.
    [34]Sponza DT.2005.Biotransformation of carbon tetrachloride and anaerobic granulation in an upflow anaerobic sludge blanket reactor.J.Environ.Eng.-ASCE.131:425-433.
    [35]王凯军,左剑恶,甘海南等.2002.UASB工艺的理论与工程实践.中国环境科学出版社.
    [36]Rintala J,Lepisto S,Ahring B.1993.Acetate degradation at 70-degrees in upflow anaerobic sludge blanket reactors and temperature response of granules grown at 70℃.Appl.Environ.Microbiol.59:1742-1746.
    [37]Dinsdale RM,Hawkes FR,Hawkes DL.1997.Comparison of mesophilic and thermophilic upflow anaerobic sludge blanket reactors treating instant coffee production wastewater.Water Res.31:163-169.
    [38]Karim K,Gupta SK.2001.Biotransformation of nitrophenols in upflow anaerobic sludge blanket reactors.Bioresource Technol.80:179-186.
    [39]Annachhatre AP,Amornkaew A.2001.Upflow anaerobic sludge blanket treatment of starch wastewater containing cyanide.Water Environ Res.73:622-632.
    [40]Sponza DT.2001.Performance of upflow anaerobic sludge blanket(UASB)reactor treating wastewaters containing carbon tetrachloride.World J.Microbiol. Biotech.17:839-847.
    [41]Buzzini AP,Pires EC.2002.Cellulose pulp mill effluent treatment in an upflow anaerobic sludge blanket reactor.Process Biochem.5:707-713.
    [42]Saatci Y,Arslan EI,Konar V.2003.Removal of total lipids and fatty acids from sunflower oil factory effluent by UASB reactor.Bioresource Technol.87:269-272.
    [43]Keyser M,Witthuhn RC,Ronquest LC,Britz TJ.2003.Treatment of winery effluent with upflow anaerobic sludge blanket(UASB)-granular sludges enriched with Enterobacter sakazakii.Biotechnol.Lett.25:1893-1898.
    [44]Bhoi ZMP,Mehrotra I,Shrivastava AK.2003.Treatability studies of black liquor by upflow anaerobic sludge blanket reactor.J.Environ.Sci.Heal.A 2:307-313.
    [45]Ye FX,Shen DS,Feng XS.2004.Anaerobic granule development for removal of pentachlorophenol in an upflow anaerobic sludge blanket(UASB)reactor.Process Biochem.39:1249-1256.
    [46]Veeresh GS,Kumar P,Mehrotra I.2005.Treatment of phenol and cresols in upflow anaerobic sludge blanket(UASB)process:a review.Water Res.39:154-170.
    [47]Buzzini AP,Gianotti EP,Pires EC.2005.UASB performance for bleached and unbleached kraft pulp synthetic wastewater treatment.Chemosphere 59:55-61.
    [48]Monroy O,Fama G,Meraz M,Montoya L,Macarie H.2000.Anaerobic digestion for wastewater treatment in Mexico:state of the technology.Water Res.34:1803-1816.
    [49]Lettinga G,van Haadel AC.1993.Anaerobic digestion for energy production and environmental protection in:TB Johnanaaon et al.,(eds).Renewable Energy,Sources for Fuel and Electricity.Washington DC:Island Press.817-839.
    [50]李小明,陈绍宜.1998.环境生物技术与水污染控制.湖南大学学报.25:78-82.
    [51]Chernicharo CAL,Machado RMG 1998.Feasibility of the UASB/AF system for domestic sewage treatment in developing countries. Water Sci. Technol. 38: 325.
    [52] Agdag ON, Sponza DT. 2005. Anaerobic/aerobic treatment of municipal landfill leachate in sequential two-stage up-flow anaerobic sludge blanket reactor (UASB)/completely stirred tank reactor (CSTR) systems. Process Biochem 40: 895-902.
    [53] Young JC, Kim IS, Page IC, Wilson DR, Brown GJ, Cocci AA. Two-stage anaerobic treatment of purified terephthalic acid production wastewaters. Water Sci Technol 2000; 42: 277-282.
    [54] Kappell AS, Semmens MJ, Novak PJ, LaPara TM. Novel application of oxygen-transferring membranes to improve anaerobic wastewater treatment. Biotechnol Bioeng 2005; 89: 373-380.
    [55] Ohtsuki T, Watanabe M, Miyaji Y. 1992. Start up of thermophilic UASB (Upflow Anaerobic Sludge Blanket) reactors using micro-carrier and mesophilic granular sludge. Water Sci. Technol. 26: 877-886.
    [56] Jayantha KS, Ramanujan TK. 1995. Start-up criteria for an upflow anaerobic sludge blanket (UASB) reactor. Bioproce Eng. 13: 307-310.
    [57] Yan YG, Tay JH. 1997. Characterisation of the granulation process during uasb start-up. Water Res. 31: 1573-1580.
    [58] Lettinga G, Hulshoff Pol LW, Koster IW, Weigent WM, de Zeeuw WJ, Rinzema A, Grin PC, Roersma RE, Hobma SW. 1984. High rate anaerobic wastewater treatment using the UASB reactor under a wide range of temperature conditions. Biotechnol. Genetic. Engrg. Reviews 2:253-284.
    [59] Vereijken T, Ljspeert P. 1992. Anaerobic industrial wastewater treatment. Seminar on Biotechnological Wastewater Treatment. The Netherlands: Paques BV.
    [60] Alphenaar A. 1994. Anaerobic granular sludge: characterization and factors affecting its functioning. PhD. thesis. The Netherlands: WAU.
    [61] Thaveesri J, Liessens B, Verstraete W. 1995. Granular sludge growth under different reactor liquid surface tensions in lab-scale upflow anaerobic sludge blanket reactors treating waste-water from sugar-beet processing. Appl. Microbiol. Biotechnol. 43: 1122-1127.
    [62] Lepisto SS, Rintala JA. 1997. Start-up and operation of laboratory-scale thermophilic upflow anaerobic sludge blanket reactors treating vegetable processing wastewaters. J. Chem. Technol. Biotechnol. 68: 331-339.
    [63] Yu HQ, Fang HHP, Tay JH. 2001. Enhanced sludge granulation in upflow anaerobic sludge blanket (UASB) reactors by aluminum chloride. Chemosphere 44:31-36.
    [64] Liu Y, Xu HL, Yang SF, Tay JH. 2003. Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor. Water Res. 37: 661-673.
    [65] Wang Y, Show KY, Tay JH, Sim KH. 2004. Effects of cationic polymer on start-up and granulation in upflow anaerobic sludge blanket reactors. J. Chem. Technol. Biotechnol. 79: 219-228.
    [66] Hulshoff Pol LW. 1989. The phenomenon of granulation of anaerobic sludge. PhD. thesis. The Netherlands: WAU.
    [67] Schmidt JE, Ahring BK. 1996. Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnol. Bioeng. 49: 229-246.
    [68] Liu Y, Xu HL, Show KY, Tay JH. 2002. Anaerobic granulation technology for wastewater treatment. World J. Microb. Biot. 18: 99-113.
    [69] Hulshoff Pol LW, de Castro Lopes SI, Lettinga G, Lens PNL. 2004. Anaerobic sludge granulation. Water Res. 38: 1376-1389.
    [70] Lay JJ. 2000. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol. Bioeng., 68(3): 269-278.
    [71] Fang HHP, Liu H. 2002. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technol. 82: 87-93.
    [72] Lin CY, Chang RC. 1999. Hydrogen production during the ananerobic acidogenic conversion of glucose. J. Chem. Technol. Biotechnol. 74: 498-500.
    [73] Ren NQ, Wang BZ, Huang JC. 1997. Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnol. Bioeng. 54(5): 428-433.
    [74]Lin CY,Jo CH.2003.Hydrogen production from sucrose using an anaerobic sequencing batch reactor process.J.Chem.Technol.Biotechnol.78:678-684.
    [75]Lee KS,Lo YS,Lo YC,Lin PJ,Chang JS.2003.H_2 production with anaerobic sludge using activated-carbon supported packed-bed bioreactors.Biotechnol.Lett.25:133-138.
    [76]Chen CC,Lin CY.2003.Using sucrose as a substrate in an anaerobic hydrogen-producing reactor.Adv.Environ.Res.7:695-699.
    [77]Yu HQ,Zhu ZH,Hu WR,Zhang HS.2002.Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic culture.Int.J.Hydrogen Energy.27:1359-1365.
    [78]Lay,JJ,2001.Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose.Biotechnol.Bioeng.74:280-287.
    [79]Chang JS,Lee KS,Lin PJ.2002.Biohydrogen production with fixed-bed bioreactors.Int.J.Hydrogen Energy.27:1167-1174.
    [80]周洪波,Ralf CR,陈坚,任洪强.2000.产酸相中氧化还原电位控制及其对葡萄糖厌氧发酵产物的影响.中国沼气.18(4):20-23.
    [81]Yenigun O,Kizilgun F,Yilmazer G.1996.Inhibition effects of zinc and copper on volatile fatty acid production during anaerobic digestion.Environ.Technol.,17:1269-1274.
    [82]Fang HHP,Chen T,Chan OC.1995.Toxic effects of phenolic pollutants on anaerobic Benzoate-degrading granules.Biotechnol.Lett.17(1):117-120.
    [83]Lay JJ,Li YY,Noike T.1998.The influence of pH and ammonia concentration on the methane production in high-solids digestion processes.Water Environ.Res.,70(5):1075-1082.
    [84]Moosbrugger RE,Wentzel MC,Ekama GA,Marais GvR.1993.Weak acid/bases and pH control in anaerobic systems-a review.Water.SA.,19:1-10.
    [85]Speight JG.2005.Lange's Handbook of Chemistry.16th ed.New York:McGraw-Hill.
    [86]Wilhelm E,R Battino,R J Wilcock.1977.Low-pressure solubility of gases in liquid water.Chem.Rev.77:219-262.
    [87]Morgan OM,O Maass.1931.An investigation of the equilibria existing in gas-water systems forming electrolytes.Can.J.Res.5:162-199.
    [88]Stumm WQ,Morgan JJ.著.汤鸿霄译.1987.水化学-天然水体化学平衡导论.北京:科学出版社.
    [89]G.K.Anderson,G.Yang.1992.Determination of bicarbonate and total volatile acid concentration in anaerobic digesters using a simple titration Water Environ.Res.,64(1):53-59.
    [90]Moosbrugger RE,Wentzel MC,Loewenthal RE,Ekama GA and Marais GvR.1993.A 5-point titration method to determine the carbonate and SCFA weak acid/bases in aqueous solution containing also known concentrations of other weak acid/bases.Water SA 19:29-39.
    [91]Moosbrugger RE,Wentzel MC,Ekama GA,Marais GvR.1993.A 5-point titration method for determining the carbonate and SCFA weak acid/bases in anaerobic systems.Wat.Sci.Tech.28:237-245
    [92]O Lahav,BE Morgan.2004.Titration methodologies for monitoring of anaerobic digestion in developing country-a review.J.Chem.Technol.Biot.79:1331-1341.
    [93]刘敏,唐祯安,张洪泉.2007.基于非分散红外(NDIR)原理的煤矿甲烷检测仪.3:18-20.
    [94]程勇,张玉峰.2006.一种新型高可靠性甲烷传感器设计.工业仪表与自动化装置.4:69-71.
    [95]孙纲灿,周常柱,苏贝.2005.用单片机实现瓦斯探测器.微计算机信息,8(2):66-68.
    [96]王子江,潘云,叶向荣,夏益民.1994.光干涉式甲烷浓度检测系统的研制.传感技术学报.4:55-58.
    [97]丁蕾,刘文清,张玉钧,司福棋,高闽光,齐锋,王亚平.2003.机动车尾气CO和CO_2非分光红外遥测技术研究.量子电子学报.20(4):459-464.
    [98]白泽生.2007.一种二氧化碳气体检测方法.传感器与微系统.26(7):105-107
    [99]邱法斌,全宝富,程刚,向思清,孙良彦.2000.新型固体电解质CO_2传感器及其特性.传感器技术.12:1-7.
    [1]Lin,CY,Jo,CH,2003.Hydrogen production from sucrose using an anaerobic sequencing batch reactor process.J.Chem.Technol.Biotechnol.78,678-684.
    [2]Mizuno O,Dinsdale R,Hawkes FR,Kawkas DL,Noike T.2000.Enhancement of hydrogen production from glucose by nitrogen gas sparging.Biotechnol.Bioeng.73,59-65.
    [3]Chen CC,Lin CY,Chang JS,2001.Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate.Appl.Microbiol.Biotechnol.57,56-64.
    [4]Chen CC,Lin CY,2003.Using sucrose as a substrate in an anaerobic hydrogen-producing reactor.Adv.Environmen.Res.7,695-699.
    [5]Lee YL,Miyahara T,Noike T.2002.Effect of pH on microbial hydrogen fermentation.J.Chem.Technol.Biotechnol.77:694-698.
    [6]Chung KT.Inhibitory effects of H_2 on growth of Clostridium cellobioparum.Appl.Environ.Biotechnol.1976,31:342-348.
    [7]Bahl H,Gottschalk G.1984.Parameters affecting solvent production by Clostridium acetobutylicum in continuous culture.Biotechnol.Bioeng.Symp.14:215-223.
    [8]Yerushalmi L,Volesky B.1985.Importance of agitation in acetone-butanol fermentation.Biotechnol.Bioeng.27:1297-1305.
    [9] Yerushalmi L, Volesky B, Szczesny T. 1985. Effect of increased hydrogen partial pressure on the acetone-butanol fermentation by Clostridium acetobutylicum. Appl. Microbiol. Biotechnol. 22: 103-107.
    [10] Yu HQ, Fang HHP. 2001. Inhibition on acidogenesis of dairy wastewater by zinc and copper. Environ. Technol. 22: 1459-1465.
    [11] Tanisho S, Kuromoto M, Kadokura N. 1998. Effect of CO_2 removal on hydrogen production by fermentation. Int. J. Hydrogen Energy. 23(7): 559-563.
    [12] Gottschalk G Bacterial Metabolism, 2~(nd) ed. Springer-Verlag, New York, 1986.
    [13] Kim IS, Hwang MH, Jang NJ, Hyun SH, Lee ST. 2004. Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process. Int. J. Hydrogen Energy. 29(11): 1133-1140.
    [14] Oh YK, Kim SH, Kim MS, Park S. 2004. Thermophilic biohydrogen production from glucose with trickling biofilter. Biotechnol. Bioeng. 60: 690-698.
    [15] Ueno, Y, Otsuka, S, Morimoto, M. 1996. Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. J. Ferment. Bioeng. 82, 194-197.
    [16] Logan, BE, Oh, SE, Kim, IS, van Ginkel, S. 2002. Biological hydrogen production measured in batch anaerobic respirometers. Environ. Sci. Technol. 36,2530-2535.
    [17] Oh, SE, van Ginkel, S, Logan, B. 2003. The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ. Sci. Technol. 37,5186-5190.
    [18] Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Calorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350-356.
    [19] Lee YJ, Miyahara T, No ike T. 2001. Effect of iron concentration on hydrogen fermentation. Bioresource Technol. 80, 227-231.
    [20] Fang HHP, Liu H. 2002. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technol. 82, 87-93.
    [21] APHA. 1995. Standard Methods for the Examination of Water and Wastewater, 19th ed. American Public Health Association, New York.
    [22] Cai ML, Liu JX, Wei YS. 2004. Enhanced biohydrogen production from sewage sludge with alkaline pretreatment. Environ. Sci. Technol. 38: 3195-3202.
    [23] Kim SH, Han SK, Shin HS, 2006. Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter. Process Biochem. 41: 199-207.
    [24] Annous BA, Shieh JS, Shen GJ, Jain, MK, Zeikus, JG, 1996. Regulation of hydrogen metabolism in Butyribacterium-Methylotrophicum by substrate and pH. Appl. Microbiol. Biotechnol. 45: 804-810.
    [25] Mosey FE. 1983. Mathematical modelling of the anaerobic digestion process: regulatory mechanisms for the formation of short-chain volatile acids from glucose. Water Sci. Technol. 15: 209-231.
    [26] Logan BE, Oh SE, Kim IS, van Ginkel S. 2002. Biological hydrogen production measured in batch anaerobic respirometers. Environ. Sci. Technol. 36: 2530-2535.
    [27] Oh SE, Iyer P, Bruns MA, Logan BE. 2004. Biological hydrogen production using a membrane bioreactor. Biotechnol. Bioeng. 87: 119-127.
    [28] Oh YK, Seol EH, Lee EY, Park S. 2002. Fermentative hydrogen production by a new chemoheterotrophic bacterium Rhodopseudomonas palustris P4. Int. J. Hydrogen Energy. 27:1373-1379.
    [29] Ren NQ, Wang BZ, Huang JC. 1997. Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnol. Bioeng. 54,428-433.
    [30] Smith DP, McCarty PL. 1989. Reduced product formation following perturbation of ethanol- and propionate-fed methanogenic CSTRs. Biotechnol. Bioeng. 34, 885-895.
    [1]胡纪萃等编著.2003.废水厌氧生物处理理论与技术.北京:中国建筑工业出版社.
    [2]贺延龄.1998.废水的厌氧生物处理.北京:中国轻工业出版社.
    [3]沈耀良.1999.废水生物处理新技术-理论与应用.北京:中国环境科学出版社.
    [4]Angelidaki I,Ahring BK.1992.Effects of free long-chain fatty acids on thermophilic anaerobic digestion.Appl.Microbiol.Biotechnol.37,808-812.
    [5]Moosbrugger RE,Wentzel MC,Ekama GA,Marais GvR.1993.Weak acid/bases and pH control in anaerobic systems-a review.Water.SA.19:1-10.
    [6]H Kapp.1984.Schlammfaulung mit hohem Feststoffgehalt.Stuttgarter Berichte zur Siedlungswasserwirtscaft,Band 86,Oldenbourg Verlag,Munchen.
    [7]G.K.Anderson,G.Yang,1992.Determination of bicarbonate and total volatile acid concentration in anaerobic digesters using a simple titration Water Environ.Res.64(1):53-59.
    [8]Moosbrugger RE,Wentzel MC,Loewenthal RE,Ekama GA,Marais GvR.1993.A 5-point titration method to determine the carbonate and SCFA weak acid/bases in aqueous solution containing also known concentrations of other weak acid/bases.Water SA 19:29-39.
    [9]Moosbrugger RE,Wentzel MC,Ekama GA,Marais GvR.1993.A 5-point titration method for determining the carbonate and SCFA weak acid/bases in anaerobic systems.Wat.Sci.Tech.28:237-245
    [10]O Lahav,BE Morgan.2004.Titration methodologies for monitoring of anaerobic digestion in developing country-a review.J.Chem.Technol.Biot.79:1331-1341.
    [11]傅献彩,沈文霞,姚天扬.1990.物理化学(第四版).北京:高等教育出版社.
    [12]Stumm WQ,Morgan JJ.著.汤鸿霄译.1987.水化学-天然水体化学平衡导论.北京:科学出版社.
    [13]孙江宏,李良玉.2001.Protel 99电路设计与应用.北京:机械工业出版社.
    [14]清源计算机工作室.2004.Protel 99 SE原理图与PCB及仿真.北京:机械工业出版社.
    [15]胡汉才.2004.单片机原理及其接口技术.北京:清华大学出版社.
    [16]刘炳文.2000.Visual Basic语言教程.北京:电子工业出版社.
    [17]郑阿奇.2000.Visual Basic实用教程.北京:电子工业出版社.
    [18]张树兵.1999.Visual Basic 6.0中文版入门与提高.北京:清华大学出版社.
    [1]苑瑞华编.2001.沼气生态农业技术.北京:中国农业出版社.
    [2]Y.Chen,J.J.Cheng,K.S.Creamer.2008.Inhibition of anaerobic digestion process:A review.Bioresour.Technol.99(10),4044-4064
    [3]Shin,H.-S,Oh,S.-E,Lee,C.-Y.1997.Influence of sulfur compounds and heavy metals on the methanization of tannery wastewater.Water Sci.Technol.35(8):239-245.
    [4]Angelidaki I,Ahring BK.1992.Effects of free long-chain fatty acids on thermophilic anaerobic digestion.Appl.Microbiol.Biotechnol.37:808-812.
    [5]Alphenaar PA,Visser A,Lettinga G.1993.The effect of liquid upward velocity and hydraulic retention time on granulation in UASB reactors treating wastewater with a high sulphate content.Bioresour.Technol.43:249-258.
    [6]Karhadkar PP,Audio JM,Faup GM,Khanna P.1987.Sulfide and sulfate inhibition of methanoenesis.Water Res.21:1061-1066.
    [7]刘敏,唐祯安,张洪泉.2007.基于非分散红外(NDIR)原理的煤矿甲烷检测仪,仪表技术与传感器.3:18-20.
    [8]熊友辉,蒋泰毅.2003.电调制非分光红外(NDIR)气体传感器.仪表技术与传感器.11:4-9.
    [9]郑阿奇.2000.Visual Basic实用教程.北京:电子工业出版社.
    [10]张树兵.1999.Visual Basic 6.0中文版入门与提高.北京:清华大学出版社.
    [1]贺延龄.1998.废水的厌氧生物处理.北京:中国轻工业出版社.
    [2]胡纪萃,周孟津等.2003.废水庆氧生物处理理论与技术.北京:中国建筑工业出版社.
    [3]申立贤.1991.高浓度有机废水的厌氧处理技术.北京:中国环境科学出版社.
    [4]Michaud S,Bernet N,Buffiere P,Roustan M,Moletta R.2002.Methane yield as a monitoring parameter for the start-up of anaerobic fixed film reactors.Water Res.36(5):1385-1391.
    [5]DiMarco AA,Bobik TA,Wolfe RS.1990.Unusual coenzymes of methanogenesis.Annu.Rev.Biochem.59:335-394.
    [6]Eirich LD,Vogels GD,Wolfe RS.1978.Proposed structure for coenzyme F420from Methanobacterium.Biochemistry.17:4583-4593.
    [7]Purwantini E,Daniels L.1996.Purification of a novel coenzyme F420-dependent glucose-6-phosphate dehydrogenase from Mycobacterium smegmatis.J.Bacteriol.178(10):2861-2866.
    [8]Beelen van P,Dijkstra AC,Vogels OD.1983.Quantitation of coenzyme F420 in methanogenic sludge by the use of reversed phase high performance liquid chromatography and a fluorescence detector.Appl.Microbiol.Biotechnol.18(1):67-69
    [9]Peck MW,Archer DB.1989.Methods for the quantification of methanogenic bacteria.Int.Industrial Biotechnol.9(3):5-12.
    [10]Samson R.,Guiot S,Beaubien A,Jolicoeur C.1988.Online sensor technology in anaerobic digestion.Fifth International Symposium on Anaerobic Digestion-Poster Papers:231-234.
    [11]唐一,胡纪萃.1990.辅酶F420作为厌氧污泥活性指标的研究.中国沼气.81(1):11-15
    [12]Sheng GP,Yu HQ.2006.Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy.Water Res.40:1233-1239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700